
Paper—A Scalable Code Similarity Detection with Online Architecture and Focused Comparison…

A Scalable Code Similarity Detection with Online

Architecture and Focused Comparison for Maintaining

Academic Integrity in Programming

https://doi.org/10.3991/ijoe.v16i10.14289

Ricardo Franclinton, Oscar Karnalim, Mewati Ayub ()
Maranatha Christian University, Bandung, Indonesia

mewati.ayub@it.maranatha.edu

Abstract—Many code similarity detection techniques have been developed

to maintain academic integrity in programming. However, most of them assume

that the student programs are locally available, and the computation can be run

on any computer specification. Further, their comparison in raising suspicion is

time consuming as the student programs are pairwise compared one another.

This paper proposes a scalable code similarity detection with online architecture

and focused comparison. The former enables student programs shared among

lecturers and guarantees that the computation is runnable. The latter shorten the

execution time as only some students are considered, with inclusion criteria de-

termined by the lecturers. To boost up the scalability, the similarity algorithm is

cosine correlation, which computation is linear time. Our evaluation shows that

focused comparison leads to fewer comparisons and cosine correlation leads to

shorter execution time.

Keywords—Plagiarism detection, scalability, academic integrity, program-

ming, computing education.

1 Introduction

Maintaining academic integrity is a serious concern in engineering education [1],

[2], especially with the introduction of MOOC [3], [4]. Several strategies have been

proposed in which one of the most popular ones is the use of Turnitin [5]. However,

only few of them are applicable for programming courses [6], even though these

courses are common in many engineering major curriculum. A possible reason behind

this is the differences between standard text and source code [6].

In general, strategies for maintaining academic integrity in programming can be

classified to five categories [7]. Educating the students about that kind of integrity is

probably the most obvious one. This is usually carried out at the beginning of the

course, with a lecturer or tutor explaining the acceptable practices [8]. Cheating can

also be mitigated by discouraging such a behavior (e.g., incorporating additional as-

sessment measures [2]), reducing the benefits of cheating (e.g., lowering the score of

each assessment, making it not worthy to cheat), or putting more assessment re-

40 http://www.i-joe.org

https://doi.org/10.3991/ijoe.v16i10.14289
mailto:mewati.ayub@it.maranatha.edu

Paper—A Scalable Code Similarity Detection with Online Architecture and Focused Comparison…

strictions (e.g., individualising the assessments [2]). It is also possible motivate the

students to avoid cheating (e.g., the use of peer-assisted student support to keep the

student retention high).

Source code plagiarism is a common form of breaching academic integrity in pro-

gramming. It is about the reuse of source code without appropriate acknowledgment

toward the original [9]. This kind of cheating is often discouraged by penalizing the

perpetrators with the help of an automated detection tool like JPlag [10]. Per assess-

ment, the student programs are pairwise compared one another and pairs with high

similarity will be investigated further. If any of the pairs are confirmed to breach aca-

demic integrity, the students will be penalized according to the course’s policy.

Many automated similarity detection techniques have been developed, in which the

details can be seen in two studies [11], [32]. These techniques can be classified to

attribute-counting-based, structure-based, and hybrid. The first category is faster than

the second one (due to its less sensitive matching constraints) but tends to have lower

effectiveness. Hybrid techniques combine those categories in search of the most bal-

anced effectiveness-efficiency trade-off.

Among those three categories, attribute-counting-based detection techniques are

believed to be the most scalable due to its fast computation. One of the earliest tech-

niques of this kind was proposed in 1976 [12], relying on four software metrics to

define the similarity. This inspired the introduction of other early techniques [13]–

[15] with more similarity metrics on board.

Knowing these similarity metrics can be superficial, some attribute-counting-based

techniques rely on source code content in determining the similarity. The content is

split to shorter strings called n-grams [16] in which each string represents n adjacent

tokens. The similarity algorithm itself can vary, but most of them are from infor-

mation retrieval. Some of the applied ones are cosine correlation [17], overlap coeffi-

cient [18], latent semantic analysis [19], and code specific BM25 [20].

Most similarity detection techniques (including the popular ones such as JPlag

[10], Plaggie [21], and Sherlock [22]) require the student programs to be locally

available. This can be problematic if many classes with different lecturers are in-

volved as the student programs should be shared among themselves manually. It also

inhibits the comparison of student programs across assessments, courses from the

same cohort, and/or courses from the previous cohorts.

These techniques also assume that the computation can be performed locally in the

lecturer’s personal computer. Not all personal computers are high-end and capable for

such computation. This can be worse if enormous student programs are involved,

assuming they are not only taken from a particular assessment for a particular class.

Lastly, these techniques pairwise compare all student programs even though only

some of them are likely to cheat due to the motivating factors [23]. It leads to more

computation and can slow down the execution time.

In response to the aforementioned gaps, this paper proposes a scalable code simi-

larity detection with online architecture and focused comparison. The architecture

enables lecturers to easily share their student programs among themselves. They just

need to upload the student programs to the server, and these programs will be auto-

matically stored for future comparisons by any lecturers. It also assures that the com-

iJOE ‒ Vol. 16, No. 10, 2020 41

Paper—A Scalable Code Similarity Detection with Online Architecture and Focused Comparison…

putation can be performed regardless the lecturer’s personal computer’s specification

since that computation will be carried out by the server. The focused comparison can

shorten the execution time as not all student programs will be compared, with the

inclusion criteria defined by the lecturers. For scalability, cosine correlation from

information retrieval is used to measure the similarities.

2 Methodology

Four stages are required in using our detection: student program collection, perpe-

trator candidate selection, plagiarism detection, and in-depth discussion. It accepts

either Java or Python student programs as the input.

Student program collection means that all participating lecturers should upload

their own student programs to the server. At this stage, student programs from previ-

ous courses can also be uploaded if needed. For weekly assessments with different

class schedules, an agreement can be made among lecturers to upload the student

programs no later than a particular day.

Perpetrator candidate selection is performed manually by each lecturer. Per class, a

set of students is selected based on the lecturer’s suspicion. These students can be

those who lack of programming skill, seldom attend the classes, or have previously

breached academic integrity. For objectivity, such criteria can be discussed among

participating lecturers at the beginning of the course.

Plagiarism detection is carried out separately per class. The perpetrator candidates’

programs are given as queries to the detection technique, and per query, any similar

student programs will be retrieved in descending order based on their similarity de-

gree. Fig. 1 shows our detection technique’s layout for this stage in which ‘selected

student programs’ are the perpetrator candidates’ (selected via search box above) and

‘search result’ lists any similar student programs for a particular query (selected by

clicking that query from ‘selected student programs’). To avoid over information,

only five search results are given per query.

Search result per query is determined by comparing the query to all student pro-

grams uploaded in the server (except the query itself). Compared to other detection

techniques that pairwise compare all possible combinations, this is more time efficient

due to its linear computation.

The comparison itself (referred as CosineTS) is performed in twofold. At first, the

student programs are converted to token strings with the help of ANTLR [24], in

which comments and whitespaces are removed as they are easy to disguise. After that,

the query’s string will be compared to each student program’s string with cosine cor-

relation, a similarity measurement adapted from information retrieval [16]. Compared

to string matching algorithms used in many detection techniques, this is also more

time efficient thanks to its linear time complexity [17]. Suspected student pairs are

formed by pairing each query and one of its search results.

In addition to CosineTS, three other comparison modes are provided. RKRGST

converts the student programs to token strings and then measure the similarities via

running Karp-Rabin greedy string tiling [25], a common string-matching algorithm

42 http://www.i-joe.org

Paper—A Scalable Code Similarity Detection with Online Architecture and Focused Comparison…

for code similarity detection techniques [32]. Structure works similarly but the token

strings are the result of linearising the syntax trees in a pre-order manner, inspired

from two former studies [26], [27]. These tokens are expected to be more resistant to

surface modification as most of them cannot be modified directly at source code level.

CosineAST is similar to Structure except that the similarity measurement is cosine

correlation instead of running Karp-Rabin greedy string tiling. This is actually a sim-

plified version of a technique proposed in [17], expecting to be less time consuming.

Several studies [28], [29] state that high similarity does not necessarily entail pla-

giarism. Hence, there is a need to revalidate similarities in the suspected pairs, wheth-

er they are likely from plagiarism [30]. Our detection technique supports this investi-

gation for each pair by showing the code content of the student programs side-by-side

as seen in Fig. 1. For convenience, similar fragments are highlighted in green. This

layout is remodeled from JPlag [10] with the help of Plago [31]. If Structure or Co-

sineAST is used as the similarity algorithm, the layout will include syntax tree tokens

and show the code contents as two lists of tokens (see Fig. 2). Similar to the standard

layout, the similarities are highlighted in green.

Fig. 1. The layout for plagiarism detection stage.

After the suspected pairs of each class have been revalidated, an in-depth discus-

sion should be conducted, assuring that no independent programs are listed in the

suspected pairs. Some students may feel discouraged if they are wrongly accused. It is

advised that the discussion involves former lecturers or tutors of the suspected stu-

dents. If the work seems to be copied from another class or course, the lecturer from

that class or course should also be invited. At the end of this stage, suspected students

have been selected and they will be penalized according to the course’s policy.

iJOE ‒ Vol. 16, No. 10, 2020 43

Paper—A Scalable Code Similarity Detection with Online Architecture and Focused Comparison…

Fig. 2. Investigation layout for Structure and CosineAST.

3 Evaluation and Discussion

This section evaluates the impact of focused comparison, the impact of cosine cor-

relation and the impact of our proposed comparison modes (CosineTS, RKRGST,

CosineAST, and Structure).

3.1 The impact of focused comparison

Focused comparison is expected to be more time efficient as not all student pro-

grams are compared. To prove this, the comparison was compared with the naïve one

(which exhaustively include all possible comparison pairs) for ten different numbers

of student programs, starting from 0 to 100 with 10 for each adjacent difference. The

focused comparison was featured with 10% number of student programs as the que-

ries.

Fig. 3 shows that focused comparison results in fewer comparison pairs than the

naïve one and the difference becomes more salient when many student programs are

involved. This is expected as that comparison makes the number of student programs

linear to the number of comparison pairs while naïve comparison considers the rela-

tion as quadratic.

Taking the most extreme scenario with 100 student programs, focused comparison

can exclude 3950 comparison pairs, which leads to 79.8% reduction. If each compari-

son pair takes one second, this can save about one hour of execution time.

We are aware that when the number of student programs are low (e.g., when the

number of student programs is 10), the difference becomes harder to see. However, it

still leads to fewer comparison pairs than the naïve one, except when no student pro-

grams are considered.

44 http://www.i-joe.org

Paper—A Scalable Code Similarity Detection with Online Architecture and Focused Comparison…

Fig. 3. The number of comparison pairs: focused vs naïve comparison

3.2 The impact of cosine correlation

Theoretically, cosine correlation is faster than running Karp-Rabin greedy string

tiling [25], a common string-matching algorithm for this task [32], as the former only

takes linear computation time while the latter takes it quadratically. This subsection

evaluates how much is the time reduction caused by replacing the latter with the for-

mer.

The evaluation involves two token representations: regular and syntax tree token

strings. They are used in our comparison modes. Regular token string is resulted from

tokenising the source code directly with ANTLR and it is used for CosineTS and

RKRGST. Syntax tree token string is resulted from linearising the syntax tree in pre-

order manner. It is used for CosineAST and Structure. Each representation has one

mode with cosine correlation (either CosineTS or CosineAST) and another mode with

running Karp-Rabin greedy string tiling (either RKRGST or Structure).

The reduced execution time was measured in twofold. At first, the execution time

of each mode is measured by searching the copied programs of a student program in

two sets of introductory programming assessments (with 2426 Python files in total).

After that, the time difference between the two modes is calculated and normalised to

the execution time of the string-matching mode (either RKRGST or Structure).

Fig. 4 shows that replacing running Karp-Rabin greedy string tiling with cosine

correlation results in shorter execution time. It reduces about 11% for regular token

string and 38.9% for the syntax tree one. Time reduction for syntax tree token string is

larger since the strings have more tokens as a result of linearising the syntax trees, and

such larger number of tokens leads to longer execution time for string-matching algo-

rithm due to its quadratic computation.

iJOE ‒ Vol. 16, No. 10, 2020 45

Paper—A Scalable Code Similarity Detection with Online Architecture and Focused Comparison…

Fig. 4. The reduced time for regular and syntax tree token strings with cosine correlation

3.3 The impact of comparison modes

Four comparison modes (CosineTS, RKRGST, CosineAST, and Structure) are pro-

posed for the detection. This subsection evaluates the impact of those modes under

two evaluation metrics: f-score and execution time. The former covers effectiveness

while the latter covers efficiency. This is expected to provide a brief summary about

the characteristics of the proposed modes.

F-score is often used to measure effectiveness in general where higher value is pre-

ferred. It is the harmonic mean between precision and recall, calculated as in (1).

Precision is the proportion of copied student programs in the suspected results. The

equation can be seen in (2) and it is resulted from dividing the number of true posi-

tives with the sum of the number of true and false positives. Recall is the proportion

of suspected results in the copied student programs. The equation can be seen in (3)

and it is resulted from dividing true positives with the number of true positives plus

the number of false negatives.

 𝐹𝑠𝑐𝑜𝑟𝑒 =
2 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (1)

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 (2)

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑟𝑢𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒_𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 (3)

For measuring f-score, a Java introductory programming data set in [32] was used.

The data set covers seven introductory programming materials: output, input, branch-

ing, looping, array, method, and matrix. Copied programs are mapped to six plagia-

rism levels defined by [13]: comment and whitespace modification, identifier renam-

ing, component declaration relocation, method structure change, program statement

46 http://www.i-joe.org

Paper—A Scalable Code Similarity Detection with Online Architecture and Focused Comparison…

replacement, and logic change. They are referred as level-1 to level-6 respectively

where higher level is more difficult to apply and less frequently found in real cases. In

total, the data set contains 7 original student programs (or queries), 105 independent

student programs, and 355 copied student programs toward the originals. Each query

has 20 independent student programs and up to 36 copied student programs (up to 9

programs per plagiarism level).

Execution time (in seconds) was recorded similarly as the one used for measuring

the impact of cosine correlation. It is the amount of time required for searching the

copied programs of a student program in 2426 Python files. Lower value is preferred

for this metric as faster execution is proportional to higher scalability.

Fig. 5 shows that all four comparison modes are equally effective for the first pla-

giarism level. It is expected as that level is focused on modifying comments and

whitespaces, two components that are ignored by all modes. On level-2 (which is

about identifier renaming), Structure becomes the most effective as the modification

does not change token order and its impact can be mitigated with the consideration of

syntax tokens. This mode, however, becomes as effective as RKRGST on level-3

(which is about component declaration relocation); relocating declaration statements

does not change the syntax tokens, leading to no improvement with those tokens on

board.

For the remaining levels (which are about method structure change, program

statement replacement, and logic change), Structure becomes the least effective as the

modification affects syntax tokens, enlarging the number of mismatches. CosineTS,

which is the least effective on the first three levels, gradually experiences effective-

ness improvement, making it the second highest on level-6 (logic change).

In terms of efficiency (see Fig. 6), CosineTS is the most effective one, taking only

about 89 seconds to process 2426 comparisons. This is followed by RKRGST that

takes more time for calculating the similarities; its algorithm has quadratic complexity

while CosineTS’s algorithm is linear time.

CosineAST and Structure are slower than the first two as syntax trees should be

generated and linearized prior comparison. Time required for that tree generation can

be longer if the code is complex [17]. Structure is the slowest one due to the combina-

tion of quadratic similarity algorithm and tree generation.

To sum up, Structure is exclusively beneficial to deal with modifications related to

identifier renaming, while RKRGST is the most effective one for remaining levels. For

scalability, CosineTS is the most preferred one due to its fast computation, followed

by RKRGST, CosineAST, and Structure.

CosineTS is advised if many student programs are considered. However, if only

few of them are involved, RKRGST can be used for higher effectiveness. CosineAST

can be used as a replacement of CosineTS if students tend to disguise their programs

with identifier renaming. This is also similar to Structure, which can replace RKRGST

for dealing with identifier renaming.

iJOE ‒ Vol. 16, No. 10, 2020 47

Paper—A Scalable Code Similarity Detection with Online Architecture and Focused Comparison…

Fig. 5. The effectiveness of the comparison modes in terms of f-score

Fig. 6. The efficiency of the comparison modes in terms of execution time

4 Conclusion and Future Work

A scalable code similarity detection for maintaining academic integrity in pro-

gramming is proposed in this paper. It is uniquely featured with online architecture

and focused comparison. The former facilitates student program sharing among lec-

turers and assures that the computation can be performed regardless the lecturers’

48 http://www.i-joe.org

Paper—A Scalable Code Similarity Detection with Online Architecture and Focused Comparison…

personal computers’ specification. The latter can shorten the execution time as only

some student programs are considered. To enhance the scalability, the similarity

measurement is cosine correlation, an algorithm with linear time complexity.

According to our evaluation, focused comparison can exclude many comparison

pairs if many student programs are involved. With 100 student programs on board, it

can exclude 79.8% comparison pairs. This obviously leads to shorter execution time

as time is proportional to the number of comparisons.

Replacing running Karp-Rabin greedy string tiling with cosine correlation can also

shorten the execution time. The benefit becomes larger when the token strings are

longer (such as those resulted from linearized syntax trees).

Our detection technique is featured with four comparison modes: CosineTS,

RKRGST, CosineAST, and Structure. Among those, CosineTS is the most scalable one

while RKRGST is the most effective one for most plagiarism levels. Other two modes

can be used in dealing with small-sized student programs which modifications are

mainly about renaming identifiers.

Our detection technique is considerably scalable as it can search copied programs

from 2426 student programs for less than one and a half minute. It is also effective in

dealing with superficial modifications that are commonly found in programming as-

sessments (the first three plagiarism levels).

For future work, we plan to use the detection technique for some programming

courses and summarise the experiences. It is expected to enrich our current findings

from user perspective. In addition, we also plan to evaluate the comparison modes

with other metrics to gain deeper understanding of their characteristics.

5 Acknowledgement

This research has been supported by a research grant provided by Maranatha Chris-

tian University.

6 References

[1] Metruk, R., Confronting the Challenges of MALL: Distraction, Cheating, and Teacher

Readiness. International Journal of Emerging Technologies in Learning (iJET), 2020,

15(2): 4–14. https://doi.org/10.3991/ijet.v15i02.11325

[2] Halak, B. and El-Hajjar, M., Plagiarism detection and prevention techniques in engineering

education. 11th European Workshop on Microelectronics Education, 2016: 1–3.

https://doi.org/10.1109/EWME.2016.7496465

[3] Aikina, T. Y., and Bolsunovskaya, L., M., Moodle-Based Learning: Motivating and Demo-

tivating Factors. International Journal of Emerging Technologies in Learning (iJET),

2020, 15(2): 239–248. https://doi.org/10.3991/ijet.v15i02.11297

[4] Ozvoldova, M., and Ondrušek, P., Integration of Online Labs into Educational Systems.

International Journal of Online and Biomedical Engineering (iJOE), 2015, 11(6): 54-59.

https://doi.org/10.3991/ijoe.v11i6.5145

iJOE ‒ Vol. 16, No. 10, 2020 49

https://doi.org/10.3991/ijet.v15i02.11325
https://doi.org/10.1109/EWME.2016.7496465
https://doi.org/10.3991/ijet.v15i02.11297
https://doi.org/10.3991/ijoe.v11i6.5145

Paper—A Scalable Code Similarity Detection with Online Architecture and Focused Comparison…

[5] Batane, T., Turning to Turnitin to fight plagiarism among university students. Journal of

Educational Technology & Society, 2010, 13(2): 1–12. https://doi.org/10.3126/nelta.v12i1.

3440

[6] Simon, Cook, B., Sheard, J., Carbone, A. and Johnson, C., Academic integrity perceptions

regarding computing assessments and essays. 10th Annual Conference on International

Computing Education Research, 2014: 107–114. https://doi.org/10.1145/2632320.2632342

[7] Sheard, J., Simon, Butler, M., Falkner, K., Morgan, M. and Weerasinghe, A., Strategies for

maintaining academic integrity in first-year computing courses. 2017 ACM Conference on

Innovation and Technology in Computer Science Education, 2017: 244–249. https://doi.

org/10.1145/3059009.3059064

[8] Simon, Sheard, J., Morgan, M., Petersen, A., Settle, A. and Sinclair, J., Informing students

about academic integrity in programming. 20th Australasian Computing Education Con-

ference, 2018: 113–122. https://doi.org/10.1145/3160489.3160502

[9] Cosma, G. and Joy, M., Towards a definition of source-code plagiarism. IEEE Transac-

tions on Education, 2008, 51(2): 195–200. https://doi.org/10.1109/TE.2007.906776

[10] Prechelt, L., Malpohl, G. and Philippsen, M., Finding plagiarisms among a set of programs

with JPlag. Journal of Universal Computer Science, 2002, 8(11): 1016–1038.

[11] Novak, M., Joy, M. and Kermek, D., Source-code similarity detection and detection tools

used in academia: a systematic review. ACM Transactions on Computing Education, 2019,

19(3), 27:1-37. https://doi.org/10.1145/3313290

[12] Ottenstein, K. J., An algorithmic approach to the detection and prevention of plagiarism.

ACM SIGCSE Bulletin, 1976, 8(4): 30–41. https://doi.org/10.1145/382222.382462

[13] Faidhi, J. A. W. and Robinson, S. K., An empirical approach for detecting program simi-

larity and plagiarism within a university programming environment. Computers & Educa-

tion, 1987, 11(1): 11–19. https://doi.org/10.1016/0360-1315(87)90042-X

[14] Jones, E. L., Metrics based plagiarism monitoring. Journal of Computing Sciences in Col-

leges, 2001, 16(4): 253–261.

[15] Al-Khanjari, Z. A., Fiaidhi, J. A., Al-Hinai, R. A. and Kutti, N. S., PlagDetect: a Java pro-

gramming plagiarism detection tool. ACM Inroads, 2010, 1(4): 66–71. https://doi.

org/10.1145/1869746.1869766

[16] Croft, W. B., Metzler, D. and Strohman, T., Search Engines: Information Retrieval in

Practice. USA: Addison-Wesley, 542 (2010).

[17] Karnalim, O. and Simon, Syntax trees and information retrieval to improve code similarity

detection. Twenty-Second Australasian Computing Education Conference, 2020: 48–55.

https://doi.org/10.1145/3373165.3373171

[18] Allyson, F. B., Danilo, M. L., José, S. M. and Giovanni, B. C., Sherlock N-overlap: inva-

sive normalization and overlap coefficient for the similarity analysis between source code.

IEEE Transactions on Computers, 2019, 68(5): 740-751. https://doi.org/10.1109/TC.2018

.2881449

[19] Cosma, G. and Joy, M., An approach to source-code plagiarism detection and investigation

using latent semantic analysis. IEEE Transactions on Computers, 2012, 61(3): 379–394.

https://doi.org/10.1109/TC.2011.223

[20] Arwin, C. and Tahaghoghi, S. M. M., Plagiarism detection across programming languages.

29th Australasian Computer Science Conference, 2006: 277–286.

[21] Ahtiainen, A., Surakka, S., and Rahikainen, M., Plaggie: GNU-licensed source code pla-

giarism detection engine for Java exercises. Sixth Baltic Sea conference on Computing Ed-

ucation Research, Koli Calling 2006, 2006: 141–142. https://doi.org/10.1145/1315803.131

5831

50 http://www.i-joe.org

https://doi.org/10.3126/nelta.v12i1.3440
https://doi.org/10.3126/nelta.v12i1.3440
https://doi.org/10.1145/2632320.2632342
https://doi.org/10.1145/3059009.3059064
https://doi.org/10.1145/3059009.3059064
https://doi.org/10.1145/3160489.3160502
https://doi.org/10.1109/TE.2007.906776
https://doi.org/10.1145/3313290
https://doi.org/10.1145/382222.382462
https://doi.org/10.1016/0360-1315(87)90042-X
https://doi.org/10.1145/1869746.1869766
https://doi.org/10.1145/1869746.1869766
https://doi.org/10.1145/3373165.3373171
https://doi.org/10.1109/TC.2018.2881449
https://doi.org/10.1109/TC.2018.2881449
https://doi.org/10.1109/TC.2011.223
https://doi.org/10.1145/1315803.1315831
https://doi.org/10.1145/1315803.1315831

Paper—A Scalable Code Similarity Detection with Online Architecture and Focused Comparison…

[22] Joy, M. and Luck, M., Plagiarism in programming assignments. IEEE Transactions on Ed-

ucation, 1999, 42(2): 129–133. https://doi.org/10.1109/13.762946

[23] Sheard, J., Carbone, A. and Dick, M., Determination of factors which impact on IT stu-

dents’ propensity to cheat. Fifth Australasian conference on Computing education, 2003:

119–126.

[24] Parr, T., The Definitive ANTLR 4 Reference. Dallas: Pragmatic Bookshelf, 432 (2013).

[25] Wise, M. J., YAP3: improved detection of similarities in computer program and other

texts. 27th SIGCSE Technical Symposium on Computer Science Education, 1996: 130–

134. https://doi.org/10.1145/236462.236525

[26] Kikuchi, H., Goto, T., Wakatsuki, M., and Nishino, T., A source code plagiarism detecting

method using alignment with abstract syntax tree elements. 15th IEEE/ACIS International

Conference on Software Engineering, Artificial Intelligence, Networking and Paral-

lel/Distributed Computing, 2014: 1–6. https://doi.org/10.1109/SNPD.2014.6888733

[27] Wang, L., Jiang, L. and Qin, G., A search of Verilog code plagiarism detection method.

13th International Conference on Computer Science & Education, 2018: 1–5. https://doi.or

g/10.1109/ICCSE.2018.8468817

[28] Mann, S. and Frew, Z., Similarity and originality in code: plagiarism and normal variation

in student assignments. Eighth Australasian Conference on Computing Education, 2006:

143–150.

[29] Yang, F.-P., Jiau, H. C. and Ssu, K.-F., Beyond plagiarism: an active learning method to

analyze causes behind code-similarity. Computers & Education, 2014, 70(1): 161–172.

https://doi.org/10.1016/j.compedu.2013.08.005

[30] Misić, M. J., Protić, J. and Tomasević, M. V., Improving source code plagiarism detection:

lessons learned. 25th Telecommunication Forum, Belgrade, Serbia, 2017: 1–8. https://doi.

org/10.1109/TELFOR.2017.8249481

[31] Franclinton, R. and Karnalim, O., A Language-Independent Library for Observing Source

Code Plagiarism. Journal of Information Systems Engineering and Business Intelligence,

2019, 5(2): 110–119. https://doi.org/10.20473/jisebi.5.2.110-119

[32] Karnalim, O., Budi, S., Toba, H. and Joy, M., Source code plagiarism detection in academ-

ia with information retrieval: dataset and the observation. Informatics in Education, 2019,

18(2): 321–344. https://doi.org/10.15388/infedu.2019.15

7 Authors

Ricardo Franclinton will be graduated with a Bachelor of Computer degree from

Maranatha Christian University in 2020. His interest is about computer science educa-

tion and solving competitive programming problems. In addition to academic works,

he is also interested in organization. He was a member of a student senate from 2017

to 2019 where in 2019 he was elected as the president of student senate in the last

year. Currently, he is working in a software house in Bandung.

Oscar Karnalim graduated with a Bachelor of Engineering degree from Para-

hyangan Catholic University in 2011, and completed his Master’s degree at Bandung

Institute of Technology (ITB) in 2014. His interest is about computer science educa-

tion, especially source code plagiarism and educational tools. He works at Maranatha

Christian University as a full-time lecturer. Currently, he is pursuing a PhD in Infor-

mation Technology at University of Newcastle, Australia.

iJOE ‒ Vol. 16, No. 10, 2020 51

https://doi.org/10.1109/13.762946
https://doi.org/10.1145/236462.236525
https://doi.org/10.1109/SNPD.2014.6888733
https://doi.org/10.1109/ICCSE.2018.8468817
https://doi.org/10.1109/ICCSE.2018.8468817
https://doi.org/10.1016/j.compedu.2013.08.005
https://doi.org/10.1109/TELFOR.2017.8249481
https://doi.org/10.1109/TELFOR.2017.8249481
https://doi.org/10.20473/jisebi.5.2.110-119
https://doi.org/10.15388/infedu.2019.15

Paper—A Scalable Code Similarity Detection with Online Architecture and Focused Comparison…

Mewati Ayub graduated with a Bachelor of Informatics from Bandung Institute of

Technology (ITB) in 1986, and completed her Master’s degree at Bandung Institute of

Technology in 1996, and her doctoral degree at Bandung Institute of Technology in

2006. She has been working as a faculty member in the Faculty of Information Tech-

nology at Maranatha Christian University since 2006. Her specialty is in the field of

computer science education, software engineering, and data analytics.

Article submitted 2020-03-17. Resubmitted 2020-06-17. Final acceptance 2020-06-21. Final version

published as submitted by the authors.

52 http://www.i-joe.org

