
INTEROPERABILITY OF REMOTE LABORATORIES SYSTEMS; YEUNG, LOWE AND MURRAY

Interoperability of Remote Laboratories Systems
doi:10.3991/ijoe.v6s1.1387

Herbert Yeung, David Lowe, Steve Murray

University of Technology Sydney, Australia

Abstract—There has been growing interest in, and develop-
ment of, remotely accessible laboratories as a mechanism
for improving access and flexibility, and enabling sharing of
facilities. Differences in focus, philosophy, approach or do-
main have led to quite different technical solutions in sup-
porting remote laboratories. Whilst this diversity represents
a significant strength in terms of the ability to explore dif-
ferent issues and support diverse applications, it does how-
ever potentially hamper the sharing of labs between differ-
ent institutions. Investigation into interoperability between
two remote lab platforms has realized a need for a common
application protocol to achieve the goals remote labs aims to
provide. We describe our approach to providing a bridge
between two current remote laboratory architectures – Lab-
share’s Sahara and MIT’s iLabs – and report on the issues
that arise with regard to the protocol translations.

Index Terms—Interoperability, Laboratory, Remote, Sys-
tem.

I. INTRODUCTION

Currently, there are numerous architectures and imple-
mentations of remote labs across different institutions and
geographical locations [1] – each having arisen from a
different set of pedagogic or technical design parameters,
philosophical approach, or simple evolutionary pathways.
Given that each architecture will have different strengths
and weaknesses, and potentially address a different set of
needs, we believe that this diversity is an asset that should
be encouraged rather than avoided. The diversity can,
however, create problems with regard to laboratories that
are implemented based on one architecture not being ac-
cessible to users who have adopted an alternative architec-
ture. This indicates that there are likely to be significant
benefits to be gained by developing approaches that allow
different systems to co-exist, but to also interoperate – i.e.
to identify common interfaces that allow a laboratory that
is developed and managed in one system to be utilized by
users supported by an alternative system. In this paper we
investigate this concept in the context of two specific ar-
chitectures: Labshare’s Sahara1 [2] and MIT’s iLabs2 [3].
These two architectures were chosen as they are relatively
mature architectures which offer similar and sometimes
complementary functionality, but also have some notable
differences [4]. Our analysis will demonstrate the feasibil-
ity of using a common protocol to achieve interoperability
and the lessons gained in trying to achieve this. We begin
in Section II by providing a brief overview of the Sahara
and iLabs architectures and a comparison of their respec-
tive approaches, strength, and weaknesses. In Section III
we compare the functionality supported in each architec-
ture and how the functionality in each architecture can (or

1 See http://www.labshare.edu.au
2 See https://wikis.mit.edu/confluence/display/ILAB2/Home

in some cases cannot) be mapped to the other architecture.
In Section IV we discuss a protocol for communication
between the two systems and how this can be used to sup-
port interoperability. In Section V we discuss design is-
sues that are relevant to the implementation of this ap-
proach and in Section VI we consider conclusions and
future work.

II. ARCHITECTURE OVERVIEW

A. Sahara Architecture
The early UTS (University of Technology, Sydney) re-

mote laboratory system dates to the period 2000-2005, and
was originally developed to allow students to have flexi-
ble access to limited laboratory resources [2]. This system
– which has subsequently come to be referred to as Sahara
(Release 1) – was then adopted as the basis for the much
broader Labshare project1. This project is aiming to estab-
lish a national approach, within Australia, to the use of
remote laboratory technologies in support of the sharing
of laboratory facilities between educational institutions.
As a consequence Sahara has undergone a major redesign,
initially to provide a much more scalable and robust basis
for laboratory development (primarily the basis of Sahara
Release 2), and subsequently to provide support for dis-
tributed user management and access accounting, amongst
other adaptations (Sahara Release 3 and onwards). Despite
these changes, Sahara has largely retained the core archi-
tectural elements that were incorporated in the earliest
versions of the system.

One of the advantages of the Sahara design is the ability
to have a short turnaround time and low costs in creating a
new experimental rig (see [5, 6] for examples). This is due
to a simple protocol and configuration for implementation
purposes.

With Sahara Release Two, this concept has been ex-
tended with a requirement for some of the limitations from
release one to be resolved. One of the limitations that is
fixed in release 2 that existed in release one is the re-
stricted number of connections that could be established
due to database constraints and the number of processes
involved. Another limitation that has been addressed is the
non-functional requirement of extensibility. With the
adoption of a SOAP application protocol interface (API)
and the ability to add other capabilities in planned future
releases, extensibility has become a prime requirement.
Portability has also been considered, to allow the system
to be installed on varying operating system architectures
with the adoption of Java, Apache, PostgresSQL and PHP,
which are all cross-platform.

Proposed changes in release 3 and beyond will allow
the system to be accessible from different institutions, as
part of the Labshare program. This will culminate in the

iJOE – Volume 6, Special Issue 1: REV2010, September 2010 71

http://dx.doi.org/10.3991/ijoe.v6s1.1387�

INTEROPERABILITY OF REMOTE LABORATORIES SYSTEMS; YEUNG, LOWE AND MURRAY

ability to allow different institutions to share rigs and pos-
sibly other features.

B. iLabs Architecture
iLabs was devised from the research by MIT to create a

remote labs installation that would be able to be distrib-
uted readily across varying institutions in different geo-
graphical locations, but allow them to achieve the com-
mon goal of sharing labs. The premise was to be able to
scale the architecture while at the same time offer an easy
way for remote labs to be setup [3]. This led to a broker
architecture being adopted [7]. This allows for all proxy
agents to be managed under the guidance of the service
broker and meant that any other components (known as
proxy agents) can be installed on different machines.

Release 3 of iLabs has brought several significant
changes. Noticeably, the biggest changes are to do with
the support for Unicode, a more refined ticketing and cou-
pon system as well as initial support for single sign on
(SSO) capability.

The University of Queensland (UQ) has also conducted
research and design in extending iLabs to provide a dis-
tributed means of sharing lab equipment, known as the
‘lab farm’. This proposed architectural change to iLabs
involves the addition of new components such as the ‘ex-
periment manager’ and ‘experiment engine’, and removal
of the lab-side scheduling server, thus shifting the func-
tional responsibility towards the lab server and respective
experiment manager, introduced to coordinate the ‘lab
farm’ and assist in the scalability of adding or removing
lab equipment [8].

C. Architecture Comparison
As depicted in Figure 1, Sahara is based on a client-

server architecture. There are two forms of clients used.
One is a web based thin client that allows the user to ac-
cess the rigs via a web based interface, while another cli-
ent provides a means for the server to manage the respec-
tive rigs. The core of Sahara is the Scheduling Server and

this comprises a stack that consists of a persistence layer
that sits at the bottom followed by a layer that manages
the rig clients as well as the queuing, while at the top of
the stack, the session creation and management is handled.

On the other hand, iLabs has adopted a broker architec-
ture, as shown in Figure 2 and Figure 3. This architecture
has the advantage of allowing for distributed components,
which are centrally managed by a service broker compo-
nent. This eases deployment, and allows different compo-
nents to be installed on different physical platforms. Fig.
2, also shows the control flow that is made, in a holistic
manner when a reservation is requested and how the data
is transported, for an interactive experiment. Fig. 2 does
not show the registration and tokenizing system that is
adopted to allow for the authorization mechanisms that
associate the different proxy servers. The batch experi-
ment interfacing, shown in Fig. 3, can forgo the use of
user side scheduling (USS) and lab side scheduling (LSS)
as there is no need to manage session state as compared to
an interactive experiment.

Both architectures have adopted a SOAP based inter-
face, using extensible markup language (XML), for the
means of communication. Also, the underlying core is still
predominately based on a client-server architecture (in the
case of iLabs it is segregated between the web client and
the user side scheduling server) with the adoption of an off
the shelf framework, as most remote lab implementations
currently have used [9]. This is exemplified by iLabs cur-
rently adopting the ASP.NET framework while Sahara
release 2 predominately operates on the Java OSGi
framework.

III. FUNCTIONALITY MAPPING

The Sahara and iLabs architectures were developed to
address varying needs by each host institution, and there-
fore have varying architectures, but also differing objec-
tives, terminology, and usage patterns. In order to create a
communications protocol that supports interoperability we

Figure 1. Component Diagram depicting interfaces of Sahara Release 2. Consists of Scheduling Server, Web Interface Client and RigClient

72 http://www.i-joe.org

INTEROPERABILITY OF REMOTE LABORATORIES SYSTEMS; YEUNG, LOWE AND MURRAY

therefore need to consider the differences and similarities,
and how these might affect our design.

We begin by considering a common nomenclature used
between the two designs. Analyzing the nomenclature
used not only assists in the understanding of both iLabs
and Sahara but also allows for the development of a stan-
dardized communication platform, similar to developing
an agent based service platform [10]. The functional map-
ping approach is similar to the schema mapping approach
for achieving metadata interoperability [11]. Sahara came
from an initial emphasis for the provision of engineering
labs [12] whereas iLabs appears to have centered on ac-
commodating science/applied science based labs [3].

These different domains, as well as different conceptu-
alizations of the nature of the problems being addressed
have led to the adoption of quite different terminologies.
Table 1 draws a comparative mapping between the two

separate nomenclatures to understand where certain com-
monalties can be reached. From the table, it can be seen,
that the concept of a scheduling server holds true in both
designs, while the concept of experiments from iLabs does
not deviate significantly from the engineering nomencla-
ture adopted by Sahara. One thing that is noticeably dif-
ferent in the terminology is the concept of the service bro-
ker, represented in iLabs but not in Sahara. This is due to
the architectural differences between Sahara and iLabs.

In terms of developing a communication protocol for
supporting interoperability, a key question relates to how
we handle functionality that is required (or assumed) by
components of one architecture, but which is not present
in the other architecture. This requirement may be an op-
erational requirement, or it may relate to functionality that
is provided to the user. As an example, the iLabs Batch
mode Lab Server provides a notification to the relevant

Figure 2. Component Diagram showing interfaces of iLabs version 3. Consists of an

LSS, USS, iLabServiceBroker, ESS, Client and LabServer

iJOE – Volume 6, Special Issue 1: REV2010, September 2010 73

INTEROPERABILITY OF REMOTE LABORATORIES SYSTEMS; YEUNG, LOWE AND MURRAY

Service Broker once a queued experiment has been com-
pleted to retrieve back the experiment results. No such
functionality is provided in Sahara (primarily because it
was designed to support interactive rather than batch labo-
ratories).

The use of a web service calls mapping table (refer to
Table 2) allows the identification of a set of common
functionality that exists in both architectures. From the
analysis it can be inferred that there is a relatively seam-
less mapping for most of the core functionality. However,
there are disparities in some of the mappings, due to dif-
fering design decisions or understandings. For example, in
Sahara, the validation process is conducted as part of the
experiment submission process. However, this contrasts in
iLabs where the validation process is treated separately.
We needed to account for this in our design decisions,

which required examining the costs and benefits of keep-
ing a particular functionality in the common architecture
protocol. Another aspect that Sahara offers that is not of-
fered in iLabs is a more granular and flexible ability to
control and administer interactive experiments via web
service calls, such as the capability for a user being
‘locked out of an experiment’ (resulting in more granular
authorization). As part of the design of the architecture,
other things that need to be considered are the common
functionality that is understood across both platforms.
This can be categorized into the following areas: lab ac-
cess, lab and experiment operations (encompassing status
and execution), retrieval of results and the ability for the
laboratory manager or administrative staff to conduct
maintenance activities if need be.

Figure 3. Component Diagram of iLabs Batch based experiment

74 http://www.i-joe.org

INTEROPERABILITY OF REMOTE LABORATORIES SYSTEMS; YEUNG, LOWE AND MURRAY

Other commonalities that exist include the concept of
queuing. Both architectures understand that requests for
rigs/lab equipment needs to be queued. Both currently
adopt a first in first out (FIFO) approach to queuing. There
is also a common understanding between the differences
of interactive versus batch labs [7].

IV. COMMON APPLICATION PROTOCOL

We propose that a common application protocol inter-
face (API) be adopted that has the capability of offering
both batch and interactive lab functionality, while main-
taining the quality aspects of both existing systems, such
as consistency, reusability and availability. Our defined
interface to accomplish this is called LabConnector.

TABLE I.
NOMENCLATURE MAPPING BETWEEN SAHARA AND ILABS

Nomenclature Mapping

Sahara iLabs

Rig LabEquipment

RigClient LabServer

Capability Annotation

Lesson Experiment Specification

Queued Experiment (Queue)

Session Experiment (Running)

Scheduling Server LSS + ESS

Distributed File System Experiment Storage Server

(No Equivalent) Service Broker

TABLE II.
WEB SERVICE CALLS MAPPING SNIPPET

Web Services API

Sahara (SchedServer) Common iLabs (ServiceBroker)

performBatchControl Yes Submit

[No equivalent] N/A Register

[No equivalent] No RetrieveSpecifciation

performBatchControl Redundant Validate

abortBatchControl Yes Cancel

getBatchControlStatus Yes GetExperimentStatus

addUserClass No [No equivalent]

The LabConnector adopts both the proxy and façade

design patterns [13] in order to offer a disparate number of
web service calls as one, while at the same time offering
the same interface for both iLabs and Sahara, respectively.
This is shown in Figure 4, from the perspective of an
iLabs user, whereby the submit and the validate message
calls in iLabs are interfaced to LabConnector as though it
is an iLabs LabServer. Conversely, Figure 5 shows that an
Sahara user will use the LabConnector interface as though
it is part of the Scheduling Server interface. The web in-
terface across the LabConnector bridge is defined in the
Web Service Definition Language (WSDL) file. This is, in
turn, mapped to an equivalent experiment submission and
validation call in Sahara. The full list of Web services is as
follows:

submitExperiment releaseExperiment
getExperimentResults setUserPermissions
setMaintenanceTime scheduleBookingTime
saveUserExperimentInput saveExperimentResults
releaseSlave getUserPermissions
getSavedUserExperimentInput getToken
getMaintenanceTime getLabStatus
getLabInfo getLabID
getInteractiveExperimentSession getExperimentType
getExperimentStatus getExperimentSpecs
deleteSavedUserExperimentInput getExperimentID
cancelMaintenanceTime cancelBookingTime

An example of the WSDL used can be shown below for

the getExperimentType web method:

<xsd:element name="getExperimentType">
 <xsd:annotation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="experimentID" type="xsd:int"

maxOccurs="1" minOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>
<xsd:element name="getExperimentTypeResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="experimentTypeValue"

type="tns:ExperimentType"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

The common web service calls chosen for the LabCon-

nector bridge were based on a few criteria. The first was
choice of nomenclature, with the term ‘labs’ and ‘experi-
ment’ being a common term not only with iLabs, but also
used interchangeably between other architectures, such as
WebLab [14], WebLab-Duesto [15] and Lab2go [16].

From the analysis of the functionality mapping, all
functionality that was common between Sahara and iLabs
was directly adopted in the LabConnector architecture.
Conversely, any functionality that was present in one ar-
chitecture but not the other (i.e. present in iLabs, but not in
Sahara, or vice versa) was separately evaluated. If this
partially-supported functionality was considered a specific
feature that was paramount to the workings of either
batched or interactive labs then the functionality was in-
cluded in the LabConnector definitions. An example of
this is the URL to access the remote desktop interface
present in iLabs. We also considered that if the partially-
supported functionality offered a comparative advantage
then it was incorporated as well. Designing the system
showed that iLabs offered a relative comparative advan-
tage in batched labs while similarly Sahara offered advan-
tages for interactive labs usage. The basis of this is that
Sahara has predominately dealt with interactive labs. This
has led to the maturity of the design and also choice of
particular functionality, such as the ability to allow mas-
ter/slave usage. Similarly, iLabs has predominately been
active in the batch labs design and this has led to the ma-
turity in its design decisions, such as the concept of being
able to define an experiment specification. For these rea-
sons, LabConnector has adopted some of the interactive
functionality that exists in Sahara while also complement-
ing with the batch lab functionality from iLabs.

iJOE – Volume 6, Special Issue 1: REV2010, September 2010 75

INTEROPERABILITY OF REMOTE LABORATORIES SYSTEMS; YEUNG, LOWE AND MURRAY

The choice of data format was also considered as well
as data persistence (including persistence of experimental
results). This was based on the use of XML, which is
adopted in other frameworks, including RELATED [17].
This is a generally accepted approach to achieve remote
lab interoperability, especially with the use of web ser-
vices [18]. We have also adopted SOAP as the messaging
protocol as this is not only a standardized protocol but is
used in other remote labs, such as the Distributed Control
Lab (DCL) [19] and is also considered in generic online
lab frameworks [9].

V. DESIGN CONCERNS

The LabConnector has limitations. As it tries to restrict
the use of disparate web service calls, this commonality

has meant that the system needs to be rigid and cannot
offer such concepts as ‘register’ (ability to create a dy-
namic web service call for a lab) that iLabs provides.

The current design of the LabConnector also does not
consider certain features which exist on other platforms
(neither implemented on Sahara release 2 nor iLabs ver-
sion 3.0). We would however expect that ongoing work on
LabConnector will consider similar mapping to that car-
ried out above for numerous other architectures. For in-
stance LiLa offers a directory service using the Shareable
Content Object Reference Model (SCORM) protocol [20].
This is very similar to the proposed cataloging system that
is being considered for latter releases of Sahara. This of-
fers a means for the formation of institutional networks to
show a directory service of the available labs across dif-

Figure 4. Component Diagram of LabConnector (perspective from Sahara user)

76 http://www.i-joe.org

INTEROPERABILITY OF REMOTE LABORATORIES SYSTEMS; YEUNG, LOWE AND MURRAY

ferent institutions and will facilitate more efficient shar-
ing. Lab2Go is another implementation that needs to be
considered. This has a different approach, with the adop-
tion of using a wiki based system [16]. Another imple-
mentation is WebLab-Deusto which offers a web based
architecture, based on the Python platform [15]. The cur-
rent implementation of the system allows for a light
weight platform, unlike Sahara and iLabs.

There could also be performance and latency issues in-
herent with the use of web services and SOAP, but these
should be able to be addressed by the adoption of optimi-
zation techniques such as reducing the size of the SOAP
message or the number of SOAP messages [9] that are
sent between the systems in the LabConnector architec-
ture.

VI. IMPLEMENTATION AND EVALUATION

At the time of writing the LabConnector and associated
components have been implemented for accessing an
iLabs Lab Server (and hence rig) from a Sahara server. To
demonstrate the concept, an iLabs radioactivity experi-
ment located at the University of Queensland has been
connected to a Sahara server located at the University of
Technology, Sydney. Figure 6 shows a screendump of the

Sahara interface during the submission of a set of parame-
ters to the Radioactivity experiment, and Figure 7 shows
the camera view of the hardware. The results returned
from this experiment submission (obtained by selecting
the “Experiment Results Available” button) are as follows:

<experimentResult>
 <timestamp>Mon 12 Jul 2010 11:50:37

PM</timestamp>
 <title>Radioactivity</title>
 <version>3.1</version>
 <experimentId>124</experimentId>
 <unitId>0</unitId>
 <setupId>RadioactivityVsTime</setupId>
 <setupName>Radioactivity over Time</setupName>
 <sourceName>Strontium-90</sourceName>
 <absorberName>None</absorberName>
 <distance>20,40,60</distance>
 <duration>5</duration>
 <repeat>4</repeat>
 <dataType>Real</dataType>
 <dataVector>307,341,320,331</dataVector>
 <dataVector>123,119,129,126</dataVector>
 <dataVector>45,55,53,62</dataVector>
</experimentResult>

Figure 5. Component Diagram of LabConnector (perspective from iLabs user)

iJOE – Volume 6, Special Issue 1: REV2010, September 2010 77

INTEROPERABILITY OF REMOTE LABORATORIES SYSTEMS; YEUNG, LOWE AND MURRAY

Figure 6. Radioactivity Experiment Camera View

This initial implementation demonstrates a successful
bridge between Sahara and iLabs, though it is worth
noting that the current implementation is only partially
complete. We have yet to complete support for interactive
iLabs experiments, or a bridge operating in the reverse
direction – i.e. allowing Sahara-based rigs to be accessed
through an iLabs service broker. Work on these aspects is
ongoing and we do not expect their implementation to
pose any significant difficulties.

The current bridge implementation of the LabConnector
involves a sequence of events starting with a Sahara user
accessing a rig that is designated of type ‘ILABS’. When a
user has filled in the appropriate input fields (UQ’s
radioactivity experiment for example requires the
following input parameters: radioactivity setup, source
name, distance, duration and repeat, as shown in Figure 6)

and the submit button is invoked the submitExperiment()
web service call from Sahara-LabConnector is called
which is relayed to the iLabs-LabConnector.

Validation is conducted in the submitExperiment() web
service call for the user identifier (userID) and the
LabServer identifier (labID). UQ’s LabServer submit()
web service call is invoked upon validation. The iLabs-
LabConnector submitExperiment() call gets back a unique
experiment identifier (experimentID) which is tracked and
persisted on file is returned back to Sahara-LabConnector.
A visual notificaiton is displayed to the user that the
experiment submission is successful if the experimentID
is greater than or equal to zero.

When UQ’s LabServer has completed running the
experiment iLabs-Labconnector’s Notify() web service
call is invoked. This call is an asychronous call (derived
from iLabs Service Broker), that allows the iLabs
LabServer to identify that the experiment results are ready
for retrieval. This allows the iLabs-LabConnector to
retrieve the results (via UQ’s Labserver RetrieveResults()
call.) iLabs-LabConnector calls Sahara-LabConnector
getExperimentResults(). Sahara-LabConnector then
invokes the saveExperimentResults() web service call,
which saves the results to file,

Similarly, when a user wants to cancel an experiment
the releaseExperiment() is invoked that calls the iLabs
LabServer cancel() web service method with the specified
unique experimentID. A return value is returned back
indicating whether the experiment has been cancelled via
a boolean expression.

Figure 7. Screendump showing access to the University of Queensland Radioactivity iLabs experiment through a UTS Sahara system.

78 http://www.i-joe.org

INTEROPERABILITY OF REMOTE LABORATORIES SYSTEMS; YEUNG, LOWE AND MURRAY

Whilst this demonstrates the feasible of cross-system
interoperability, and provides the start of the definition for
a translation protocol between systems, much further
would be required before this could be established as a
formal standard. In particular, we would need to explore
interconnections with a number of other systems. Current
plans for improving on the batch experiment
implemention will be to implement validation support for
the input fields based on the GetLabConfiguration() to
provide better usability by specifying maximum and
minimum values allowed by the input fields. This will
mean the user will be informed if the input values are out
of the allowed boundary conditions for the iLabs
LabServer experiment. Also, plans will be to create a
more comprehensive key-value schema which maps
between the different implementations of userID’s (Sahara
uses a string format while iLabs uses an integer value) as
well as mapping iLabs LabServer ID to Sahara’s Rig
name.

VII. FUTURE WORK AND CONCLUSIONS

Authentication and authorization still remains an issue
with current remote lab designs. The ability to have single
sign on (SSO) functionality will allow the use of such
technologies to share labs more readily and assist with
interoperability as there will be a defined means of user
management. Currently, there exists authentication and
authorization protocols that can be adopted in the imple-
mentation of remote labs. These protocols include Shibbo-
leth and OAuth.

Another area which will garner interest in remote labs is
the use of virtual environments [21] and game play in or-
der to both simulate and stimulate the students’ cognitive
processes while reduce the burden of using physical labs
remotely. Cataloging is another capability that will create
a means of allowing more sharing between the different
implementations of remote labs and hopefully encourage
more inter-institutional participation. Cataloging is analo-
gous to a directory listing and will allow a user to not only
search and find experiments/labs pertinent to the subject
they are interested in but will also allow for the access and
running of the labs without any hindrance. Both iLabs and
Sahara currently do not offer any such cataloging capabil-
ity.

There has also been a growing interest in research and
implementations of remote labs that are integrated with a
learning management system (LMS), including Moodle
based LMSs [18, 22, 23]. This capability does not cur-
rently exist in either iLabs or Sahara. This functionality
will help with the coordination and management of lesson
material and will allow the user to have a single access
portal, assisting in usability.

Internationalization is also a growing concern where
iLabs and Sahara both currently only support English
(though iLabs has recently added support for Unicode).
Providing online web services has given the ability for
remote labs accessibility across institutions residing in
varying geographical locations. As the implied nature of
each different geographical region has separate language
and possibly cultural nuances, the importance of interna-
tionalization becomes more of a concern. In later releases
of LabConnector, we will investigate the lab capabilities
of other systems more closely, to further remote lab re-
search, including features such as cataloging and interop-
erability with LMSs.

ACKNOWLEDGMENT

The authors wish to thank Len Payne, Phil Long, Mark
Schulz and John Zornig for providing access to the Uni-
versity of Queensland Radioactivity rig, and support in
connecting the LabConnector bridge to the iLabs Lab
server.

The authors also wish to acknowledge the generous
support for this work provided by the Commonwealth of
Australia’s Department of Education, Employment and
Workplace Relations, though the Diversity and Structural
Adjustment Fund. We also wish to thank the project par-
ticipants from the Australian Technology Network: UTS,
Curtin, UniSA, RMIT, and QUT.

REFERENCES
[1] C. Gravier, et al., "State of the art about remote laboratories

paradigms-foundations of ongoing mutations," iJOE, vol. 4, p. 19,
2008.

[2] S. Murray, et al., "Experiences with a Hybrid Architecture for
Remote Laboratories," in FiE 2008: The 38th Annual Frontiers in
Education Conference, Saratoga Springs, USA, 2008.

[3] V. Harward, et al., "The iLab shared architecture: A Web Services
infrastructure to build communities of Internet accessible
laboratories," Proceedings of the IEEE, vol. 96, p. 931, 2008.
doi:10.1109/JPROC.2008.921607

[4] D. Lowe, et al., "Evolving Remote Laboratory Architectures to
Leverage Emerging Internet Technologies," IEEE Transactions on
Learning Technologies, vol. 2, pp. 289-294, 2009.
doi:10.1109/TLT.2009.33

[5] V. L. Lasky and S. J. Murray, "Implementing viable remote
laboratories using server virtualisation," in Web-based Education,
Chamonix, France, 2007, pp. 68-72.

[6] S. J. Murray and V. L. Lasky, "A Remotely Accessible Embedded
Systems Laboratory," in Tools for Teaching Computer Networking
and Hardware Concepts, Sarkar, Ed., ed Hershey: Information
Science Publishing, 2006, pp. 284-302.

[7] J. Hardison, et al., "Deploying Interactive Remote Labs Using the
iLab Shared Architecture," in Frontiers in Education Conference,
2008. FIE 2008. 38th Annual, Saratoga Springs, NY, 2008, pp.
S2A-1.

[8] L. Payne. (2009, Mar. 15, 2010). iLab Batch LabServer
Architecture Overview. Available:
http://ceit.uq.edu.au/wiki/images/9/9f/ILabBatchLabServerArchite
ctureOverview.pdf

[9] Y. Yuhong, et al., "Putting labs online with Web services," IT
professional, vol. 8, pp. 27-34, 2006. doi:10.1109/MITP.2006.45

[10] P. Charlton, et al., "Dealing with interoperability for agent-based
services," presented at the Proceedings of the fifth international
conference on Autonomous agents, Montreal, Quebec, Canada,
2001.

[11] B. Haslhofer and W. Klas, "A survey of techniques for achieving
metadata interoperability," ACM Computing Surveys (CSUR), vol.
42, pp. 1-37, 2010. doi:10.1145/1667062.1667064

[12] S. Murray, et al., "Experiences with a Hybrid Architecture for
Remote Laboratories," presented at the FiE 2008: The 38th
Annual Frontiers in Education Conference, Saratoga Springs,
USA, 2008.

[13] E. Gamma, Design patterns : elements of reusable object-oriented
software. Reading, Mass.: Addison-Wesley, 1995.

[14] A. Agrawal and S. Srivastava, "WebLab: A Generic Architecture
for Remote Laboratories," in Advanced Computing and
Communications, 2007. ADCOM 2007. International Conference
on, 2007, pp. 301-306.

[15] J. Garcia-Zubia, et al., "Towards an extensible weblab
architecture," in E-Learning in Industrial Electronics, 2009.
ICELIE '09. 3rd IEEE International Conference on, 2009, pp.
115-120.

[16] C. Maier and M. Niederslatter, "Lab2go - A Repository to Locate
Online Laboratories," International Journal of Online Engineering
(iJOE), vol. 6, pp. 12-17, 2010.

iJOE – Volume 6, Special Issue 1: REV2010, September 2010 79

http://dx.doi.org/10.1109/JPROC.2008.921607�
http://dx.doi.org/10.1109/TLT.2009.33�
http://ceit.uq.edu.au/wiki/images/9/9f/ILabBatchLabServerArchitectureOverview.pdf�
http://ceit.uq.edu.au/wiki/images/9/9f/ILabBatchLabServerArchitectureOverview.pdf�
http://dx.doi.org/10.1109/MITP.2006.45�
http://dx.doi.org/10.1145/1667062.1667064�

INTEROPERABILITY OF REMOTE LABORATORIES SYSTEMS; YEUNG, LOWE AND MURRAY

[17] R. Pastor, et al., "Development of an XML-based lab for remote
control experiments on a servo motor," International Journal of
Electrical Engineering Education, vol. 42, pp. 173-184, 2005.

[18] M. Wulff, et al., "Content management and architectural issues of
a remote learning laboratory," in Proceedings of the 2nd
International Workshop on elearning and Virtual and Remote
Laboratories, Hasso-Plattner-Institut, Universitatsverlag Potsdam,
Germany, 2008, pp. 13-19.

[19] A. Rasche, et al., "Predictable interactive control of experiments
in a service-based remote laboratory," presented at the
Proceedings of the 1st international conference on PErvasive
Technologies Related to Assistive Environments, Athens, Greece,
2008.

[20] T. Richter, et al., "Lila: A european project on networked
experiments," in Proceedings of the Sixth International
Conference on Remote Engineering and Virtual Instrumentation
(REV 2009), Bridgeport, CT, USA, 2009.

[21] J. Ma and J. Nickerson, "Hands-on, simulated, and remote
laboratories: A comparative literature review," ACM Computing
Surveys (CSUR), vol. 38, p. 7, 2006. doi:10.1145/1132960.
1132961

[22] B. Ozdogru and N. E. Cagiltay, "How Content Management
Problem of a Remote Laboratory System can be handled by
integrating an open source learning management system?

Problems and solutions," in Personal, Indoor and Mobile Radio
Communications, 2007. PIMRC 2007. IEEE 18th International
Symposium on, 2007, pp. 1-5.

[23] H. Benmohamed, et al., "Generic framework for remote laboratory
integration," in Information Technology Based Higher Education
and Training, 2005. ITHET 2005. 6th International Conference
on, 2005, pp. T2B/11-T2B/16.

AUTHORS

Herbert Yeung is with the University of Technology
of Sydney, 15 Broadway Ultimo NSW Australia 2007 (e-
mail: Herbert.Yeung@eng.uts.edu.au).

David Lowe is with the University of Technology of
Sydney, 15 Broadway Ultimo NSW Australia 2007 (e-
mail: David.Lowe@uts.edu.au).

Steve Murray, is with the University of Technology,
Sydney. P.O. Box 123 Broadway, NSW 2007 Australia
(e-mail: stevem@eng.uts.edu.au).

This article was modified from a presentation at the REV2010 Con-
ference at KTH, Stockholm, Sweden in June 2010. Submitted July 15th,
2010. Published as resubmitted by the authors July 29th, 2010.

80 http://www.i-joe.org

http://dx.doi.org/10.1145/1132960.1132961�
http://dx.doi.org/10.1145/1132960.1132961�

