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Abstract—Technology Acceptance Model (TAM) framework was utilized 

in this study. Its purpose was to determine the correlation between independent 

variables consisting of Perceived Ease of Use (PEU), Perceived Usefulness 

(PU), Attitude toward Using (AU) with dependent variable Behavioral Intention 

to Use (BIU). Data collection techniques were carried out by distributing 

questionnaires through group discussion forums. Respondents consisted of 

medical workers and health cadres both in Jakarta and Yogyakarta. Data were 

analyzed using correlation test and t-test. The results of the correlation test state 

that the correlation between PEU and AU is 0.30, which shows a weak 

correlation. Meanwhile, the correlation of PU and AU is 0.56, PEU and BIU is 

0.41, and PU and BIU is 0.47, which are considered as moderate correlations. 

Finally, a strong correlation exists between AU and BIU. T-test results show 

that the effect of PU on AU is statistically significant with CI = 95%. Likewise, 

the effects of PEU on AU, AU towards BIU, PU towards BIU, and PEU 

towards BIU are significant (p < 0.05). 

Keywords—Mobile learning, TAM, cancer early detection  

1 Introduction 

The International Agency for Research on Cancer (IARC) estimates that one in 

five men and one in six women worldwide will suffer cancer during their lifetime. 

Even one in eight men and one in eleven women will die from the disease. Based on 

the 2018 International Agency for Research on Cancer (IARC) Globocan data, global 

cancer has risen to 18.1 million cases. Furthermore, 9.6 million have died from cancer 

worldwide (see figure 1). 
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Fig. 1. Cancer Today the Five Most Commonly Diagnosed Cancer Types. (Globocan, IARC 

2018) 

The incidence of cancer in Indonesia (136.2/100,000 population) ranks 8th in 

Southeast Asia, while in Asia ranks 23. The number of new cancer cases in Indonesia 

is 348,809 cases, with the number of cancer deaths of 207,210 (see figure 2). The low 

level of knowledge and understanding is one of the factors that cause patients to delay 

early detection [1]. 

A series of efforts have been made by the Government of Indonesia to reduce the 

number of people living with cancer, including counseling and formal training. 

However, this effort requires a lot of money [2]. Also, the Government of Indonesia, 

through the Ministry of Health, created an early detection program for breast cancer 

and cervical cancer. Women aged 30-50 years can use clinical breast examination 

methods and visual inspection with acetic acid (IVA test) for the cervix. Another 

program is breast self-examination by examining her breasts by looking and feeling 

with fingers to detect whether there are lumps in her breasts [3], as well as developing 

early cancer discovery programs in children, cancer palliative services, early detection 

of lung cancer risk factors, and national cancer registration system. 

The spread of early breast and cervical cancer detection programs can also be 

through community-based network organizations [4] by empowering health activists 

to help underserved individuals to get regular and quality health care [5]. The series of 

efforts turned out not to be able to reach remote areas optimally and requires a new 

step to provide broader services. 
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Fig. 2. Number of new cases, Number of deaths, Number of prevalent cases in 5-year (The 

Global Cancer Observatory, 2019)  

Online-based learning, or known as online learning to detect cancer, is the first step 

ever developed to answer the challenges above [6]. As technology advances, mobile-

based cancer detection learning is developed, which is a continuation of this research. 

Benchmarks used to determine, explain, and predict the level of acceptance of 

mobile learning applications by users is to use the Technology Acceptance Model 

(TAM) method [7]. This study aims to determine the correlation between independent 

variables, namely Perceived Ease of Use (PEU), Perceived Usefulness (PU), Attitude 

toward Using (AU), and dependent variables, namely Behavioral Intention to Use 

(BIU), and also to find out how the influence of independent variables on the 

dependent variable. 

2 Literature Review 

2.1 Mobile learning  

Mobile learning is the intersection of mobile computing and e-learning [8]. The 

spread of the use of mobile devices as the first learning process occurred in the mid-

1990s [9], which was very helpful in accessing and disseminating information [10]. 

Mobile learning is utilizing educational technology devices such as laptops, digital 

personal assistants (PDAs) [16], tablets, cell phones, and e-book reader applications. 

The devices allow users to use mobile learning anytime and anywhere [11]. A study 

in Guangzhou showed that the students agreed to use mobile devices because they 

could study outside of school rather than having to be present in the classroom [14]. 

Many researchers agreed that mobile learning provides many benefits in enhancing 

creativity, collaboration, and communication in the teaching and learning process 
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[12]. Furthermore, mobile learning also greatly helps teachers in distributing modules 

or materials to be taught every day. Mobile learning also helps teachers to interact in 

the process of teaching and learning online, so they do not always have to meet their 

students face to face [13]. Thus mobile learning can overcome the problem of distance 

in transferring knowledge between teacher and student. 

Despite having many of these advantages, there are also disadvantages of using 

mobile learning. Among others is the dependence on the Internet and electricity 

network reliability. This dependency can hamper the usage of mobile learning 

because not everyone has an adequate Internet and electricity network [15]. Besides, 

the problem of social interaction is also minimal when using mobile learning due to 

the lack of direct meetings between instructors and students [17]. 

2.2 Technology acceptance model 

TAM (Technology Acceptance Model) was first implemented by Davis in 1989 

[7], which is a model for analyzing the acceptance factors of an information system 

and technology from users [18]. TAM can be used to analyze the habits of students in 

using e-learning [19]. 

The original TAM model includes 4 variables that measure an information system, 

namely Perceived Usefulness (PU), Perceived Ease of Use (PEU), Behavioral 

Intention to Use (BIU), and Attitude toward Using (AU). Perceived Ease of Use 

(PEU) is the main factor of the acceptance of an information system [20]. Perceived 

Usefulness (PU) is a factor used where the person believes that an information system 

can improve performance in work [21]. 

2.3 Effects of perceived usefulness (PU) on attitude toward using (AU) 

Pro or contra attitude toward the application of information systems is influenced 

by the level of one's confidence in the utilization of the system [24]. The higher the 

usefulness felt by the user when using a system or technology, the more positive the 

user's attitude towards the use of the technology. A study of the factors that influence 

the intention to use Mobile Payment states that perceived usefulness is positively 

related and significantly influences attitude toward using [22]. Likewise, other 

research related to determinants of mobile learning adoption, states that perceived 

usefulness is positively related and significantly influences attitude toward using [23]. 

Therefore, the first research hypothesis is: 

H1: Perceived Usefulness (PU) influences Attitude toward Using (AU) 

2.4 Effect of perceived ease to use (PEU) on attitude toward using (AU) 

The ease of use influence the pros or cons attitude towards the information systems 

[24]. Perceived Usefulness is a phase where someone believes that using an 

information system will increase productivity, performance, work performance, and 

bring benefits for those who use it [7][25]. Someone who will use information 

technology has an understanding of its usefulness [26], which results in the ease of 
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use. A study comparing the factors that influence e-commerce adoption shows that 

PEU has a positive effect on AU [27]. Whereas in other studies related to online 

shopping on Instagram, shows that the user has proven and felt the benefits [28]. 

Based on the results of the study, the second hypothesis is: 

H2: Perceived Ease of Use (PEU) influences Attitude toward Using (AU). 

2.5 Effect of attitude toward using (AU) on behavior intention to use (BIU) 

Attitudes and subjective norms influence the intention of human behavior [29]. If 

someone tends to have a positive attitude towards technology, then that person tends 

to accept and use the technology, or vice versa [24]. One study related to factors 

influencing student adoption and the use of e-learning shows the results that attitude 

towards the use of mobile learning influence the intention to use [30]. Attitude toward 

Using (AU) is also obvious in the use of internal banking systems because it makes it 

easier to use technology. That increases the interest of users to use technology in their 

work [31]. The most dominant intention is influenced by attitude because Attitude 

toward Using (AU) is a strong mediator between belief and interest to use [32]. Based 

on the results of the study, the third hypothesis is: 

H3: Attitude toward Using (AU) influences Behavior Intention to Use (BIU). 

2.6 Effect of perceived usefulness (PU) on behavior intention to use (BIU) 

Behavioral intention to use is the tendency for a person's behavior to continue to 

apply the technology, including the desire to keep using it and to influence other users 

[7]. Increased user interest in the system is seen when the usefulness of the system has 

been felt [33]. One researcher who examined mobile services has proven that 

perceived usefulness is one of the factors supporting the intention of users to use 

technology [34]. The use of technology by users shows that the level of user 

confidence in the method of delivering information is beneficial and is considered as a 

choice [35]. Thus, positively perceived usefulness will directly affect intention to use 

[36]. Based on the results of the research, the fourth hypothesis is: 

H4: Perceived Usefulness (PU) influences Behavior Intention to Use (BIU) 

2.7 Effect of perceived ease of use (PEU) on behavior intention to use (BIU) 

Behavioral intention to use is a form of one's belief in the use of technology 

accompanied by increased interest in using it, and finally using information 

technology to complete the work [37]. The higher one's perception of the ease of 

using the system, the higher the level of utilization [38]. This means that when the 

user believes that the information system is easy to use, the user will use it or vice 

versa [39]. Several previous studies have mentioned that perceived ease of use has a 

positive effect on the attitude of technology use [40] and [41]. Based on the results of 

the research, the fifth hypothesis is: 

H5: Perceived Ease of Use (PEU) influences Behavior Intention to Use (BIU) 
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3 Result and Discussion 

3.1 Correlation Test 

The correlation tests between variables are shown in figure 3. AU and BIU shows 

the strongest correlation (ρ=0.64), compared to other correlations. Correlation test 

between PU and AU; and correlation test between PU and BIU also gave strong 

correlation score with ρ=0.57 and ρ=0.48 respectively, which can be classified as 

moderate correlation. Lastly, the correlation related to PEU shows the weakest 

correlation among other correlations. Even though AU has strong correlation with PU 

and BIU, it has weak correlation of ρ=0.3 with PEU.  

 

Fig. 3. Correlation between Variables  

3.2 Hypothesis test 

Linear regression explains the pattern of relationships between two or more 

variables. The results of this analysis determine whether between the variables being 

studied against the relationship, influence each other, and how much the level of 
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relationship. The results of testing the hypothesis using linear regression can be seen 

in figure 4. 

 

Fig. 4. Linear Regression Analysis Result 

 Hypothesis 1 Testing 

The linear regression model shows the relationship between PU to AU based on the 

data collected as follow: 

AU = 1.1911 + 0.5750*PU + ε 

This linear regression model explains that there is a positive influence between PU 

on AU. The slope value of 0.5750 can be interpreted as an increase in the average 

perception of utilization due to an increase in attitude towards use. T-test result 

indicates that the effect of PU is statistically significant at α = 0.05 (p < 0.001). Thus 

the H1 hypothesis is proven that PU influences AU. 

The regression line shown in figure 5 depicts the relationship between PU and AU. 

 

Fig. 5. Regression Plot between Perceived Usefulness (PU) of Attitude toward Using (AU) 
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As given by the fitted linear model, the R2 of the linear model in figure 5 is 0.322. 

This means that only 32.2% of the variability in AU can be explained by the 

variability in PU. 

 Hypothesis Testing 2 

The linear regression model also found relationship between PEU and AU based 

on the data collected is: 

AU = 2.0832 + 0.2976*PEU + ε 

This linear regression model explains the positive effect on PEU between AU. It is 

possible to interpret the estimated slope value of 0.2976 as an increase in the PEU due 

to an increase in AU. T-test result shows a statistically significant effect of PEU at α = 

0.05 (p = 0.019), so the H2 hypothesis is proven to affect the AU. 

The following line of regression describes the relationship between PEU and AU 

(figure 6). 

 

Fig. 6. Regression Plot between Perceived Ease of Use (PEU) and Attitude toward Using (AU) 

Based on the linear model figure 6, the R-squared value is 0.093. This means that 

the variation in PEU will explain 9.3% of the variability in AU. 

 Hypothesis Testing 3 

The results of the analysis show that the linear regression model that showing the 

correlation between AU to BIU based on sample data is: 

BIU = 0.5033 + 0.7879*AU + ε 

This linear regression model explains that the AU and BIU has a positive 

influence. The reported slope value of 0.7879 can be interpreted as an increase in the 

AU due to an increase in BIU. T-test result shows a statistically significant effect at α 
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= 0.05. This is shown by the p-value magnitude that is much smaller than 0.001. 

Therefore, the H3 hypothesis is proven. 

The following regression line explains the relationship between AU and BIU 

(figure 7). 

 

Fig. 7. Regression Plot between Attitude toward Using (AU) and Behavior Intention to Use 

(BIU) 

As inferred from the linear model in figure 7, the R-squared value is 0.409, that 

means only 40.9% of the variability in AU will be stated by the BIU variation. 

 Hypothesis Testing 4 

A linear regression analysis is again adopted to find a relation between between PU 

and BIU, which is found to be: 

BIU = 1.0076 + 0.5964*PU + ε 

The model is visualized on the data set in figure 8 and has R2 value of 0.5964. T-

test demonstrates that the effect of PU on BIU is statistically significant at α = 0.05 

(p-value < 0.001), implying the H4 hypothesis is accepted.  

 

Fig. 8. Regression Plot between Perceived Usefulness (PU) and Behavior Intention to Use 

(BIU) 
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  Hypothesis Testing 5 

Assuming a linear regression model between PEU and BIU (figure 9), the resulting 

equation can be written as: 

BIU = 1.3767 + 0.5036*PEU + ε, 

Where the value of R2 is 0.174. The t-test result demonstrates a statistically 

significant relation between the two variables with p-value of 0.001. The result firmly 

implies that H5 hypothesis is accepted. 

 

Fig. 9. Regression Plot between Perceived Ease of Use (PEU) and Behavior Intention to Use 

(BIU) 

4 Conclusion 

The correlation test that produces a low correlation is found in the correlation 

between PEU and AU, which is equal to 0.30. The correlation test that produces a 

moderate correlation is found in the correlation between PU and AU of 0.56, PEU and 

BIU of 0.41 and PU and BIU of 0.47. Finally, the correlation test that produces a 

strong correlation is found in the correlation between AU and BIU of 0.63.  

Based on the results of the t-test showed that the effect of perceived usefulness on 

attitude toward using was statistically significant at α = 0.05. Likewise, the effect of 

PEU on AU, AU towards BIU, PU towards BIU, and PEU towards BIU are 

significant (p < 0.05). 
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