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Abstract—The properties of time-domain electroencephalographic data have 

been studied extensively. There has however been no attempt to characterize the 

temporal evolution of resulting spectral components when successive segments 

of electroencephalographic data are decomposed. We analyzed resting-state scalp 

electroencephalographic data from 23 subjects, acquired at 256 Hz, and trans-

formed using 64-point Fast Fourier Transform with a Hamming window. KPSS 

and Nason tests were administered to study the trend- and wide sense stationarity 

respectively of the spectral components. Thereafter, the Rosenstein algorithm for 

dynamic evolution was applied to determine the largest Lyapunov exponents of 

each component’s temporal evolution. We found that the evolutions were wide 

sense stationary for time scales up to 8 s, and had significant interactions, espe-

cially between spectral series in the frequency ranges 0-4 Hz, 12-24 Hz, and 32-

128 Hz. The spectral series were generally non-chaotic, with average largest Lya-

punov exponent of 0. The results show that significant information is contained 

in all frequency bands, and that the interactions between bands are complicated 

and time-varying. 

Keywords—Trend stationarity, Wide sense stationarity, Chaoticity, Largest 

Lyapunov Exponent 

1 Introduction 

A typical EEG data acquisition pipeline can be modelled as a time-domain operation, 

with data acquired from multiple electrodes at a fixed sampling rate leading to a time 

series, 𝑥[𝑡] = 𝑥𝑡1 , 𝑥𝑡2 , ⋯ , 𝑥𝑡𝑁  from each electrode. Time domain methods thereafter 

proceed by manipulating 𝑥[𝑡]  directly, but for frequency domain methods, further 

processing is preceded by spectral decomposition of 𝑥[𝑡], or of multiple sub-sequences 

of it, taken one at a time. Applying a transform, 𝐹: 𝑡 → 𝜔 to a sub-sequence 𝑥𝑗[𝑡] =

𝑥𝑡1
𝑗
, 𝑥𝑡2
𝑗
, ⋯ , 𝑥𝑡𝑛

𝑗
 of 𝑥[𝑡], generates a spectral series 𝑋𝑗[𝜔] = 𝑋𝜔1

𝑗
, 𝑋𝜔2

𝑗
, ⋯ , 𝑋𝜔𝑚

𝑗
, where 

𝑗 ∈ {1,2,3. . . } is a sub-sequence number.  

 If J sub-sequences of uniform length 𝑛 can be extracted from 𝑥[𝑡], and the sub-

sequences are constrained to be contiguous and mutually exclusive, then, 𝐽 = ⌊𝑁/𝑛⌋, 
where ⌊⋅⌋ is the floor function, and the transform 𝐹[⋅] can be applied to each sub-

sequence, yielding the matrix: 
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 𝒳[𝑗, 𝜔] =

(

  
 

𝑋𝜔1
1 𝑋𝜔2

1 𝑋𝜔3
1 … 𝑋𝜔𝑚

1

𝑋𝜔1
2 𝑋𝜔2

2 𝑋𝜔3
2 … 𝑋𝜔𝑚

2

⋮ ⋮ ⋮ ⋱ ⋮

𝑋𝜔1
𝐽 𝑋𝜔2

𝐽 𝑋𝜔3
𝐽 … 𝑋𝜔𝑚

𝐽

)

  
 

 (1) 

The assumption that the J sub-sequences are contiguous and mutually exclusive is 

common in practice, and simplifies analysis. In many cases however, it can be relaxed, 

and neighboring sub-sequences of 𝑥[𝑡] are allowed to overlap. 

The transform 𝐹[⋅]  is most commonly the Fast Fourier Transform (or similar 

variants) for which 𝑚 =
𝑛

2
. The 𝑗𝑡ℎ  row of 𝒳[𝑗, 𝜔]  represents the m spectral 

components for the 𝑗𝑡ℎ  sub-sequence of 𝑥[𝑡] , while the 𝜔𝑡ℎ  column represents a 

temporal sequence comprised of the 𝜔𝑡ℎ spectral components from all J sub-sequences 

of 𝑥[𝑡]. Further processing using the whole of 𝒳[𝑗, 𝜔] can be computationally exacting, 

especially considering the fact that most problems call for data from multiple EEG 

electrodes to be used. Consequently, there is often interest in dimensionality reduction 

in some form or the other, even after spectral decomposition of temporal EEG data. 

One common approach is to reduce the 𝑚 elements in each row of 𝒳[𝑗, 𝜔] to some 

number 𝐾 << 𝑚 of elements, by dividing the row into K subset, and replacing each 

subset with some representative statistic. Another common method of dimensionality 

reduction is to apply a band-pass filter to extract a single sub-sequence from each row 

of 𝒳[𝑗, 𝜔], which results in discarding some elements in the row [33], [39]. Neither of 

the foregoing approaches is optimal. Representing a band with a single statistic is likely 

to result in failure to detect intra-band dynamics, which may be significant, depending 

on the task at hand. On the other hand, applying band-pass filtering greatly increases 

the risk that information-rich spectral components will be discarded. For instance, a 

significant number of frequency domain approaches to epileptic seizure detectors apply 

low-pass filters to eliminate components above 25 Hz, in order to limit 

electromyographic (EMG) artefacts [13]. However, current thinking on the roles of 

ripple (80 - 250 Hz) and fast ripple (250 - 500 Hz) high frequency oscillations in the 

generation of epileptic waveforms Wang et al. [40] strongly suggests that such low pass 

filtering eliminates important information along with the EMG artifacts. 

Specialized dimensionality reduction techniques such as principal component 

analysis (PCA) ought to be superior to either of the preceding approaches. Before those 

more sophisticated techniques are applied to reduce 𝒳[𝑗, 𝜔] however, the nature of the 

dynamics underlying 𝒳[𝑗, 𝜔]  must be understood. This study examined the 

characteristics and evolution of spectral components of EEG time series after spectral 

decomposition. To the best of our knowledge, there has not been a previous study to 

characterize the individual and collective temporal evolution of EEG data after spectral 

decomposition. The rest of the paper is organized as follows. Section 2 provides an 

overview of time series methods and testing, identifying an organizing framework 

within which a limited set of measures might be used as a basis for examining the 

characteristics of EEG time series spectral components. In Section 3, three time series 

measures were adopted for a number of tests on a selected EEG dataset. Results are 
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presented and discussed in Section 4, with concluding remarks following in the last 

Section. 

2 Brief Review on Time Series Analysis of EEG Data 

Time series arise across all scientific disciplines. Hundreds of measures for time 

series analysis have been developed over the last few decades with few notable efforts 

to develop an organizing framework. To the best of our knowledge, there has only been 

one large, systematic organizing framework for cross-disciplinary classification of time 

series datasets and methods [11], in which applied over 8651 distinct time series 

analysis operations to a set of interdisciplinary time series, and elicited a framework for 

organizing them into small groups. A minimum of four clusters were identified into 

which all time series measures can be organized. The clusters corresponded to measures 

of stationarity and scaling, correlation and predictability, complexity, and measures of 

non-linear or dynamical evolution.  

Measures representative of each of Fulcher’s four clusters have been applied towards 

characterizing EEG time series over the years. Some of the earliest studies on EEG time 

series analysis focused on stationarity. In the early days, the sign-based RUN test and 

trend test [5], [18] were used to test varying sample segments for their stationarity. 

More sophisticated tests for testing stationarity are now available. Unit root tests have 

been explored to test EEG timeseries [22]. Tests such as the Augmented Dickey-Fuller 

(ADF) test [6] [30] and Kwiatkowski-Phillips-Schmidt-Schin (KPSS) test for trend-

stationarity or mean-stationarity [24] are the most common unit root employed in this 

domain. 

With the rise in interest in connectivity across brain regions, predictability have 

largely been replaced by connectivity [25]; and multivariate measures have become 

more important, allowing activities in different parts of the brain to be compared [3]. 

The initial use of cross-correlation has however been put aside [14] so that more focus 

is now enjoyed by methods based on coherence, a measure of the correlation between 

two signals as a function of frequency [41], [34] or phase synchrony [19], [2]. 

Coherence can be contaminated by volume conduction and reference electrodes, and 

effectively only measures linear relationships between two time series [21] and so, 

phase synchrony is generally considered superior. 

The link between entropy and complexity can be made by considering the fact that 

Kolmogorov complexity and the Shannon entropy are equal up to some constant limit 

for any recursive probability distribution [38]. In an information theoretic sense 

therefore, complexity is often synonymous with uncertainty or disorder, and is most 

often estimated using one of a large number of mathematical methods bearing the name 

"entropy". Complexity measures have been applied to EEG time series as a way of 

determining the diversity of cooperating underlying cortical populations and the extent 

and complexity of their interactions.  

EEG data have been shown to be non-linear, and a lot of work has been done on 

characterizing the nature of their time evolution. Several methods have been employed 

in testing dynamical systems for sensitivity to initial conditions i.e. chaoticity. Methods 
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such as the largest lyapunov exponent (LLE), whose sign indicates chaos has been stud-

ied extensively. Recently, methods that do not analyze time series using the phase state, 

but rather analyze the time series directly in the time domain have proven successful in 

characterizing various chaotic systems.  

3 Methodology 

3.1 Overview 

Data generated by successive spectral decomposition of sub-sequences of an original 

time series 𝑥[𝑡] remain time-domain data in a sense, as they can be organized into new 

time-indexed series. Hereafter, each of the 𝑚 J-element-long time series generated after 

successive spectral decomposition of original EEG time series data will be termed a 

spectral component time series (SCTS). Also, for ease of reference, the SCTS generated 

from the 𝑚𝑡ℎ  frequency bin of successive spectral decompositions of data from 

electrode q will be represented with the notation 𝑆𝐶𝑇𝑆𝑚
𝑞

. The goal of this study was to 

characterize the temporal evolution of these spectral component time series, leading to 

an understanding which would, among other things, allow correct assumptions to be 

made during further processing of frequency-domain data. Fulcher’s taxonomy of time 

series methods provided a useful basis for selecting a limited number of measures with 

which to characterize the emergent spectral component time series.  

3.2 EEG dataset and pre-processing 

The Childrens’ Hospital, Boston - Massachusetts Institute of Technology (CHB-

MIT) scalp EEG dataset [33, 12] was used for this study. CHB-MIT subject data are 

organized as sessions, with each session typically one or four hours long, and stored as 

a single European data format (edf) file. All but one subjects have a single set of 

recordings composed of multiple sessions, while the last subject has two sets, with the 

second set acquired 1.5 years after the first. In all, the records include over 800 hours 

of recording containing 182 seizures. Seizure start and stop times are included in 

bundled text files along with montage information. We only considered normal EEG 

data in this study.  

3.3 Testing for stationarity 

There are many tests for mean or wide-sense (WS) stationarity. Certain tests for 

mean stationarity work even when a deterministic trend is superimposed on the time 

series. This is called trend stationarity. A common test for trend stationarity is the KPSS 

procedure, which tests a null hypothesis that a time series is trend stationary against the 

alternative hypothesis that it possesses a unit root. The KPSS test procedure assumes 

the framework of a random walk process with time-dependent drift component. That 

is, if the time series can be expressed as  

iJOE ‒ Vol. 16, No. 15, 2020 83



Paper—Empirical Characterization of the Temporal Dynamics of EEG Spectral Components 

 𝑥[𝑡] = 𝜁𝑡 + 𝑟[𝑡] + 𝑢[𝑡] (2) 

where the first term on the right hand side of Equation 6 represents a deterministic 

trend, r[t] is a random walk and u[t] a stationary error process. A test of the null 

hypothesis (𝐻0: 𝜁 = 0) is now evaluated against an alternative hypothesis that the time 

series is non-stationary due to the presence of a unit root process. 

Some of the distributions over SC times series in this study were heavy tailed, and 

consequently, the Nason test was adopted [29]. We partitioned 𝑆𝐶𝑇𝑆2
1 from Subject 6’s 

first electrode (FP1) into 16-sample long blocks. Since 64 -bit FFT was caried out on 

EEG data acquired at 256 samples per second, each sample in 𝑆𝐶𝑇𝑆2
1 resulted from the 

FFT of a 0.25 s long EEG time-domain data. Each 16-sample block therefore 

corresponded to 4 s worth of spectral data. Both KPSS and Nason tests were 

administered to every block of the data, after which 𝑅𝑠𝑡𝑎𝑡 , the ratios of number of 

stationary blocks versus total number of blocks were obtained. This procedure was 

repeated for each of the time series, 𝑆𝐶𝑇𝑆𝑗
𝑖, 𝑖 ∈ {1,2,⋯ ,16}, 𝑗 ∈ {1,2,⋯ ,33} 

comprising Subject 1’’s non-seizure data. This resulted in a 16 x 33 array containing 

the proportion of stationary 4-second blocks for each spectral component per electrode 

for Subject 1. Thereafter, the procedure was repeated for other block sizes. Based on 

previous studies on EEG stationarity, block sizes of 16, 32, 64, 128, 256, 512, 1024, 

2048, and 4096 samples were used, and in each case, a 16x33 array was generated. 

Previous studies on the stationarity of time-domain EEG data, reported as much as 

98% agreement between results on data from different scalp sites. Consequently, they 

typically based their methodology on single-electrode data series [5], [36]. For this 

study, a similar agreement was anticipated for SCTS from different electrodes. To 

verify this, we tested a hypothesis that the distributions over the combined time series 

generated from any two electrodes were identical. For each of the 16 electrodes 

comprising Subject 6’s non-seizure data, a vector 𝑉𝑖 =

[𝑅4
𝑖 , 𝑅8

𝑖 , 𝑅16
𝑖 , 𝑅32

𝑖 , 𝑅64
𝑖 , 𝑅128

𝑖 , 𝑅256
𝑖 , 𝑅512

𝑖 , 𝑅1024
𝑖 ] was generated, where 𝑅𝑛

𝑖  is the average 

𝑅𝑠𝑡𝑎𝑡 computed for all 33 SCTS for the 𝑖𝑡ℎ electrode at block size 𝑛 seconds. A two-

sample Kolmogorov-Smirnov (KS) test was administered on every pair {𝑉𝑎, 𝑉𝑏} where 

𝑎, 𝑏 ∈ {1,2, . . . ,16}, 𝑎 ≠ 𝑏 are electrodes numbers. The results provided evidence of 

similarities in enter-electrode data. KS tests were likewise used to explore the variations 

between SC time series data acquired from multiple subjects. 

Finally, a key concern of this study was investigated, namely, the extent of 

similarities between the stationarity of different time series 𝑆𝐶𝑇𝑆1
𝑖 , 𝑆𝐶𝑇𝑆2

𝑖 , . . . , 𝑆𝐶𝑇𝑆3
𝑖  

for any particular electrode 𝑖 . Data acquired from an EEG electrode result from a 

superposition of electrical activities of large populations of cortical neurons directly 

under, or adjacent to the electrode. Different activities of brain populations are believed 

to give rise to electrical activity with signature frequencies that tend to cluster in bands. 

It might therefore be anticipated that the patterns of the stationarity of the data from 

different spectral component might demonstrate correlations. To test this, we used the 

33 SCTS generated from the P7 electrode of Subject 10 (subject and electrode were 

both randomly selected). Dividing the entirely of each SCTS into a number, 𝑁𝑏  of 

blocks, with the length of each block corresponding to 𝐿𝑏 samples, we determined the 
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stationarity of each block. This was done for both trend and WS stationarity. By assign-

ing a "1" to each stationary block and a "0" to every non-stationary block, the 33 SCTS 

gave rise to 33 Bernoulli processes. The task of evaluating the similarities between any 

two SCTS consequently became a test of the proportions of two binomial distributions. 

3.4 Testing for dynamic evolution 

There is no universally accepted definition for systems or data that are chaotic, 

however, [35] gives a practical working definition of chaos as an aperiodic long-term 

behaviour in a deterministic system that exhibits sensitive dependence on initial 

conditions. Lyapunov exponents provide a direct measure of a systems sensitivity to 

initial conditions by quantifying the exponential rates at which neighboring orbits on 

an attractor diverge or converge as the system evolves in time.The sign of the LLE 

indicates chaos [17]. 

Adopting the pipeline of methods established by Krakovská et al. [23] which 

successfully identifies the optimal embedding parameters for calculating the largest 

lyapunov exponents (LLE), we use the average mutual information algorithm 

introduced by Fraser and Swinney [9] in finding the time delay and the false nearest 

neighbour algorithm [20] for identifying the optimal embedding dimension and finally 

the direct method developed by Rosenstein et al. [32] is used to estimate the LLE. 

In the reconstruction of the phase space for the estimation of the largest Lyapunov 

exponent (LLE), it is necessary to identify the optimal reconstruction delay 𝜏  and 

embedding dimension 𝑑𝐸 . The embedding theorem introduced by Takens [37], 

Mañé[27] enables the ’reconstruction’ from a univariate time series 𝑥(𝑡)  and its 

delayed variants* to form a 𝑑𝐸-dimensional vector described below:  

 𝑋(𝑖) = [𝑥(𝑖), 𝑥(𝑖 + 𝜏), . . . , 𝑥(𝑖 + (𝑑𝐸 − 1)𝜏)] (3) 

We used the average mutual information [9], [10], [16] to compute the 

reconstruction’s time delay 𝜏. Although, there have been several recent methods like 

the neural networks method [26] and the recurrence networks technique [15] to select 

the optimal 𝜏, these methods become more computationally expensive as the number 

and length of the time series being analysed is increased. False nearest neighbour (FNN) 

was used in determining the optimal embedding dimension [20]. For each time series, 

the % of false nearest neighbours was calculated iteratively for each dimension till the 

preset maximum dimension is reached. The optimal dimension is then chosen to be the 

least possible dimension with acceptable %FNN. 

Due to the computational complexities attached to estimating the full Lyapunov 

spectrum, many algorithms have been introduced to estimate the LLE [42], [32], a key 

measure of chaoticity. With its robustness to short, noisy and non-stationary data [8], 

[4] the technique proposed by Rosenstein et al. [32] outperforms all other usable 

techniques for this particular case and was thus utilised in this study. 
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4 Results and Discussion 

4.1 Stationarity tests 

Table 1 presents the average 𝑅𝑠𝑡𝑎𝑡 for all 33 SCTS for Subject 6 as block size is 

increased from 4 s to 1024 s. The 𝑅𝑠𝑡𝑎𝑡 values for each SCTS appear to start from low 

values for 4 s block sizes before rising above 0.9 for 16 s block sizes. Thereafter, there 

is a steady drop in 𝑅𝑠𝑡𝑎𝑡 as block sizes increase. A known deficiency of the KPSS test 

is that it may have high rate of Type I errors, particularly for time series lengths of 25 

and below for certain values of a test parameter. Its power is generally good above 50 

samples [7]. Block sizes of 8 s correspond to 32-element long time series, while 16 s 

block sizes imply 64-element long series. Results lower than 16 s may therefore be 

discarded. In that case, the KPSS test results suggest that trend-stationarity blocks 

become less frequent as larger block sizes are considered. Table 2 presents the average 

𝑅𝑠𝑡𝑎𝑡 following the Nason WS stationarity tests on Subject 6’s non-seizure data. There 

are fewer WS stationary blocks than there were trend-stationary blocks at almost every 

block size. Approximately half of all 32 s blocks were likely WS stationary, as seen in 

Table 2. 

Table 1.  Ratio of trend-stationary blocks to total number of blocks at different block sizes for 

Subject 6 non-seizure SCTS 

Electrode  
Average 𝑹𝒔𝒕𝒂𝒕 for blocksize: 

4 s 8 s 16 s 32 s 64 s 128 s 256 s 512 s 1024 s 

FP1  0.00 0.55 0.92 0.88 0.84 0.77 0.73 0.70 0.52 

F7 0.00 0.54 0.96 0.88 0.82 0.73 0.75 0.72 0.59 

T7 0.00 0.54 0.95 0.86 0.79 0.75 0.74 0.70 0.52 

P7 0.00 0.55 0.93 0.87 0.82 0.76 0.78 0.69 0.55 

F3 0.00 0.56 0.94 0.87 0.83 0.74 0.74 0.69 0.49 

C3 0.00 0.55 0.93 0.90 0.82 0.76 0.73 0.69 0.49 

P3 0.00 0.56 0.95 0.92 0.88 0.83 0.82 0.79 0.70 

O1 0.00 0.53 0.96 0.90 0.84 0.77 0.78 0.74 0.62 

FP2 0.00 0.55 0.93 0.87 0.80 0.80 0.77 0.73 0.55 

F4 0.00 0.57 0.95 0.88 0.84 0.81 0.80 0.76 0.57 

C4 0.00 0.52 0.96 0.93 0.91 0.88 0.84 0.80 0.72 

P4 0.00 0.54 0.95 0.92 0.87 0.80 0.78 0.72 0.66 

F8 0.00 0.54 0.94 0.89 0.84 0.81 0.78 0.71 0.58 

T8 0.00 0.58 0.94 0.88 0.80 0.72 0.72 0.67 0.52 

P8 0.00 0.58 0.94 0.87 0.82 0.73 0.70 0.68 0.48 

O2 0.00 0.57 0.95 0.87 0.81 0.72 0.74 0.68 0.46 

Average 0.00 0.55 0.94 0.89 0.83 0.77 0.76 0.72 0.56 

 

The results of the wide sense stationarity tests are consistent with results from 

previous studies on time domain EEG signals. For example, they match very well with 

some of the results of Cohen and Sances [5], especially its Run test of half periods. For 

that test, at 5% level of significance, the null hypothesis of stationarity was not rejected 

for 91% of 12 s blocks, and 17 % of 128 s blocks. McEwen and Anderson [28] found 
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out that up to 90% of 4 s blocks were likely WS stationary, while 70-80% of 16 s blocks 

were likely to be WS stationary.  

Table 2.   Ratio of WS stationary blocks to total number of blocks at different block sizes for 

Subject 6 non-seizure SCTS 

Electrode  
Average 𝑹𝒔𝒕𝒂𝒕 for blocksize: 

4 s 8 s 16 s 32 s 64 s 128 s 256 s 512 s 1024 s 

FP1 0.99 0.95 0.78 0.46 0.24 0.13 0.07 0.05 0.01 

F7 0.97 0.94 0.78 0.52 0.28 0.12 0.03 0.05 0.02 

T7 0.98 0.95 0.78 0.55 0.29 0.13 0.05 0.05 0.01 

P7 0.98 0.95 0.75 0.52 0.26 0.13 0.05 0.06 0.02 

F3 0.97 0.95 0.79 0.53 0.28 0.15 0.04 0.05 0.02 

C3 0.96 0.93 0.79 0.56 0.37 0.17 0.06 0.05 0.03 

P3 0.92 0.86 0.65 0.36 0.20 0.10 0.03 0.03 0.01 

O1 0.96 0.91 0.74 0.50 0.31 0.13 0.05 0.05 0.01 

FP2 0.97 0.93 0.76 0.52 0.25 0.12 0.04 0.05 0.02 

F4 0.96 0.90 0.70 0.46 0.26 0.14 0.04 0.04 0.01 

C4 0.93 0.87 0.65 0.37 0.19 0.11 0.04 0.05 0.02 

P4 0.97 0.91 0.74 0.52 0.32 0.15 0.06 0.06 0.02 

F8 0.97 0.94 0.73 0.48 0.25 0.12 0.04 0.05 0.02 

T8 0.97 0.94 0.78 0.58 0.40 0.20 0.05 0.06 0.03 

P8 0.97 0.94 0.77 0.58 0.37 0.18 0.06 0.06 0.02 

O2 0.97 0.94 0.75 0.49 0.28 0.14 0.09 0.07 0.02 

Average  0.96 0.93 0.75 0.50 0.28 0.14 0.05 0.05 0.02 

 

Two-sample KS tests were conducted to assess the extent of similarity between time 

series generated from different electrodes. For this test, 𝑅𝑠𝑡𝑎𝑡, the proportion of WS 

stationary blocks for the Subject 6’s data at different block sizes were used. The p-

values of the respective KS tests between all pairs of electrodes {𝑉𝑎 , 𝑉𝑏}    𝑎, 𝑏 ∈
{1,2, . . . ,16}, 𝑎 ≠ 𝑏 are presented in Table 3. The table reveals that for this subject, the 

distribution over the data from any one electrode is essentially indistinguishable from 

the distribution over data from any other electrode 87.5% of the time, since the null 

hypothesis of the KS test could not be rejected for 105 out of 120 pairs of electrodes at 

5% significance level. The 87.5% agreement across electrode data is comparable to 

previous studies such as [5], which found 98% agreement between electrode data. This 

provided a justification for utilizing single electrode data for additional tests where 

warranted. 

The brain is a very complex system with many highly specialized subsystems. It is 

to be expected then that the instantaneous electrical activities under different electrodes 

might differ. Over longer time spans however, previous studies discovered similarities 

in the stationarity of data of the same length acquired from different electrodes. The 

level of agreement found in the current study (87.5%, as seen from Table 3) was 

however lower than previously reported (for example, in [5]). This may be due to inter-

subject differences, or to errors introduced by windowing, spectral decomposition, or 

differences in statistical tests. 
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Table 3.  P-values for pairs of electrodes after KS test for trend-stationarity 

 FP1  F7  T7  P7  F3  C3  P3  O1  FP2  F4  C4  P4  F8  T8  P8  

F7  0.87               

T7  0.87 0.87              

P7  0.98 0.98 0.69             

F3  0.87 0.87 0.69 0.49            

C3  1.00 0.97 0.98 0.97 0.97           

P3  0.02 0.03 0.00 0.12 0.02 0.03          

O1  0.87 0.87 0.49 0.87 0.2 0.69 0.2         

 FP2  0.69 0.49 0.32 0.98 0.2 0.69 0.06 0.69        

F4  0.32 0.32 0.06 0.49 0.06 0.32 0.49 0.87 0.69       

C4  0.02 0.00 0.00 0.00 0.00 0.00 0.49 0.06 0.00 0.03      

P4  0.69 0.49 0.2 0.32 0.32 0.49 0.2 0.98 0.49 0.87 0.32     

F8  0.69 0.87 0.32 0.69 0.49 0.87 0.32 0.98 0.69 0.98 0.06 0.87    

T8  0.69 0.87 0.87 0.32 0.98 0.87 0.00 0.12 0.06 0.03 0.00 0.12 0.2   

P8  0.69 0.69 0.69 0.49 0.87 0.87 0.00 0.2 0.12 0.06 0.00 0.12 0.2 1.00  

O2  0.98 0.87 1.00 0.69 0.87 0.97 0.00 0.69 0.49 0.06 0.00 0.32 0.32 0.69 0.69 

 

While it has to be noted that the results above are subject to the low spectral 

resolution caused by use of 64-point FFT as well as computational errors, it should still 

be apparent that the interactions depicted by the charts are the banding of spectral 

correlates of neural activity that have been recognized in neuroscience as 𝛿, 𝛼, 𝛽, and 𝛾 

bands. This fact in turn leads to an important observation. Repeating the same series of 

tests with trend-stationarity rather than WS stationarity fails to reveal any of those 

interactions. We believe that this is a confirmation that in using N-th order stationarity 

for EEG and possibly other physiological signals, N should be at least 2 (WS 

stationarity). While mean- or trend-stationarity might have some value from a purely 

statistical standpoint, these results suggest that they may not correlate to any significant 

degree with underlying physiological dynamics. Studies based on first order stationary 

tests such as the ADF and KPSS are most affected by this observation. 

4.2 Tests of dynamic evolution 

The LLE for each SCTS per electrode for non-seizure data for all subjects were 

computed. For each subject, the edf file corresponding to a 1-hour session was 

processed. A random selection of the results is presented in Figure 1. Data series from 

most electrodes exhibit positive Lyapunov exponents in at least one spectral 

component. However, the superimposition of LLE for all electrodes allows a pattern to 

emerge wherein the Lyapunov exponents collectively cluster about zero. 
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(a) Subject 1 (b) Subject 8 

  

(c) Subject 12 (d) Subject 22 

Fig. 1. Largest Lyapunov exponents for 33 SCTS each for all 16 electrodes computed with 1 

hour of data from  

The immediate implication of these results is that the individual spectral components 

of decomposed EEG data do not appear to evolve chaotically. There has recently been 

some controversy about whether EEG time series are chaotic. While studies such as [1] 

had found evidence of chaotic dynamics, the introduction of surrogate data methods 

suggested that at least part of the "chaotic" behavior might be more correctly adduced 

to noise. EEG data are known to be noisy, with contamination arising from both the 

instrumentation pipeline and the the physiological processes that give rise to the scalp 

potentials themselves.Interpret the Lyapunov exponents of EEG time series in the 

context of chaotic nonlinear evolution has therefore attracted some controversy in 

recent times. In fact, it has been said that in the case of highly noisy and possibly high-

dimensional EEG data, the chaotic measures probably do not measure chaos any more, 

but reflect macroscopic statistical properties of the studied data [31]. Positive Lyapunov 

exponents may therefore not convincingly establish chaoticity. Nevertheless, a non-

positive LLE should result in the hypothesis of chaotic dynamics being rejected with 

some confidence. In Figure 1, some individual SCTS exhibit positive LLE for certain 

electrodes. This can be attributed to the effects of noise. The collective clustering about 

zero evens out the random effects of noise in all spectral bands, and allows a true picture 

the chaotic dynamic evolution of the EEG data to emerge. 
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A key takeaway from the series of tests in this study is that at some scales, EEG 

spectral components evolve distinctly, while at others, there are interactions and 

correlations with other spectral components. For example, from the WS stationarity 

tests, choice of different block lengths made the interactions between spectral 

components more or less apparent. The interactions between spectral component time 

series and the fact that there appear to be changing interactions within each band is an 

important finding from this study. For example, it suggests that studies in which 

dimensionality reduction is predicated on representing bands of frequencies with single 

statistics are likely to lead to information loss. Likewise, the results from tests of 

complexity show that all spectral components hold information, and in fact, there are 

interactions between the higher spectral components. This indicates the error of 

chopping off higher spectral components for dimensionality reduction or in a bid to 

increase signal to noise ratio. 

We also found no evidence that the evolution of the individual spectral components 

in EEG data are chaotic. Many studies which studied time domain EEG data have found 

positive LLE, and concluded that this indicated chaotic dynamics. Even with the 

question of the effect of noise on the validity of equating positive LLE with chaotic 

evolution, it is obvious that they measure "something", because classifiers based on 

LLE in EEG have shown statistically significant effects. This finding however shows 

that for the individual spectral components after EEG data is decomposed, the question 

of interpreting LLE is moot; the series do not appear to be chaotic. 

5 Conclusion 

Using tests of stationarity, and largest Lyapunov exponents, this study investigated 

the temporal evolution of each spectral component of EEG data after spectral 

decomposition with a transform such as the Fourier transform. Some of our findings 

have implications for the selection of appropriate frequency domain methods that can 

be affected by the characteristics of the spectral time series. For example, we found that 

such data can be assumed to be WS stationary for segments up to 8 s. Also, higher 

spectral components contain useful information, and should not be discarded. The 

results of this study will lead to improved frequency domain methods for processing 

EEG data. 
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