
REMOTELY CONTROLLED REAL-TIME DSP APPLICATIONS THROUGH CUSTOMIZED GUIS BASED ON LABVIEW

Remotely Controlled Real-Time DSP
Applications Through Customized

GUIs based on LabVIEW
doi:10.3991/ijoe.v6s1.1390

A. Kalantzopoulos, D. Karageorgopoulos and E. Zigouris
University of Patras, Patras, Greece

Abstract—The purpose of this paper is to present an
approach which could expand the features of Remote
Laboratories focused on embedded Digital Signal
Processing (DSP) systems. The proposed approach is based
on a system which is designed and developed with
LabVIEW and is called R-DSP Server. Exploiting this
system, users are able to develop their own Graphical User
Interfaces (GUIs), named Customized GUIs, for the remote
control and validation of real-time DSP applications. These
GUIs are tailored to the needs of each DSP application and
can be implemented in any programming language. The
rapid design of Customized GUIs using LabVIEW for the
communication with the R-DSP Server is achieved utilizing
an implemented set of functions, called R-DSP LabVIEW
Toolkit.

Index Terms—Remote Control, Digital Signal Processors,
Graphical User Interfacing, LabVIEW.

I. INTRODUCTION

In distance education, practical sessions are served from
Remote Laboratories (RLs). Nowadays many RLs have
been developed in different cognitive fields for the
conduct of laboratory experiments from distance. For this
reason the designers of each RL have implemented
Graphical User Interfaces (GUIs) according to the needs
and the particularities of each experiment.

Many RLs have been proposed in the field of embedded
systems based on processors for Digital Signal Processing
(DSP). These RLs support experiments from different
areas such as digital signal and image processing,
mechatronics and robotics [1-7]. Through carefully
designed GUIs students are able to carry out experiments
exploiting the laboratory equipment. However these RLs
are able to serve a limited set of experiments, according to
the features of their GUIs.

Especially in the areas of digital signal and image
processing, the design of GUIs for the control and
validation of advanced real-time DSP applications is very
important. Many DSP applications such as graphical
equalizers, dual tone multi frequency (DTMF) encoders/
decoders, communication and image processing
applications are totally controlled through appropriate
GUIs [8].

In order to provide users the ability to remotely control
real-time DSP applications through Customized GUIs, a
system which called R-DSP Server is proposed. Using the

features of the R-DSP Server the users are able to utilize
their own GUIs for the control and validation of their DSP
applications from distance. This approach could expand
RLs capabilities in order to support a larger set of
experiments with minor modifications in their
architecture. The Customized GUIs communicate with the
R-DSP Server through TCP/IP protocol therefore they can
be developed with any programming language. For these
reasons the R-DSP Server advances the education of the
students in the design and implementation of GUIs. For
the rapid implementation of LabVIEW based Customized
GUIs which interact with the R-DSP Server, a set of
functions called R-DSP LabVIEW Toolkit is also
developed. This toolkit simplifies the communication
between LabVIEW and R-DSP Server in order to
remotely control DSP development platforms.

II. R-DSP SERVER

The R-DSP Server is designed and developed with
LabVIEW v8.6 and allows the remotely control of Code
Composer Studio (CCS) Integrated Development
Environment (IDE) and development platforms based on
Texas Instrument (TI) DSP processors through
Customized GUIs (Fig.1). The users are able to develop
GUIs tailored to the needs of each DSP application. These
Customized GUIs, which can be implemented with any
programming language, control the R-DSP Server over
TCP/IP through messages formatted according to the R-
DSP Protocol.

The R-DSP Protocol is based on the MODBUS
Master/Slave protocol and supports messages of variable
length [9]. Each message consists of different fields that
may contain data formatted as ASCII or binary. The first
field includes a 2-byte number that specifies the length of
the following message. The next fields are referred to the
command with the required arguments, the data and the
error description. At the end of each message a field called
LRC (Longitudinal Redundancy Check) is used to make
an additional verification of the proper delivery of the
message.

According to this protocol the R-DSP Server is the
Slave and expects messages from the Customized GUI
which acts as Master. These messages contain all the
necessary information for the execution of the appropriate
procedure by the R-DSP Server. As the process is
completed, the R-DSP Server sends a reply which
includes the associated data and the possible errors.

36 http://www.i-joe.org

http://dx.doi.org/10.3991/ijoe.v6s1.1390�

REMOTELY CONTROLLED REAL-TIME DSP APPLICATIONS THROUGH CUSTOMIZED GUIS BASED ON LABVIEW

Figure 1. Remote control of DSP development platform through

Customized GUI

The R-DSP Server controls the CCS and the
development platform through a set of procedures such as
the selection of the development platform, the opening
and closing of CCS and the downloading to the DSP of
the user’s executable code. It also supports bidirectional
data exchange between the Customized GUI and the DSP
using two different scenarios. Data transfer can be
performed either by direct access of the DSP memory or
utilizing the RTDX technology. The R-DSP Server was
implemented utilizing the features of the LabVIEW to
CCS Link [10]. The LabVIEW to CCS Link is a
LabVIEW toolkit that allows the control of both the CCS
and DSP development platform programmatically.

III. R-DSP LABVIEW TOOLKIT

The R-DSP LabVIEW Toolkit is a new toolkit designed
and developed with LabVIEW v8.6. It allows the
communication between users’ GUIs and the R-DSP
Server in order to remotely control CCS and DSP
development platforms. Using this toolkit, the user can
easily and rapidly implement Customized GUIs that
control and monitor real-time DSP applications from
distance. The R-DSP LabVIEW Toolkit consists of
functions that are called SubVIs. These SubVIs send
messages to the R-DSP Server, based on the R-DSP
Protocol, that activate the execution of the appropriate
process. They also receive R-DSP Server replies which
contain data associated with the process completion. The
Customized GUI can manage and process data sent by R-
DSP Server, giving the impression to the user that the
DSP development platform is “directly connected” to his
computer. These SubVIs are divided into three categories:

 TCP_Setup

 TCP_Automation

 TCP_Communication

The SubVIs of the TCP_Setup category undertake the
remotely control of the CCS Setup utility allowing users
to select the desired DSP development platform. The
automated control of the CCS from distance is achieved
through SubVIs of the TCP_Automation. This category
consists of SubVIs which open, close the CCS, download
to the DSP the executable code etc. The communication
between the DSP development platform and the
Customized GUI is realized through SubVIs of the TCP
Communication category. The R-DSP LabVIEW Toolkit

TABLE I.
THE SUBVIS OF R-DSP LABVIEW TOOLKIT

TCP_Setup

Icon Name Icon Name

CCS_Setup_Open_
TCP.vi

CCS_Setup_Close_
TCP.vi

CCS_Setup_Clear_
TCP.vi

CCS_Setup_Add_
Board_TCP.vi

CCS_Setup_
Rename_Board_

TCP.vi

CCS_Setup_
Remove_Board_

TCP.vi

CCS_Setup_
Rename_Processor_

TCP.vi

CCS_Setup_
Boards_&_

Processors_TCP.vi

CCS_Setup_Save_
TCP.vi

TCP_Automation

Icon Name Icon Name

CCS_Open_TCP.vi

CCS_Close_TCP.vi

CCS_Connect_
TCP.vi

CCS_Disconnect_
TCP.vi

CCS_Reset_TCP.vi

CCS_Download_
TCP.vi

CCS_Run_TCP.vi

CCS_Halt_TCP.vi

CCS_Restart_
TCP.vi

CCS_Is_DSP_
Running_TCP.vi

CCS_RTDX_
Enable_TCP.vi

CCS_RTDX_
Disable_TCP.vi

TCP_Communication

Icon Icon Icon Icon

RTDX_Channel_
Status_TCP.vi

RTDX_Channel_
Enable_TCP.vi

RTDX_Channel_
Disable_TCP.vi

RTDX_Read_
TCP.vi

RTDX_Write_
TCP.vi

MEM_Get_
Address_TCP.vi

MEM_Read_
TCP.vi

MEM_Write_
TCP.vi

iJOE – Volume 6, Special Issue 1: REV2010, September 2010 37

http://www.aquaphoenix.com/ref/gnu_c_library/libc_toc.html#SEC408�

REMOTELY CONTROLLED REAL-TIME DSP APPLICATIONS THROUGH CUSTOMIZED GUIS BASED ON LABVIEW

Figure 2. Remote control of DSP development platform through

Customized GUI

Figure 3. A typical block diagram for the remote control of CCS

and the R-DSP Server support both the direct access to the
DSP memory and the RTDX Technology. The SubVIs of
the R-DSP LabVIEW Toolkit are presented in Table I.

IV. USING THE R-DSP LABVIEW TOOLKIT

The development of GUIs that remotely control CCS
and real-time DSP applications with LabVIEW, is
considerably simplified and speeded up, using the R-DSP
LabVIEW Toolkit. It is important to clarify that the GUIs
developed using this toolkit do not create DSP executable
code. Consequently the user must design and implement
locally the DSP application and build the executable code
utilizing the CCS. The following paragraphs present
typical LabVIEW codes which called block diagrams and
describe the features of the proposed toolkit.

A. TCP_Setup Category
The SubVIs of the TCP_Setup category can be used in

case the R-DSP Server supports more than one DSP
development platforms. In this case the user must
configure the CCS to support the desired DSP
development platform. A typical block diagram which
configures from distance the CCS through the R-DSP
Server to support the DSK C6713 development platform
of Spectrum Digital is presented in Fig. 2. The
CCS_Setup_Open_TCP.vi is placed in order to open the
CCS Setup utility. The inputs “R-DSP Server IP” and “R-
DSP Server Port” define the IP address and the port of the
R-DSP Server. Then the CCS_Setup_Clear_TCP.vi is
used to delete previous configurations of the CCS. The
CCS_Setup_Add_Board_TCP.vi configures the CCS
Setup utility to support the DSK C6713 development
platform. Finally the CCS_Setup_Save_TCP.vi saves the
current settings and the CCS_Setup_Close_TCP.vi closes
the CCS Setup utility.

B. TCP_Automation Category
The Customized GUIs are able to remotely control the

CCS and the DSP of the development platform exploiting
SubVIs of the TCP_Automation category. Fig. 3 presents
a typical block diagram for the automated control of the
CCS and the DSP from distance. The inputs “R-DSP
Server IP” and “R-DSP Server Port” of the
CCS_Open_TCP.vi, define the IP address and port of the
R-DSP Server. This SubVI establish the connection of the
Customized GUI with the R-DSP Server and opens the
CCS. The connection between the CCS and the
development board is achieved through the SubVI
CCS_Connect_TCP. The CCS sends a reset command to
the DSP through CCS_Reset_TCP.vi. Then the executable
code is transferred to the R-DSP and downloaded to the
DSP using the TCP_Download_TCP.vi. The CCS_
RTDX_Enable_TCP.vi enables RTDX interface for data
exchange between the CCS and the DSP. The DSP starts
the execution of the code after an appropriate command
which is send by the CCS_Run_TCP.vi.

The main code of the GUI must be placed inside the
While Loop. This structure may contain SubVIs of the
TCP_Communication category. As the execution of While
Loop is terminated, the CCS_Halt_TCP.vi halts the DSP.
The CCS_RTDX_Disable_TCP.vi disables the RTDX
interface and the CCS_Disconnect_TCP.vi disconnects
the development board from CCS. Finally the CCS and
the connection between the R-DSP Server and the
Customized GUI are closed by the CCS_Close_TCP.vi

C. TCP_Communication Category
The TCP_Communication category contains SubVIs

which are responsible for data exchange between the
Customized GUI and the DSP by direct access of DSP
memory or using the RTDX technology. These SubVIs
are usually placed inside the While Loop of the typical
block diagram which was presented in Fig. 3.

The read-write operations using the RTDX technology
are demonstrated in Fig.4. The RTDX_Read_TCP.vi is
configured to read from the “out_chan” RTDX Channel
an array of 4-byte unsigned integers. The RTDX_
Write_TCP.vi writes at the “input_chan” RTDX Channel
one 4-byte floating point number.

The data communication by direct access of DSP
memory is presented in Fig.5. The Mem_Get_Address_
TCP.vi locates the address in DSP memory of the
variables “message” and “Array”. The variable “message”
represents a string with a hundred characters length and is
read from the MEM_Read_TCP.vi. The MEM_Write_
TCP.vi is configured to write at the variable “Array” the
content of the control “Data”.

38 http://www.i-joe.org

REMOTELY CONTROLLED REAL-TIME DSP APPLICATIONS THROUGH CUSTOMIZED GUIS BASED ON LABVIEW

Figure 4. Read – write operations using RTDX technology

Figure 6. Remote control of real-time image processing application through Customized GUI

Figure 5. Read – write operations by direct access of DSP
memory

V. APPLICATIONS

To demonstrate the features of the R-DSP Server and
the R-DSP LabVIEW Toolkit, a real-time image
processing application and a 10th band graphical equalizer
are implemented. Each one of these applications is
consisting of two parts, the Customized GUI and the DSP
application. Through the Customized GUI the user is able
to remotely control the required hardware and the DSP
application which is implemented in the appropriate DSP
development platform.

A. Real-Time Image Processing Application
The implemented real-time image processing

application is presented in Fig. 6. The required hardware
consists of the development platform DSK C6713, that is
based on the TMS320C6713 DSP of TI, the daughter card
DSKcam of Bitec and the OV7620 CMOS image sensor
of OmniVision [11,12]. The DSK C6713 receives and
processes images with 320x240 resolution, captured by

the CMOS image sensor through DSKcam. The above
hardware is located in Electronics Laboratory of Physics
Department in Patras University.

The executable code of the real-time image processing
application that is downloaded to the DSP, was developed
in C language using CCS. According to the user settings,
this application processes images which are captured by
the CMOS image sensor. The presented implementation
supports image processing algorithms such as sobel edge
detection, histogram equalization and some basic filters
[13]. The captured and the processed image are transferred
to the R-DSP Server utilizing the RTDX technology.

The Customized GUI for the remote control of the real-
time image processing application is developed using
LabVIEW and the proposed R-DSP LabVIEW Toolkit
(Fig.6). In the fields “Address” and “Port” the user must
enter the IP Address and the Port of the R-DSP Server.
After the connection establishment the executable code is
transferred to the R-DSP Server and downloaded to the

iJOE – Volume 6, Special Issue 1: REV2010, September 2010 39

REMOTELY CONTROLLED REAL-TIME DSP APPLICATIONS THROUGH CUSTOMIZED GUIS BASED ON LABVIEW

Figure 7. The Customized GUI for the remote control of a 10th band
graphical equalizer through

DSP. The user is able to select the desired image
processing algorithm from the processing menu. By
pressing the button “Get”, the captured and the processed
image are transferred to the GUI and presented in the
appropriate indicators.

B. 10th Band Graphical Equalizer
One of the most common applications on DSP systems,

for educational purposes, is the graphical equalizer [8].
The Customized GUI which remotely controls a 10th band
graphical equalizer and is running on the DSK C6713
development board is presented in Fig. 7.

The DSP application which is implemented in C
language using the CCS, simulates the operation of a 10th
band graphical equalizer. The input signal of the equalizer
which consists of three sinusoidal signals with 125Hz,
1KHz and 5KHz frequencies, is generated by the DSP
application. This signal is processed by the equalizer
according to the values of the sliders in the Customized
GUI. Finally the input and output signals are transferred to
the Customized GUI through the R-DSP Server and they
are displayed at the waveform indicators of the
Customized GUI.

VI. CONCLUSIONS

In this paper the features of the R-DSP Server that
enable the implementation of Customized GUIs to
remotely control real-time DSP applications, were
presented. The R-DSP Server was designed in such a way
to be handled by Customized GUIs written in any
programming language that supports TCP/IP Protocol.
The incorporation of the R-DSP Server in RLs which are
focused in the field of embedded systems based on
processors for DSP, expands their features and increases
the set of supported experiments. The easily and rapidly
design of LabVIEW based Customized GUIs for the
remote control of DSP applications through R-DSP Server
is achieved using the R-DSP LabVIEW Toolkit. The
potentials of the proposed toolkit and the R-DSP Server
were demonstrated through the presented real-time image

processing application and the 10th band graphical
equalizer. Future plans include the integration of the R-
DSP Server features in Remote Laboratories, such as the
R-DSP lab. In addition, there are plans for developing
toolkits for other programming languages such as Matlab
and C # that allow the fast implementation of GUIs to
remotely control real-time DSP applications, utilizing the
R-DSP server.

REFERENCES
[1] A. Tekin, F. Ata, M. Gökbulut, “Remote Control Laboratory for

DSP-Controlled Induction Motor Drives”, Computer Applications
in Engineering Education, Available online in Wiley InterScience:
10.1002/cae.20440, April 2010.

[2] A. Kalantzopoulos, D. Markonis and E. Zigouris, “A Remote
Laboratory for Real-Time Digital Image Processing on Embedded
Systems”, International Journal of Online Engineering (i-JOE),
Vol. 5, No. 4, pp. 24-29, November 2009.

[3] F.Barrero, S. Toral and S. Gallardo, “eDSPLab: Remote
Laboratory for Experiments on DSP Applications”, Internet
Research, Vol. 18, No. 1, pp. 79-92, 2008. doi:10.1108/10662240
810849603

[4] A. Kalantzopoulos, D. Karageorgopoulos and E. Zigouris, “A
LabVIEW Based Remote DSP Laboratory”, International Journal
of Online Engineering (iJOE), vol. 4, special issue 1: REV 2008,
pp.36-44, July 2008.

[5] University of Patras, Physics Dept., Electronics Lab., Remote DSP
Laboratory (R-DSP Lab), http://rdsplab.physics.upatras.gr.

[6] D. Hercog, B. Gergič, S. Uran and K. Jezernik, “A DSP-Based
Remote Control Laboratory”, IEEE Transactions On Industrial
Electronics, vol. 54, No. 6, pp. 3057-3068, December 2007.
doi:10.1109/TIE.2007.907009

[7] R. Šafarič, M. Truntič, D. Hercog and G. Pačnik, “Control and
Robotics Remote Laboratory for Engineering Education”,
International Journal of Online Engineering (i-JOE), Vol. 1, No.
1, pp. 1-8, November 2005.

[8] R. Chassaing and D. Reay, “Digital Signal Processing and
Applications with the TSM320C6713 and TMS320C6416”, 2nd
Edition, John Wiley & Sons, 2008. doi:10.1002/9780470238141

[9] Modbus Specifications and Implementation Guides,
http://www.modbus.org/specs.php.

[10] E.Zigouris, A.Kalantzopoulos and E. Vassalos, “LabVIEW to
CCS Link for Automating Digital Signal & Image Processing
Applications”, 8th International Symposium on Signals, Circuits &
Systems, ISSCS 2007, pp. 445-448, Iasi, Romania, 12-13 July
2007.

[11] Spectrum Digital, “TMS320C6713 DSK, Technical Reference”,
506735-0001 Rev.B, November 2003.

[12] BiTEC, “DSKcam, Users Manual”, 2005.
[13] R. C. Gonzalez and R. E. Woods, “Digital Image Processing”, 3rd

Edition, Prentice Hall, 2007.

AUTHORS

A. Kalantzopoulos is with the Electronics Laboratory,
Electronics and Computers Div., Department of Physics,
University of Patras, Rio Patras, GR-26500 (e-mail:
kalan@upatras.gr).

D. Karageorgopoulos is with the Electronics
Laboratory, Electronics and Computers Div., Department
of Physics, University of Patras, Rio Patras, GR-26500 (e-
mail: dimitriskarageorgopoulos@gmail.com).

E. Zigouris is with the Electronics Laboratory,
Electronics and Computers Div., Department of Physics,
University of Patras, Rio Patras, GR-26500 (e-mail:
ez@physics.upatras.gr)

This article was modified from a presentation at the REV2010
conference in Stockholm, Sweden, June 2010. Submitted, March 27,
2010. Published as resubmitted by the authors on July 15, 2010.

40 http://www.i-joe.org

http://dx.doi.org/10.1108/10662240810849603�
http://dx.doi.org/10.1108/10662240810849603�
http://rdsplab.physics.upatras.gr/�
http://dx.doi.org/10.1109/TIE.2007.907009�
http://dx.doi.org/10.1002/9780470238141�
http://www.modbus.org/specs.php�

