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Abstract‒‒Digital image processing-computer vision (DIP-CV) systems are 

used to automate malaria diagnosis through microscopy analysis of thin blood 

smears. Some variability is observed in the experimental design to evaluate the 

statistical measures of performance (SMP) of such systems. The objective of this 

work is assessing good practices when using SMP to evaluate DIP-CV systems 

for malaria diagnosis. A mathematical model was built to characterize diagnosis 

using DIP-CV systems and used to obtain curve families showing the relation-

ships among various SMP of these systems, both using theoretical equations and 

computer simulation. Curve families showing (a) the relationships among the 

minimum number of positive erythrocytes (RBCs) to be observed, the per object 

(RBC) sensitivity and the probability to detect at least one positive, (b) per spec-

imen sensitivity vs. total number of RBCs observed for a typical per object sen-

sitivity and a range of parasite densities (c) per object positive predictive value 

vs. per object specificity for a typical per object sensitivity and various parasite 

densities. When determining the per specimen sensitivity, the parasite density p 

showed to have more influence on the number of RBCs that must be analyzed 

than the per object sensitivity. Measuring p accurately depends heavily upon the 

per object positive predictive value of the classifier. For low p values, this would 

require very high per object specificity and a high enough value of observed 

RBCs to measure this accurately. 

Keywords‒‒Malaria, Plasmodium, Digital Image Processing, Computer Vi-

sion, Statistical Measures. 

1 Introduction 

Malaria continues being one of the largest health problems faced by our planet, 

where in 2018 228 million cases of malaria occurred worldwide, with 405 000 deaths, 

mostly children under 5 years old and with a high prevalence in the Sub-Saharan Africa 

region [1]. An effective way to diagnose malaria and to determine the infection rate is 

the analysis of thin blood smears in a microscope, during which the infected erythro-

cytes (red blood cells, RBCs) are detected and can be counted to determine the parasite 
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density p which will designate in this work the proportion of infected RBCs. This pro-

cedure constitutes, for the human experts, a time-consuming task, prone to intra- and 

inter-analysts’ errors due to tiredness, subjectivity and lack of experience. As a conse-

quence, research on the application of digital image processing-computer vision (DIP-

CV) systems to analyze the thin blood smears during malaria studies, constitutes a cur-

rent topic that has produced in the last few years numerous scientific publications. How-

ever, the issue of the practical meaning of the statistical measures of performance 

(SMP) of these systems and the influence on them of the errors due to various sources 

usually present, has not been considered with enough interest and deserves a more de-

tailed analysis, which is the object of this work. At this point, we emphasize that the 

performance of binary detection of the parasites is of paramount importance in any 

system, both due to its intrinsic importance when calculating the parasite density and 

to its role as a usual first stage in systems devoted to classify also the Plasmodium 

species and their life stages. Analyzing a representative set of published papers reveals 

the lack of uniformity with which the system’s effectiveness is evaluated. This problem 

is increased due to the lack of available, public annotated databases that could be used 

for this purpose. 

An early work [2] uses covariance, correlation coefficients and distances to compare 

their DIP-CV system results with those from two human analysts, with a total number 

of RBCs in the order of 180; however, the standard SMP measures were not used there. 

Linear regression was used in Ref. [3] to determine the correlation between the out-

comes of a proposed system and human analysts on sets having up to 16000 RBCs, 

reporting good results in terms of correlation with some dependence upon the experi-

mental conditions and also without expressing the results in terms of SMP. Most refer-

ences, however, use the standard SMP like sensitivity (Se), specificity (Sp) and predic-

tive positive value (PPV), for which a relatively wide range of values has been obtained. 

An example using a neural network classifier in Ref. [4] reports 𝑆𝑒 =
0.8513 and 𝑃𝑃𝑉 = 0.8084 in a set of RBCs that comprised 481 true positives. This 

work recognizes the influence of p on the evaluation of Se as well as of the false posi-

tives (FP) in the accuracy (ACC) when evaluating p, and used an elementary simulation 

to assess the system’s performance. A DIP-CV system that uses a neural networks clas-

sifier in Ref. [5] obtained average 𝑆𝑒 = 0.76 and 𝑃𝑃𝑉 = 0.82 with a limited number 

of RBCs. Another work [6] reports values of 𝑆𝑒 = 0.724, 𝑆𝑝 = 0.976, 𝑃𝑃𝑉 = 0.858 

and ACC = 0.933 for their experiments using 4100 RBCs (669 infected) to compare 

three classifier systems for binary detection. This work also addresses the classification 

of species and stages of the parasite and includes a thorough analysis of the importance 

and the effects of the parasite density value p on the estimations of the SMP and p itself. 

However, as will be shown later, this analysis deserves an extension to obtain new in-

sights on these relationships. Ref. [7] worked with 1000 RBCs showing a maximum 

𝑆𝑒 = 0.98 and presumably 𝑃𝑃𝑉 = 0.98 (the definition given there for precision is un-

clear), without considering the influence of p. Ref. [8] reports 𝑆𝑒 = 1 and 𝑆𝑝 =

0.5 to 0.88 without providing enough data on the experimental conditions of this eval-

uation. 

Experiments with 888 RBCs using 148 in each class (normal and infected) for train-

ing five different classifiers reported in [9] shows as the best results obtained (using 
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neural networks) 𝑆𝑒 = 1, 𝑆𝑝 = 0.9874, 𝑃𝑃𝑉 = 0.9973 and ACC = 0.9673. This paper 

also tabulates for comparison the SMP of a number of works where the problem that 

gives rise to our work can be appreciated. Ref. [10] made experiments with 12,577 

erythrocytes, out of which 713 were infected (p=0.0568), with the final purpose of clas-

sifying the species of the parasite and comparing three classifiers, obtaining values of 

 𝑆𝑒 = 0.94 and 𝑆𝑝 = 0.997, and calculating the F-measure which reflects the balance 

between Se and PPV. Research using a K-means classifier and 118 RBC images re-

ported in [11] obtained 𝑆𝑒 = 0.93 and 𝑃𝑃𝑉 = 0.95. Ref. [12] reports a Support Vector 

Machine (SVM) classifier using samples from patients with p estimated in the range 

0.07-0.16 and various numbers of RBCs (up to 45096), obtaining 𝑆𝑒 = 0.849, 𝑆𝑝 =

0.999, 𝑃𝑃𝑉 = 0.742 and a 95% confidence interval for these estimations. A test for a 

parasite detector classifier in Ref. [13] used 7000 RBCs, with 359 out of them contam-

inated (p=0.05); this work reports 𝑆𝑒 = 0.9972, 𝑆𝑝 = 0.9994 and 𝑃𝑃𝑉 = 0.989, 

which are notoriously high values that could deserve further tests. Another research 

[14] which used an SVM classifier obtained 𝑆𝑒 = 0.9894, 𝑆𝑝 = 0.9612 and ACC = 

0.9866. However, information on the number of RBCs tested or p value is not provided. 

The problem of determining the parasite density was addressed in Ref. [15] and in this 

case the authors provide only the accuracy obtained, ACC = 0.9646, as well as regres-

sion curves and tables of parasite counts per slide showing the degree of agreement with 

human-made counts. 

An approach using an image analysis system [16] was developed based in a 16-layer 

convolutional neural network (CNN) model. The binary classification performance of 

this system was evaluated by means of a ten-fold cross-validation using 27578 single 

cell images with a 1:1 ratio of infected cells to uninfected cells. The results reported in 

this work were 𝑆𝑒 = 0.9699, 𝑆𝑝 = 0.9775, 𝑃𝑃𝑉 = 0.9773 and F1 score = 0.9736. 

A number of 138 quantitative features related to color, morphology and texture from 

segmented erythrocytes are proposed to detect malaria in Ref. [17] and tested using four 

feature selection methods and three classifiers, among which the best results were ob-

tained using Correlation-based Feature Selection (CFS) together with a C4.5 classifier. 

These were 𝑆𝑒 = 0.992, 𝑆𝑝 = 0.996. This work also used a balanced erythrocyte data-

base with 500 normal and 500 infected (divided in five groups of 100 infected with two 

species: 200 Plasmodium falciparum and 300 Plasmodium vivax) in two and three sets 

of 100 erythrocytes respectively at different stages (rings, gametocytes and schizonts). 

This work presents a comparison to other image processing algorithms for malaria de-

tection in a table in which the variability in the use of different SMP and datasets can 

be appreciated. 

A comprehensive review is presented in Ref. 18 on malaria parasites detection sys-

tems based in morphological image processing. In this article the authors summarized 

the results of 27 different approaches, which in regard of erythrocyte classification were 

expressed in terms of the standard SMP. However, it is to be noticed that in the various 

works analyzed, these measures of performance have been obtained under different ex-

perimental conditions in terms of the number of erythrocytes involved, the level of class 

balance and the variability of image acquisition conditions, which limits the value of 

the corresponding SMP values to allow a fair comparison of their effectiveness. 
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SVM with different kernels were employed as classifiers in Ref. [19], using as fea-

tures the histogram statistics as well as the gray level co-occurrence matrix (GLCM) 

and the gray-level run-length matrix (GLRLM) as texture features. SVM with cubic 

kernel obtained the best results reporting 𝑆𝑒 = 0.951, 𝑆𝑝 = 1, ACC = 0.974, PPV= 1 

and NPV = 0.949. The dataset employed consisted in 975 isolated erythrocytes seg-

mented out of 46 digital microscopy images of thin blood smears. 

A custom convolutional neural network (CNN) and pre-trained models: VGG-19, 

Squeeze-net, Inception ResNet-V2 and All-ensemble, were implemented and evaluated 

in Ref. [20] to classify RBCs into normal and parasitized in thin blood smears. The 

models in this case were evaluated in terms of SMP using accuracy, area under ROC 

curve (AUC), MS error, positive predictive value, F score and Matthews correlation 

coefficient. A dataset composed of 27558 RBCs was evenly divided into normal and 

infected, obtaining as best results: ACC = 0.9932, 𝐴𝑈𝐶 = 0.9931, 𝑀𝑆𝐸 = 0.9, 𝑃𝑃𝑉 =
0.9956 and F = 0.9908. 

Table 1 summarizes in chronological order the results reported in the previous rep-

resentative sample of articles reporting the results of DIP-CV systems in the analysis 

of microscopy images of thin blood smears during malaria studies. In some cases, the 

SMP have been extended by calculating, from the data provided, measures not explic-

itly given in the corresponding article. 

A review article [21] analyzes a large number of papers (173 references) describing 

techniques involved in machine learning and image analysis for the detection of ma-

laria. Here the authors recognize explicitly the difficulty that gives rise to our article: 

they consider as a very difficult task to compare the performance of the published sys-

tems, due to the variability of blood slides coming from different origins as well as of 

the methods to prepare slides and to acquire the images. They mention also the fact that 

the evaluation sets are often too small or too limited as well as the lack of publicly 

available image benchmark datasets. Having all these in mind the authors considered 

that there was not a reliable basis to include in their article any formal comparative 

evaluation based in SMP. In this short review, the papers analyzed were chosen both to 

illustrate some of the most recent work and previous works of noticeable relevance as 

well. The values of the SMP reported in these articles reflect that there is also variability 

in the number of decimal places with which these values have been given. 

It is worth to mention that the laboratory assays made to develop anti-malarial drugs, 

using the rodent species Plasmodium berghei, usually generate large numbers of images 

in which determining accurately the parasite density is of crucial importance. This 

makes them an important target for the application of DIP-CV techniques. 

The purpose of this work is to emphasize the importance of making an appropriate 

evaluation of the DIP-CV algorithms used in malaria studies, to provide further insights 

about the practical meaning of the SMP when making such evaluations and to provide 

some clues to set the limits of validity of the measured parameters. The approach fol-

lowed was to develop a mathematical model that allowed extensive simulations of the 

RBCs classification process. This model encompasses all the sources of error in a typ-

ical DIP-CV system, making abstraction of their physical nature. Then representative 

values of the SMP were obtained and an analysis was made in order to clarify their 

actual meaning when assessing the limitations of a given system. 
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Table 1.  Statistical measures of performance frequently used, as they appear reported in 

various articles showing results of DIP-CV systems in the analysis of microscopy 

images of thin blood smears to evaluate the presence of plasmodium. 

Ref./date RBCs p Seo Spo PPVo ACC 

2/2002 180 N/A N/A N/A N/A N/A 

4/2006 N/A N/A 0.8513 N/A 0.8084 N/A 

3/2007 16000 N/A N/A N/A N/A N/A 

10/2009 12577 0.0568 0.94 0.997 0.949 0.994 

6/2010 4100 N/A 0.724 0.976 0.858 0.933 

13/2013 7000 0.051 0.9972 0.9994 0.989 N/A 

11/2014 118 N/A 0.93 0.95 N/A N/A 

12/2014 N/A 0.07-0.16 0.849 0.999 0.742 N/A 

5/2014 N/A N/A 0.76 N/A 0.82 N/A 

7/2015 1000 N/A 0.998 N/A 0.98 N/A 

9/2015 888 N/A 0.9986 0.9594 0.9919 0.9605 

14/2015 N/A N/A 0.9894 0.9612 N/A 0.9866 

15/2015 N/A N/A N/A N/A N/A 0.9646 

8/2016 N/A N/A 1 0.5-0.8 N/A N/A 

16/2016 25578 0.5 0.9699 0.9775 0.9773 N/A 

17/2017 1000 0.5 0.992 0.996 N/A N/A 

19/2019 975 0.525 0.951 1 1 0.974 

20/2019 25578 0.5 N/A N/A 0.9956 0.9932 

 

At this point, some distinctive properties of DIP-CV systems in the analysis of ma-

laria are to be mentioned: 

When the microscopy slides are analyzed by human experts, it is assumed that the 

per-specimen sensitivity depends only on the parasite density, and the per-object (per 

individual RBCs) sensitivity and specificity are deemed as 100 percent. On the con-

trary, a DIP-CV system has inherently various sources of false positives and false neg-

atives: noise and artifacts due to imperfections in preparing the slides and in the image 

acquisition processes, limitations of image processing algorithms like filtering and seg-

mentation, limited discriminating power of the features used and the effectiveness of 

the classifier algorithms. Studying the effects of these errors is one of the main purposes 

of this work. 

In the visual analysis by human experts, it is very laborious to make an exact ac-

counting of the RBCs. This determines the use of approximate methods like counting 

only the infected RBCs and the leukocytes (WBCs, white blood cells), estimating a 

proportion between the amounts of total infected RBCs (np) and observed WBCs (nw) 

and calculating the parasite density p in infected RBCs/μl from these data using: 

 𝑝 = (
𝑛𝑝

𝑛𝑤
⁄ ) 𝑑𝑤 (1) 

where the WBC density is considered approximately equal to dw= 6000 WBC/μl of 

blood. A DIP-CV system usually does not have this limitation: it can perform a com-

plete and fairly exact accounting of the RBCs within its limits of precision, allowing 

using just the necessary RBCs to have a good evaluation of p as the fraction of infected 
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RBCs. This makes important to know what would be actually the minimum numbers 

of RBCs necessary to be analyzed for evaluating fairly an expected range of p values. 

In laboratory experiments with rodents, the per-specimen SMP are very important 

because they indicate the margins within which an infected specimen would have a 

satisfactorily low probability of being considered free of the parasite and conversely a 

non-infected specimen would not be deemed as infected. This is of course also im-

portant in diagnose tasks with humans. 

In this work, the following issues were addressed: (a) determining the minimum 

number of positive objects (infected RBCs) to be analyzed for evaluating p, (b) the 

relationship between per-object and per-specimen sensitivity and (c) the influence of 

false positives on the precision with which p can be measured. 

The core of the analysis presented here is using the Bernoulli process as a model to 

describe the behavior one RBC classification in a DIP-CV system used for malaria 

studies, from which analyzing a set of M RBCs follows the binomial probability distri-

bution. This can be justified by looking at the properties of such processes in Ref. [22] 

which are summarized below: 

1. The experiment consists of repeated trials which are the individual analyses of inde-

pendent, previously segmented, erythrocytes. 

2. Each trial results in a binary outcome: an RBC is infected (positive) or non-infected 

(negative). 

3. The RBCs are analyzed at random, which justifies the assumption that the probabil-

ity p of finding a positive is constant for any observed RBC. 

4. The repeated trials are fully independent processes: a given result does not have in-

fluence on the rest. 

The remainder of this article is organized as follows. In Section “Materials and meth-

ods” the models and experimental design used in the simulation experiments are ex-

plained in detail. Section “Results” shows the results obtained from the equations de-

scribing the theoretical model and those resulting from the simulation experiments. 

Then section “Discussion” refers to the interpretation of the curve families obtained and 

analyzes the influence of this information upon the evaluation of the SMP in DIP-CV 

systems for the analysis of malaria. Finally, in Section “Conclusion” the main findings 

are summarized and their expected influence upon the design of experiments to test the 

DIP-CV systems that have been the object of this study. 

2 Materials and Methods 

The problem of determining the relationship between the sensitivity per object (i.e. 

the proportion of infected RBCs that the system is capable to detect) and the sensitivity 

per specimen, (which corresponds to the proportion of positive specimens that the sys-

tem is capable to detect when analyzing a large number of individual RBCs from their 

blood samples), was addressed here. This issue has been treated before in some detail 

in Ref. [6], whereas a different approach has been introduced in the present work. 
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2.1 Basic definitions 

Starting from the definition of sensitivity 

 𝑆𝑒 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)                    (2) 

where TP stands for the amount of true positives and FN means the amount false 

negatives, we will call per object sensitivity Seo, that associated to the detection of 

individual infected RBCs (objects in what follows), and per specimen sensitivity Ses, 

that associated to the detection of an infected specimen after having analyzed the im-

ages of its blood smears. In analogous way, the per object (Spo) and per specimen (Sps) 

specificity can be defined. 

The following definitions will be used in this work: 

Seo = per object sensitivity. 

Spo = per object specificity. 

Ffno = 1-Seo = false negative fraction in reference to objects. 

Ffpo = 1-Spo = false positive fraction in reference to objects. 

PPVo= positive predictive value in reference to objects. 

Ses = per specimen sensitivity. 

Sps = per specimen specificity. 

p = parasite density, or proportion of infected RBCs (objects) in a given specimen. 

pperc = p expressed as a percentage. 

Po = probability of detecting at least one positive (infected) RBC. 

Pomin = minimum desired value of Po in a given experiment. 

M = total number of objects (RBCs) analyzed. 

N = number of positive (infected) objects in a sample of M objects (RBCs). 

 

It is worth to mention that one μl of blood contains approximately 5x106 RBCs as 

stated in Ref. [23]. 

2.2 Mathematical model 

In order to perform the simulation study proposed here, the process of classifying a 

set of M objects (RBCs) as infected (positive) or not (negative), was modeled using the 

binomial probability function. 

 Relationship among 𝑆𝑒𝑜, 𝑃𝑜 and 𝑁: 

The probability of detecting at least one positive object for a given 𝐹𝑓𝑛𝑜 when ana-

lyzing N positive objects is given by 

    𝑃𝑜 = 1 − (𝐹𝑓𝑛𝑜)
𝑁

        (3) 

From this expression, the number of positive objects N that should be analyzed to 

detect at least one, with probability at least equal to 𝑃𝑜𝑚𝑖𝑛 , is 
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         𝑁 ≥
log (1−𝑃𝑜𝑚𝑖𝑛)

log (𝐹𝑓𝑛𝑜)
                      (4) 

This expression will be used to calculate 𝑁𝑚𝑖𝑛 as a function of 𝑆𝑒𝑜. Notice that this 

result lead to the necessity of finding the number M of RBCs to be examined to find at 

least N positives, which would allow detecting a positive specimen with a desired prob-

ability. 

 Relationships among 𝑆𝑒𝑠,  𝑆𝑒𝑜 , p and M: 

The per-specimen sensitivity 𝑆𝑒𝑠 is affected both by the presence of positive objects 

-which depends upon the parasite density- in the sample analyzed by the DIP-CV sys-

tem, and by the per-object sensitivity of the latter. The problem of the presence of i 

positive objects in a sample of M objects (RBCs) when p is the probability that a given 

object be positive (parasite density) is characterized by the binomial probability distri-

bution [22] 

      𝑃𝑖 = (
𝑀
𝑖

) 𝑝𝑖(1 − 𝑝)𝑀−𝑖 ,                    (5) 

where 

     (
𝑀
𝑖

) =
𝑀!

𝑖!(𝑀−𝑖)!
 .                        (6) 

The probability of classifying a positive specimen as such when analyzing M RBCs 

pertaining this specimen can be calculated by adding for all i (1 ≤ 𝑖 ≤ 𝑀) the proba-

bility of finding i positives in M, weighted by the probability that at least one of them 

be detected, for a given  𝑆𝑒𝑜 , which is  

     𝑆𝑒𝑠 = ∑ (1 − 𝐹𝑓𝑛𝑜
𝑖𝑀

𝑖=1 ) (
𝑀
𝑖

) 𝑝𝑖(1 − 𝑝)𝑀−𝑖       (7) 

Equation (7) allows determining iteratively the number of objects M that should be 

analyzed to obtain a desired value of  𝑆𝑒𝑠 given  𝑆𝑒𝑜  and an estimated p. However usu-

ally 𝑀 ≫ 1, which is necessary for a precise calculation of p whose values are usually 

low. Therefore, evaluating equation (7) requires calculating large factorials whose di-

rect computation might even not be feasible. Then the well-known approximation of 

the binomial probability function by the Poisson distribution [22] for 𝑝 ≪ 1 can be used 

to obtain 

     𝑆𝑒𝑠 = ∑ (1 − 𝐹𝑓𝑛𝑜
𝑖𝑀

𝑖=1 )
𝑒−µµ𝑖

𝑖!
 , µ = 𝑝𝑀   (8) 

This expression was used to calculate curve families that reveal useful information 

about the interdependence between 𝑆𝑒𝑠,  𝑆𝑒𝑜 , M and p. When the condition 𝑝 ≪ 1 does 

not hold (𝑒. 𝑔. 𝑝 ≥ 0.01) the normal approximation of the binomial distribution was 

used instead. This is given by 

      𝑆𝑒𝑠 = ∑ (1 − 𝐹𝑓𝑛𝑜
𝑖𝑀

𝑖=1 )𝑁(𝑖, µ, 𝜎)         (9) 
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where N is the normal (Gaussian) probability calculated in the interval (𝑖 ± 0.5) 

with parameters µ = 𝑝𝑀 and 𝜎 = √𝑝(1 − 𝑝)𝑀. 

 Model testing by computer simulation: 

Curve families were obtained by means of equations (8) and (9) and also calculated 

by means of computer simulation. Simulating the detection of positive RBCs consisted 

here in generating a first random binary sequence associated to the M analyzed RBCs, 

with (1) = 𝑝 , where 1 count as a positive object (RBC). Then a second binary random 

sequence with 𝑃(1) = 𝑆𝑒𝑜 is generated to simulate the appearance of FN. The second 

sequence has the purpose to change the state of a positive outcome in the previous se-

quence, according to the considered value of 𝑆𝑒𝑜  , whenever this element corresponds 

to a false negative. The value of 𝑆𝑒𝑠 was determined by repeating the process just de-

scribed and considering that the outcome was a positive specimen whenever at least 

one TP was found in a run of the simulation experiment. The number n of times that 

this experiment had to be repeated for each value of M to evaluate 𝑆𝑒𝑠 was determined 

[22] by the expression    

          𝑛 =
𝑧𝛼/2

2

4𝑒2  ,                    (10) 

where z is the normalized normal variable, α/2 the significance level (5%) and e 

(0.02) the maximum absolute error that was set when estimating the proportion of de-

tected positive specimens. This led to the value n≅2400. 

 Assessing the effect of false positives: 

The rate of false positive detections is a very important factor to be considered in 

this analysis, given that especially for low values of p the occurrence of false positives 

can severely distort the results. Here the positive predictive value PPVo was used as the 

statistical measure of performance which characterizes the effect of false positives. 

A first approach to analyze this problem is to study the dependence of 𝑃𝑃𝑉𝑜 as a 

function of the specificity and the parasite density. Consider a sample of M RBCs and 

a parasite density p and assume that in the mean the number of positive objects in the 

sample is pM, then 

      𝑇𝑃 + 𝐹𝑁 = 𝑝𝑀                (11a) 

       𝑇𝑁 + 𝐹𝑃 = (1 − 𝑝)𝑀                   (11b) 

Now from equations (11) and the definitions of Seo and Spo , a system of four equa-

tions can be formed from which the dependence of PPVo upon 𝑆𝑒𝑜, 𝑆𝑝𝑜 and p can be 

found as 

    𝑃𝑃𝑉𝑜 =
𝑆𝑒𝑜𝑝

𝑆𝑒𝑜𝑝+(1−𝑝)(1−𝑆𝑝𝑜)
                 (12) 

This equation was used to obtain curves that illustrate how the proportion of true 

positives depends on the specificity for a given parasite density and sensitivity. 
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In order to validate the analysis made, these curves were also obtained by computer 

simulation. In addition to the random sequences used previously to compare with results 

of equations (8) and (9), a third binary random sequence with 𝑃(1) = 𝐹𝑓𝑝𝑜 was used to 

simulate the occurrence of false positives by changing the state of the negatives in the 

first binary sequence. Consider that when measuring the parasite density an apparent 

value of p will be obtained, affected both by the presence of false positives and false 

negatives. It is easy to prove the relationship 

     𝑝𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑝𝑟𝑒𝑎𝑙
𝑆𝑒𝑜

𝑃𝑃𝑉𝑜
 .               (13) 

Some implications of this relationship will be discussed later. 

3 Results 

 Relationship among Seo, Po and N: 

The relationship obtained through equation (4) is shown in Fig. 1, where it is seen 

that a lower 𝑆𝑒𝑜 implies the need of observing more positive RBCs to detect at least one 

with a high value of 𝑃𝑜𝑚𝑖𝑛 . The actual values obtained for  𝑃𝑜 for a set of values of 𝑆𝑒𝑜 

and their corresponding minimum value of N (Nmin) are also shown. 

 

Fig. 1. Minimum number of positive RBCs to be analyzed to detect at least one with probabil-

ity 𝑃o ≥ 0.999 as a function of the per object sensitivity Seo. Actual values of 𝑃𝑜 for se-

lected values of  𝑆𝑒𝑜 and the corresponding Nmin are indicated on the segments. 

 Relationships among 𝑆𝑒𝑠, 𝑆𝑒𝑜, M and p:  

The interdependence among 𝑆𝑒𝑠, 𝑆𝑒𝑜 , M and p for low and high values of p respec-

tively (the borderline was considered around pperc=0.5 %), was obtained using equa-

tions (8) and (9). Figures 2 and 3 show respectively the correspondence between the 
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results obtained using equations (8) and (9) and those obtained by computer simulation. 

In Figure 2a 𝑆𝑒𝑠  was calculated for 𝑆𝑒𝑜 = 0.95 (a reasonable practical value according 

to those reported in the literature) and a wide range of M, for low values of p as a 

parameter expressed in percentage as pperc, obtained using the Poisson’s approxima-

tion of equation (8) and the same conditions are set in Fig. 2b, in this case using com-

puter simulation. 

An analogous procedure was followed to obtain the curve families shown in Figures 

3a and 3b, in this case employing the Gaussian approximation of equation (9) for Fig. 

3a and using computer simulation for Fig. 3b. 

Figures 4a and 4b show the dependence of 𝑆𝑒𝑠  upon the number M of RBCs ana-

lyzed, for 𝑆𝑒𝑜 = 0.95 and several values of parasite density expressed in percentage, 

for a range of high 𝑆𝑒𝑠 values (above 0.99). Here, in the case of Figure 4a, the parasite 

density values are compatible with the Gaussian approximation and Figure 4b corre-

sponds to the range of low values of p, compatible with the Poisson’s approximation. 

 Assessing the effect of false positives: 

Evaluation of per object positive predictive values 𝑃𝑃𝑉𝑜 in terms of 𝑆𝑒𝑜 , 𝑆𝑝𝑜 and p 

were made using equation (12) and plotted in Fig. 5a. Figure 5b shows the same curves 

obtained by means of computer simulation. Notice the correspondence between the 

curves obtained using the analysis that led to equation (12) and the computer simulation 

results. 

4 Discussion 

 Relationship among 𝐹𝑓𝑛𝑜, P𝑜 and N: 

Figure 1 portrays the information about the minimum number of positive objects 

(infected RBCs) that have to be observed for a given per object sensitivity to have a 

very high certainty (𝑃𝑜 ) of detecting at least one of them. This graph illustrates the 

effect of an insufficient per object sensitivity on the per specimen sensitivity. 
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Fig. 2. Per specimen sensitivity value 𝑆𝑒𝑠 as a function of M for 𝑆𝑒𝑜 = 0.95 and a set of low 

values of p expressed in percentage as pperc, obtained (a) using the Poisson approxima-

tion with equation (8) and (b) by means of computer simulation. 

 

Fig. 3. Per specimen sensitivity value 𝑆𝑒𝑠 as a function of M for 𝑆𝑒𝑜 = 0.95 and a set of high 

values of p expressed in percentage as pperc, obtained (a) using the Gaussian approxi-

mation with equation (9) and (b) by means of computer simulation. 

 

Fig. 4. Per specimen sensitivity for values above 0.99 as a function of the number of RBCs an-

alyzed, at a per object sensitivity Seo=0.95. The parasite density p is expressed in per-

centage pperc. (a) for high values of p (Gaussian approximation, equation 9) and (b) for 

low values of p (Poisson approximation, equation 8). 
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Fig. 5. Combined effect on the positive predictive value 𝑃𝑃𝑉𝑜 of the per object specificity 

value 𝑆𝑝𝑜 and the parasite density p expressed in percentage for a typical value of 𝑆𝑒𝑜, 

(a) using equation (12) and (b) by means of computer simulation. 

when p is low and very few positives appear in the samples under analysis if the goal 

is having a high per specimen sensitivity. For example, a per object sensitivity below 

0.95 would require to observe at least three positives to meet the goal of certainty in 

infected specimen detection and if the infection rate is below 0.1 %, this would demand 

in the mean analyzing at least 3000 RBCs. 

 Relationships among 𝑆𝑒𝑠, 𝑆𝑒𝑜, M and p: 

Figures 2a and its counterpart 2b obtained through simulation, both using the Poisson 

model, indicate that for a practical value above which the per object sensitivity can be 

obtained in DIP-CV systems (𝑆𝑒𝑜 = 0.95, see Table 1) and an expected value of infec-

tion rate expressed in percentage pperc, the required number M of observed erythro-

cytes in order to obtain a reasonably (very) high per specimen sensitivity 𝑆𝑒𝑠 , tends to 

be very high for relatively low values of pperc. For higher values of pperc, Figures 3 (a 

and b) obtained using the Gaussian model show that a rather high value of 𝑆𝑒𝑠 can be 

obtained for much lower values of M. 

It is worth to mention that the mean square error was calculated between 𝑆𝑒𝑠  vs. 𝑀 

curve families obtained by the theoretical approximation and by computer simulation 

and very low values (magnitude order of 10-5) were obtained for the range (0.6 ≤
𝑆𝑒𝑠 ≤ 1). 

Figures 4 a and b are intended to illustrate the same relationships as figures 2 and 3 

but in this case for very high values of 𝑆𝑒𝑠 , (e. g. above 0.99), which could be desired 

in a practical situation. These figures differ in their corresponding ranges of parasite 

density p; notice that obtaining high enough values of 𝑆𝑒𝑠  for low values of pperc as 

those used in Figure 4b might require analyzing much higher numbers of RBCs, reach-

ing the range above ten thousand. As will be seen later, this is effect is worsening by 

the fact that with low p the negative effect of the presence of false positives increases 

significantly. 

Curves 𝑆𝑒𝑠 vs. M obtained for a low p with 𝑆𝑒𝑜 as the parameter, not included here 

due to space reasons, showed a low relative dependence of 𝑆𝑒𝑠 on 𝑆𝑒𝑜 when high values 

of 𝑆𝑒𝑠 are sought. 
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The obtained relationships illustrate how the existing parasite density tends to be a 

very significant parameter in the process of detecting infected RBCs in regard of the 

value of M needed; in this case the number of RBCs to be observed in order to find the 

required minimum number of positives to ensure at least one detection tends to be very 

high, particularly for low values of p. 

 Assessing the effect of false positives: 

Figure 5 is related to consequences derived from equation (13), which suggests that 

measuring p with perfect accuracy would be theoretically possible in a detection system 

which produces equal numbers of FN and FP, in other words 𝑃𝑃𝑉𝑜 should be ideally 

equal to 𝑆𝑒𝑜. This condition cannot of course be attained in practice, because the mech-

anisms that give rise to FP and FN are distinct and produce them at random. 

Failures in correct classification of RBCs in a DIP-CV system depend upon the spe-

cific attributes of the observed cell: in fact, it is impossible to ensure that FP=FN. 

Therefore, the objective should be to obtain both 𝑆𝑒𝑜  and 𝑃𝑃𝑉𝑜 as close to unity as pos-

sible. Figure 5 reveals that 𝑃𝑃𝑉𝑜  drops very fast when 𝑆𝑝𝑜 decreases, even for a range 

of high values of the latter, when p has a moderately low value. This means that obtain-

ing a relatively high 𝑃𝑃𝑉𝑜  when p tends to be low, would require very high values 

of 𝑆𝑝𝑜, an objective that cannot be overlooked in applications like drug development, 

where low infection rates are monitored in the evolution of the response of laboratory 

animals to drugs under testing. The interest in obtaining very high specificity, however, 

is not clearly sought in many works. 

It is important to recognize also that to evaluate with acceptable accuracy such high 

values of 𝑆𝑝𝑜, M must be also high enough, in order to have estimation errors in the 

order of the third decimal place or lower. Evaluating 𝑆𝑝𝑜 and 𝑆𝑒𝑜 , on the other hand, is 

a matter or evaluating proportions and equation (10) should be applied to determine the 

minimum M needed in order to evaluate them with controlled error for an expected 

range of p. 

5 Conclusion 

This work has been motivated by the need to establish a common framework to per-

form the evaluation of DIP-CV systems employed in the analysis of microscopy images 

during malaria studies. The approach followed in this work could be valuable to address 

similar analysis in other DIP-CV current applications related to microscopy images, 

examples of which can be found in [24] and [25]. In the work developed here a mathe-

matical model of the analysis of thin blood smears employing DIP-CV in the diagnosis 

of malaria was introduced and it allowed revealing some limitations that can be ob-

served in many works when determining the SMP of DIP-CV algorithms for this appli-

cation, especially the sensitivity per specimen and the parasite density of a sample. It 

was found that when determining the per specimen sensitivity, the parasite density has 

a much larger influence on the number of RBCs that must be analyzed than the per 

object sensitivity. 
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A second factor to take into account is that measuring p with adequate accuracy 

depends strongly upon the positive predictive value of the algorithm. For low expected 

values of p, this would require very high values of specificity per object 𝑆𝑝𝑜, which 

consequently demands a high enough value of M in order to measure this accurately. 

The fact that the number of RBCs to be analyzed is closely related to the accuracy 

with which the SMP can be calculated should be taken into account when evaluating a 

DIP-CV system. In this case, a minimum M is to be defined for (a) measuring 𝑆𝑒𝑜  for 

an expected p, (b) measuring the parasite density p with a desired accuracy, (c) obtain-

ing 𝑆𝑒𝑠 for some 𝑆𝑒𝑜 and an expected p, the latter being the dominating factor. As a final 

remark, especial attention should be taken to provide high enough 𝑆𝑝𝑜 in conditions of 

low parasite density in order to obtain reasonably good 𝑃𝑃𝑉𝑜 . 
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