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Abstract—This paper presents a CORBA wrapper which 
encapsulates a generic anthropomorphic industrial robot.  
Since this wrapper abstracts the communications, building 
applications that require remote manipulation or coordina-
tion of several devices may be easily achieved by using it. 
This article describes an implementation of this wrapper 
over a real-time operating system (RTOS), namely RTAI. 
This type of OS ensures determinism in the movement op-
erations of the robot. Also, a low resource consuming im-
plementation of the CORBA specification, namely ORBit, 
has been used to wrap the robot and implement the com-
munications with other devices. Finally, as a matter of ex-
ample, we present how this wrapper is used to coordinate 
the operation of several robots in a typical 'pick & place' 
operation. 

Index Terms—CORBA, middleware, Real time systems, 
Robot applications. 

I. INTRODUCTION 

Even though in the latest years there have been impor-
tant advances in the integration and coordination of indus-
trial control devices, quite often the creation of high scale 
applications is still a challenging task. This is mainly due 
to the complexity of connecting several heterogeneous 
devices provided by different vendors. Several trends try 
to minimize these difficulties. 

Thus, there is an increasing trend in industrial environ-
ments to use open middleware technologies since they 
may be seen as a virtual bus that eases the connection of 
several software components. Some of the most widely 
used technologies, such as CORBA, can be executed over 
different heterogeneous platforms and allow tackling ven-
dor-dependent issues to make communications transparent 
to the developers.  

Also, a growing number of vendors are adopting truly 
Real Time Operating Systems (RTOS) like QNX or 
VxWorks, or modified versions of general purpose operat-
ing systems like Linux in order to be embedded in their 
devices. This second alternative is particularly interesting 
since it allows profiting some existing inexpensive tools 
while being able to react to device events in a timeliness 
manner. 

This work describes how the combination of both types 
of technologies eases the development of complex robotic 
applications composed by several control devices. For this 
purpose, a CORBA wrapper that encapsulates a generic 
anthropomorphic industrial robot is presented. This wrap-
per has been implemented using ORBit  [5], which is a 
very low profile implementation of the CORBA middle-
ware specification  [2]. This wrapping allows device hid-

ing and segregating decisions likely to change, thus pro-
viding a stable interface. 

From the controller point of view, handling the hard-
ware of the robot (i.e. mechanical parts such as arms, 
grippers, joints or motors) is a time-critical issue. It is 
therefore important to have an operating system able to 
guarantee determinism in the robot operations. We have 
chosen RTAI  [11] at the server, which is a real time ex-
tension for the Linux kernel developed by the community 
that lets writing applications with strict timing constraints. 

This paper also describes an implementation of the pro-
posed wrapper that has been carried out over a Lynx 5 
robotic arm with 4 rotation axes and a gripper. In this 
case, for the sake of simplicity, the position of the robot 
has been calculated from the forward kinematics, since it 
has no position sensors. However, in real industrial robots 
its real position should be obtained from the readings of 
the encoders. 

The results obtained for a single robot can be extrapo-
lated to other types of robots or different devices like 
PLCs in a flexible manner. 

Related work can be found in the work by Azad et al. 
 [1]. They model and simulate with Simulink a single-link 
flexible robotic manipulator. Floroian et al.  [12] develop a 
multi-agent mini-robotic system. García et al.  [8] utilize 
micro-servers to access and configure remote robots for 
the pharmaceutical sector. 

The remaining of the paper is structured as follows. 
Section 2 describes the system architecture with Linux/ 
RTAI and the CORBA communications; in Section 3 we 
present the generic interface of the wrapper operations; 
Section 4 is dedicated to the implementation details and in 
particular to calculate the forward and inverse kinematics 
of the robot; Section 5 studies a pick and place example of 
use; the final section draws the conclusions of this work. 

II. ARCHITECTURE DESCRIPTION 

The basic architecture of our implementation is shown 
in Figure 1. 

This simple architecture can be easily generalized to 
another architecture in which several robots are controlled 
by one single client from the Internet as depicted in Figure 
2. In the Figure, each robot has been associated with a 
server which is the robot controller since in the most ge-
neric case robots require considerable computing power 
for the calculation of the inverse kinematics problem 
which must be solved with real-time constrains. 

The logical layers at the client side are schematized in 
Figure 3. The application makes use of CORBA stubs to 
access remotely the CORBA wrapper, therefore control-
ling the movements of the robots. 
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Figure 1.  Architecture with a single robot. 

 
Figure 2.  Generic architecture of the multiple robot control. 

 
Figure 3.  Logical layers at the client side. 

 
Figure 4.  Logical layers at the server side. 

Regarding the server side, the logical layers are sche-
matized in Figure 4. This schema shows that only the 
RTAI kernel has straight access to the hardware. As a 
consequence, real-time tasks for sensing, acting and con-
trolling the movements of the robot can meet their time 
constrains. Other activities, including the CORBA objects 
that encapsulate the robot communication with the client 
or other robots, are carried out through the Linux layer 
with not so stringent real-time restrictions. 

A. RTAI 
Some existing general-purpose operating systems (e.g. 

Linux [4]) can be improved in order to support real-time 
applications by using an intermediate layer responsible for 
reacting to critical operations (see Figure 4). The new in-
termediate layer, which is preemptive, encapsulates all 
hardware interruptions by means of a hardware abstraction 
layer (HAL) and provides a programmers’ interface to be 
used by application tasks. Thus, those tasks that require 
real-time guarantees, such as those interacting with the 

sensors or actuators, may access directly this new layer 
without the interferences of a general purpose kernel. But 
the programmers’ interface provided by the new layer is 
not compatible with legacy applications that are typically 
executed over the selected general purpose kernel. This 
problem may be solved by adapting the general purpose 
kernel (Linux in Figure 4) in order to be executed on top 
of the new preemptive layer so any application that runs 
on top of the general purpose kernel may use directly its 
programmer interface and services without being recom-
piled, obviously, without real-time guarantees. 

There are two main solutions for Linux that follow this 
approach: RTAI and RTLinux. Both of them have the 
same roots and their performance has been compared by 
Ripoll  [4] obtaining similar results. For this work RTAI 
(Real Time Application Interface) has been selected to 
execute the critical operations related with the control of 
the robot. RTAI is a real-time microkernel supported by 
the Polytechnic Institute of Milan in Italy. This 
GNU/Linux distribution is widely used in the academic 
environment.  

An adapted kernel of Linux is executed on top of the 
RTAI microkernel in order to execute non-real time tasks 
and legacy applications. 

B. ORBit 
CORBA is a well established OMG standard to develop 

distributed applications. It makes use of an ORB (Object 
Request Broker), a software component to easy object 
communications hiding object location, implementation 
(including language, operating system and hardware) and 
state. 

Since manufacturing devices typically require real-time 
communications, RT-CORBA  [3] was one alternative for 
developing the robot wrapper. Unfortunately, RT-CORBA 
is a relatively complex technology that requires advanced 
programming skills. In addition, the RT-CORBA imple-
mentation should be adapted to be used with the RTAI 
microkernel, reducing the number of implementations 
available. So, the authors adopted a simpler solution based 
on the use of a low resource consuming implementation of 
CORBA, that it is executed over the Linux kernel. This 
choice was justified by the fact that the duration of the 
robot movements takes much more time (up to several 
seconds) than the time typically used in the communica-
tion tasks. 

The CORBA implementation used, ORBit2  [5], is 
known for its outstanding performance. As a matter of 
example, ORBit2 was used for communication tasks in the 
GNOME project. This implementation was considered 
sufficiently stable and well documented.  

In this architecture, the communications at the server 
side are carried out as CORBA objects that execute at the 
Linux level, i.e. with no Real Time guarantees as shown in 
Figure 4. However, as commented above, this will not 
jeopardize the operation as communications are relatively 
fast when compared to the movement of the axes. 

It is also interesting to point out that several authors and 
vendors have ported some CORBA products to be used 
within RTAI and RT-Linux. One example may be found 
in Pérez et al.  [10] where a distributed architecture for 
embedded systems is proposed based on the use of RTAI 
and ORBit. 
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III. WRAPPER INTERFACE 

This section presents a generic wrapper for anthropo-
morphic industrial robots of up to 6 Degrees of Freedom 
(DoF). This wrapper, which is provided as a distributed 
object, may be easily included in distributed applications 
that require the use of robots. The interface implements 
most typical operations of this type of robots consisting 
of: 
 Initialize the robot to the initial position 
 Move the robot from one point to another 
 Move the robot in a linear trajectory 
 Move the robot an arc of a circular trajectory  
 Open and close the gripper 

 

The robot interface also has attributes to: 
 Know the state of the robot and the gripper 
 Set the approaching and moving speed 

 

More specifically, Figure 5 shows the attributes and 
methods proposed for the generic Robot class. These will 
be described in the next paragraphs. 

Some of the attributes are private, represented in Figure 
5 with their names preceded by a minus (-), such as Arti-
Coord, CartCoord, GripperStatus and Status, which 
keep internal information. In particular, ArtiCoord and 
CartCoord keep the location of the robot using its joint 
and Cartesian coordinates respectively. ArtiCoord is a 
vector with as many components as Degrees of Freedom 
that define each articulation in degrees in the case of a 
joint rotation or meters if it is a translational joint (θ0, θ1, 
θ2, θ3, θ4, θ5). CartCoord is a 6 element vector (x, y, z, a, 
b, c) that defines the position and orientation of the grip-
per with respect to a coordinate system located in the base, 
being a, b, c, the Euler angles for representing the orienta-
tion of the gripper. All robot movements and approaches 
change these values. GripperStatus defines the status of 
the gripper which may be Open or Close according to the 
homonymous methods described below. Finally, Status is 
a more general attribute that supplies the status of the ro-
bot. The values considered so far are Error, Waiting and 
Standby. 

Other attributes such as RobotType, DoF, MovRange 
and Reach are public. These attributes, are represented in 
Figure 5 with their name preceded by a plus (+). 

In particular, RobotType allows the configuration of 
the robot type to be used (Anthropomorphic, Cartesian, 
Cylindrical, Polar, Scara or Other). This attribute is 
related to the DoF attribute which describes the Degrees 
of Freedom of the robot. MovRange is an array that de-
fines the maximum movement per articulation. Finally, 
Reach defines the maximum reach of the robot as a 
whole.  

The proposed wrapper provides some methods that al-
low consulting the value of these attributes (not repre-
sented in Figure 5). The wrapper also proposes eleven 
additional methods that allow using the robot in distrib-
uted applications. These methods are distinguished in dif-
ferent categories: Movement operations and configuration 
operations. 

«interface» 
Robot 

- ArtiCoord 
- CartCoord 
- GripperStatus 
- Status 
+ RobotType 
+ DoF 
+ MovRange 
+ Reach 

+ Move (Px, Py, Pz, d, t: short) 
+ MoveS (Px, Py, Pz, d, t: short) 
+ MoveC (P1, P2,, P3,: vector) 
+ Drive (articulation, incre, speed: short) 
+ Ready () 
+ Delay (time: short) 
+ Close () 
+ Open () 
+ Speed (speed: short) 
+ ArtSpeed (speed, articulation: short) 
+ AllSpeed (speed: short) 

Figure 5.  Interface for the robot. 

The movement operations Move, MoveS and MoveC 
produce a change in the ArtiCoord and CartCoord attrib-
utes. The Move method is used to specify a free motion of 
the end effector, i.e. a movement from the current position 
to a new position given in Cartesian coordinates. MoveS 
is similar to the previous method but combines the move-
ment of all joints in order to achieve a linear trajectory of 
the end effector. Both methods receive as a parameter the 
coordinates of the destination point (Px, Py, Pz), a distance 
(d) which provides the vertical position in Z axe of point P 
as well as a time interval (t) to reach the destination from 
which the movement speed will be calculated. Finally, 
MoveC produces a circular movement by interpolation of 
the three points whose Cartesian coordinates are provided 
in the method. 

There are other movement operations provided by the 
wrapper such as Drive, which allows moving a single 
articulation a given increment or decrement of degrees at a 
given speed and Ready, which sets the robot to its initial 
position. 

Other operations include, Delay which makes the robot 
wait during a certain time interval. It is typically before 
carrying out a movement in order to synchronize the robot 
movements. Also, some actions such as Open and Close 
are aimed at manipulating the gripper. Both of them affect 
the GripStatus private attribute. And the Speed method 
which defines the speed limit as a percentile of the real 
maximum speed of the end effector, to prevent from pre-
cision loose or damage. ArtSpeed is a similar operation 
but aimed at one articulation. Finally, AllSpeed config-
ures the maximum speed for all articulations. 
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Figure 6.  Robot Lynx axes. 

TABLE I.   
DESCRIPTION OF THE MODEL’S AXES 

 Name Joint type Axis Turn Start 

0 Base Rotate 0Z Right 0 

1 Shoulder Rotate 0Y Right 10 

2 Elbow Rotate 0Y Left 0 

3 Wrist Rotate 0Y Right -45 

 

IV. ROBOT DESCRIPTION 

The previous interface has been validated over a robotic 
arm. Namely, it has been implemented over a Lynx 5, 
which is a robotic arm with 4 rotation axes created by 
Lynxmotion. Even though this is an economical and com-
pact robot no generality is lost since it reproduces most of 
the characteristics of more advanced and expensive indus-
trial robots. In fact, this robot has become a very interest-
ing alternative for educational environments. Figure 6 
shows a picture where its 4 axis have been depicted. This 
section describes the main issues related to the description 
of the robot including the resolution of the Forward 
Kinematics and Inverse Kinematics problem which are 
used by the real-time tasks to produce the movements 
described in the previous section. 

Table I describes the characteristics of these axes, 
which are shown in Figure 7. Note that except for the first 
axis of rotation (Base), which is on the ‘Z’ absolute axis, 
the other axes are over the ‘Y’ axis (see Figure 7 below). 
Also note that all axis turn rightwards except the elbow 
that turns leftwards. The robot can move in a fast, accurate 
and repetitive way on behalf to a set of embedded servo 
drives. 

Since an origin of coordinates must be chosen for the 
movements of the robot, Figure 8 shows the initial posi-
tion of the robot from which the movements will be exe-
cuted. 

 

 
Figure 7.  D-H Systems for the robot. 

 
Figure 8.  Initial position of the robot. 

A. Forward Kinematics (FK) 
The solution of the Forward Kinematics problem (FK) 

of the robot is given by the Transformation Matrix T (1). 
This matrix T relates the Cartesian position (Px, Py, Pz) of 
the gripper or end effector respect to the reference coordi-
nate system at the base of the robot: {X0, Y0, Z0} with the 
input values of every joint (θ0, θ1, θ2, θ3). 

 

0
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  (1) 

 
In order to obtain this matrix, the Denavit and Harten-

berg (D-H) convention is followed. This convention in-
volves the use of an algorithm that allows building the 
resulting matrix, T, from the multiplication of a sequence 
of matrixes like (2) that represent the transformations of 
coordinates for every axis of the robot.  

 
iJOE ‒ Volume 7, Issue 4, November 2011 7



PAPER 
A CORBA WRAPPER FOR APPLICATIONS WITH MULTIPLE ROBOTS 

1

0

0 0 0 1

i i i i i i

i i i i i ii
i

i i

C C S S S a S

S C C S C a C
A

S C d

i

i

i

     
     

 



 











 (2) 

 
Thus, matrix (2) describes the coordinate transforma-

tion from the previous coordinate system (i-1) to the next 
coordinate system (i). This matrix requires the calculation 
of four parameters, known as Denavit-Hartenberg parame-
ters which are represent by θi, di, ai and αi. These parame-
ters depend on the geometry of the robot. Table II shows 
the values of these parameters for each of transformations 
of coordinates for every axis of the Lynx 5 robot used in 
the case of study. 

TABLE II.   
PHYSICAL PARAMETERS USED IN THE D-H MODEL 

 θi di ai αi 
1 θ0 L0 0 90º
2 θ1+10º 0 L1 180º
3 θ2 0 L2 180º
4 θ3-45º 0 L3 0º

 
Figure 9 shows the length of each robot component tak-

ing into account the geometry of the Lynx 5 robot. 

 
Figure 9.  Length of the robot components. 

By multiplying the individual matrixes of each system 
in a noncommutative way the solution of the Forward 
Kinematic problem is reached, i.e. the Cartesian position 
of the end-effector with (θ0, θ1, θ2, θ3) known. 

0 3 (1 2 3) 2 (1 2) 1 1xP C L C L C L C        (3) 

0 3 (1 2 3) 2 (1 2) 1 1yP S L C L C L C     


oordinate system at the base of the robot {X0, Y0, 
Z0

h a given point (for example, elbow up or 
el

sing load when 
co

ly the conse-
cu

y, Pz known) 
is provided by the following equations (6-9): 

 (4) 

3 (1 2 3) 2 (1 2) 1 1 0zP L S L S L S L      (5) 

 
Where C0 and S0 are cos(θ0) and sin(θ0) respectively, 

S(1-2+3) means sin(θ1-θ2+θ3-35º), C(1-2) means cos(θ1-
θ2+10º) and C1 means cos(θ1+10º). L1, L1, L1, represent 
the length of the arms as shown in Figure 9. The same 
notation has been used in the calculation of the other ex-
pressions. 

B. Inverse Kinematics (IK) 
The Inverse Kinematics (IK) problem allows to calcu-

late the values of each joint (θ0, θ1, θ2, θ3) in order to lo-
cate the end effector of the robot at a specific point given 

in Cartesian coordinates (Px, Py, Pz), respect to the refer-
ence c

}.  
In order to solve the IK problem an algorithm must be 

provided. Unfortunately, solving the IK problem for a 
robot is usually a more complex task than solving its FK 
problem since there are no general algorithms to solve it. 
In addition, a robot with 4 DoF like the Lynx 5 has several 
solutions to reac

bow bellow).  
Frequently, iterative numerical methods or algebraic 

methods are used to solve the IK problem. However, in 
this case it is possible to find the solution in a closed form 
using geometric methods. This is a simple way to solve 
the IK by relating the coordinates of the end effector and 
the joint angles. This has been the approach followed in 
this case study due to its lower proces

mpared with other types of algorithms. 
For the sake of simplicity due to the ‘pick and place’ 

nature of the robot operation described in the next section, 
it has been considered that the last articulation will always 
move in parallel to the base plain. Thus, the inclination of 
the last joint is 0 degrees, because of its parallel position 
with the base plain. This fact simplifies large

tion of a simple algorithm to solve the IK. 
The closed form for each joint (with Px, P
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Where P is obtained from expression (10): 
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bots need to cooperate in 
or

s could even be exchanged without too much 
tro

V.  CASE STUDY 

In this section a simple pick and place operation is de-
scribed in order to illustrate how to use the wrapper pro-
posed in section 3. This case study aims at demonstrating 
a scenario in which several ro

der to execute an operation. 
In this case study, two Lynx 5 robots identical to the 

robot described in Section Fehler! Verweisquelle konnte 
nicht gefunden werden. were involved. Note that one of 
the advantages of using the proposed wrapper is that dif-
ferent robots can be used as long as they support the ge-
neric wrapper described in Section 3. Different robot con-
figuration

uble. 
Operation in both arms is similar and it is based on the 

operations of the wrapper described above. This approach 
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nodes that recognize 
th

ynchronize sequences of movements 
am

 one piece is present in a producer-
consumer fashion. 

requires either using a central coordinator that implements 
applications with multiple robots in an easy way or that 
the operations are triggered by the 

e images acquired by the cameras. 
More specifically, pick and place operations at every 

robot require the use of the commands Move, MoveS or 
MoveC to execute the rough and approaching movements 
of the robots, as well as the Open and Close methods in 
order to get and leave the pieces. Also the Delay opera-
tion is used to s

ong the robots. 
A diagram for this operation is provided in  Figure 10. 

Basically, a node with a camera starts the Pick & Place 
operation in Robot 1 by calculating the coordinates of the 
piece at the origin point of the ‘Pick’ operation in the Pal-
let 1 and then coordinates at the destination of the ‘Place’ 
operation in the Store 1. These coordinates are used to 
trigger the movement of the robots with the central coor-
dinator (or directly by the camera node). In parallel, Robot 
2 picks a piece from Store 1 and places it on Pallet 2 pro-
vided that at least

Currently, the authors are working on a graphical user 
interface from where the robot could execute different 
operations in an easy way. 
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VI. CONCLUSIONS AND FUTURE WORK 

This article presents a generic CORBA wrapper to en-
capsulate industrial robots. This wrapper can be used to 
create distributed applications with multiple robots in an 
easy way either by coordinating nodes of the robotic ap-
plications or by triggering the operations from other nodes 
of the distributed application. The proposed wrapper is 
generic enough to be used with different types of indus-
trial robots and provides operations to execute rough and 
approaching 

e gripper. 
This wrapper has been implemented to demonstrate its 

viability for an economical and compact robot suitable for 
educational environments. It has been implemented over a 
Real-Time Operating System, namely Linux-RTAI which 
ensures determinism in the local operations of the robot, 
and a low resource consuming implementation of the 
CORBA specification, namely ORBit. Video demonstra-
tions of the movemen

ay be found in  [9].  
One of the main advantages of this wrapper is its flexi-

bility since it allows creating applications with multiple 
robots in an easy way. As a matter of example, a simple 
‘Pick&Place’ operation that involves two robots is pre-
sented. This approach allows that students could create 
application
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