
PAPER
A CORBA WRAPPER FOR APPLICATIONS WITH MULTIPLE ROBOTS

A CORBA Wrapper for Applications with
Multiple Robots

http://dx.doi.org/10.3991/ijoe.v7i4.1724

I. Calvo, I. Cabanes, I. Etxeberria-Agiriano, G. Sánchez and E. Zulueta
University of the Basque Country (UPV/EHU), Spain

Abstract—This paper presents a CORBA wrapper which
encapsulates a generic anthropomorphic industrial robot.
Since this wrapper abstracts the communications, building
applications that require remote manipulation or coordina-
tion of several devices may be easily achieved by using it.
This article describes an implementation of this wrapper
over a real-time operating system (RTOS), namely RTAI.
This type of OS ensures determinism in the movement op-
erations of the robot. Also, a low resource consuming im-
plementation of the CORBA specification, namely ORBit,
has been used to wrap the robot and implement the com-
munications with other devices. Finally, as a matter of ex-
ample, we present how this wrapper is used to coordinate
the operation of several robots in a typical 'pick & place'
operation.

Index Terms—CORBA, middleware, Real time systems,
Robot applications.

I. INTRODUCTION

Even though in the latest years there have been impor-
tant advances in the integration and coordination of indus-
trial control devices, quite often the creation of high scale
applications is still a challenging task. This is mainly due
to the complexity of connecting several heterogeneous
devices provided by different vendors. Several trends try
to minimize these difficulties.

Thus, there is an increasing trend in industrial environ-
ments to use open middleware technologies since they
may be seen as a virtual bus that eases the connection of
several software components. Some of the most widely
used technologies, such as CORBA, can be executed over
different heterogeneous platforms and allow tackling ven-
dor-dependent issues to make communications transparent
to the developers.

Also, a growing number of vendors are adopting truly
Real Time Operating Systems (RTOS) like QNX or
VxWorks, or modified versions of general purpose operat-
ing systems like Linux in order to be embedded in their
devices. This second alternative is particularly interesting
since it allows profiting some existing inexpensive tools
while being able to react to device events in a timeliness
manner.

This work describes how the combination of both types
of technologies eases the development of complex robotic
applications composed by several control devices. For this
purpose, a CORBA wrapper that encapsulates a generic
anthropomorphic industrial robot is presented. This wrap-
per has been implemented using ORBit [5], which is a
very low profile implementation of the CORBA middle-
ware specification [2]. This wrapping allows device hid-

ing and segregating decisions likely to change, thus pro-
viding a stable interface.

From the controller point of view, handling the hard-
ware of the robot (i.e. mechanical parts such as arms,
grippers, joints or motors) is a time-critical issue. It is
therefore important to have an operating system able to
guarantee determinism in the robot operations. We have
chosen RTAI [11] at the server, which is a real time ex-
tension for the Linux kernel developed by the community
that lets writing applications with strict timing constraints.

This paper also describes an implementation of the pro-
posed wrapper that has been carried out over a Lynx 5
robotic arm with 4 rotation axes and a gripper. In this
case, for the sake of simplicity, the position of the robot
has been calculated from the forward kinematics, since it
has no position sensors. However, in real industrial robots
its real position should be obtained from the readings of
the encoders.

The results obtained for a single robot can be extrapo-
lated to other types of robots or different devices like
PLCs in a flexible manner.

Related work can be found in the work by Azad et al.
 [1]. They model and simulate with Simulink a single-link
flexible robotic manipulator. Floroian et al. [12] develop a
multi-agent mini-robotic system. García et al. [8] utilize
micro-servers to access and configure remote robots for
the pharmaceutical sector.

The remaining of the paper is structured as follows.
Section 2 describes the system architecture with Linux/
RTAI and the CORBA communications; in Section 3 we
present the generic interface of the wrapper operations;
Section 4 is dedicated to the implementation details and in
particular to calculate the forward and inverse kinematics
of the robot; Section 5 studies a pick and place example of
use; the final section draws the conclusions of this work.

II. ARCHITECTURE DESCRIPTION

The basic architecture of our implementation is shown
in Figure 1.

This simple architecture can be easily generalized to
another architecture in which several robots are controlled
by one single client from the Internet as depicted in Figure
2. In the Figure, each robot has been associated with a
server which is the robot controller since in the most ge-
neric case robots require considerable computing power
for the calculation of the inverse kinematics problem
which must be solved with real-time constrains.

The logical layers at the client side are schematized in
Figure 3. The application makes use of CORBA stubs to
access remotely the CORBA wrapper, therefore control-
ling the movements of the robots.

4 http://www.i-joe.org

http://dx.doi.org/10.3991/ijoe.v7i4.1724

PAPER
A CORBA WRAPPER FOR APPLICATIONS WITH MULTIPLE ROBOTS

Figure 1. Architecture with a single robot.

Figure 2. Generic architecture of the multiple robot control.

Figure 3. Logical layers at the client side.

Figure 4. Logical layers at the server side.

Regarding the server side, the logical layers are sche-
matized in Figure 4. This schema shows that only the
RTAI kernel has straight access to the hardware. As a
consequence, real-time tasks for sensing, acting and con-
trolling the movements of the robot can meet their time
constrains. Other activities, including the CORBA objects
that encapsulate the robot communication with the client
or other robots, are carried out through the Linux layer
with not so stringent real-time restrictions.

A. RTAI
Some existing general-purpose operating systems (e.g.

Linux [4]) can be improved in order to support real-time
applications by using an intermediate layer responsible for
reacting to critical operations (see Figure 4). The new in-
termediate layer, which is preemptive, encapsulates all
hardware interruptions by means of a hardware abstraction
layer (HAL) and provides a programmers’ interface to be
used by application tasks. Thus, those tasks that require
real-time guarantees, such as those interacting with the

sensors or actuators, may access directly this new layer
without the interferences of a general purpose kernel. But
the programmers’ interface provided by the new layer is
not compatible with legacy applications that are typically
executed over the selected general purpose kernel. This
problem may be solved by adapting the general purpose
kernel (Linux in Figure 4) in order to be executed on top
of the new preemptive layer so any application that runs
on top of the general purpose kernel may use directly its
programmer interface and services without being recom-
piled, obviously, without real-time guarantees.

There are two main solutions for Linux that follow this
approach: RTAI and RTLinux. Both of them have the
same roots and their performance has been compared by
Ripoll [4] obtaining similar results. For this work RTAI
(Real Time Application Interface) has been selected to
execute the critical operations related with the control of
the robot. RTAI is a real-time microkernel supported by
the Polytechnic Institute of Milan in Italy. This
GNU/Linux distribution is widely used in the academic
environment.

An adapted kernel of Linux is executed on top of the
RTAI microkernel in order to execute non-real time tasks
and legacy applications.

B. ORBit
CORBA is a well established OMG standard to develop

distributed applications. It makes use of an ORB (Object
Request Broker), a software component to easy object
communications hiding object location, implementation
(including language, operating system and hardware) and
state.

Since manufacturing devices typically require real-time
communications, RT-CORBA [3] was one alternative for
developing the robot wrapper. Unfortunately, RT-CORBA
is a relatively complex technology that requires advanced
programming skills. In addition, the RT-CORBA imple-
mentation should be adapted to be used with the RTAI
microkernel, reducing the number of implementations
available. So, the authors adopted a simpler solution based
on the use of a low resource consuming implementation of
CORBA, that it is executed over the Linux kernel. This
choice was justified by the fact that the duration of the
robot movements takes much more time (up to several
seconds) than the time typically used in the communica-
tion tasks.

The CORBA implementation used, ORBit2 [5], is
known for its outstanding performance. As a matter of
example, ORBit2 was used for communication tasks in the
GNOME project. This implementation was considered
sufficiently stable and well documented.

In this architecture, the communications at the server
side are carried out as CORBA objects that execute at the
Linux level, i.e. with no Real Time guarantees as shown in
Figure 4. However, as commented above, this will not
jeopardize the operation as communications are relatively
fast when compared to the movement of the axes.

It is also interesting to point out that several authors and
vendors have ported some CORBA products to be used
within RTAI and RT-Linux. One example may be found
in Pérez et al. [10] where a distributed architecture for
embedded systems is proposed based on the use of RTAI
and ORBit.

iJOE ‒ Volume 7, Issue 4, November 2011 5

PAPER
A CORBA WRAPPER FOR APPLICATIONS WITH MULTIPLE ROBOTS

III. WRAPPER INTERFACE

This section presents a generic wrapper for anthropo-
morphic industrial robots of up to 6 Degrees of Freedom
(DoF). This wrapper, which is provided as a distributed
object, may be easily included in distributed applications
that require the use of robots. The interface implements
most typical operations of this type of robots consisting
of:
 Initialize the robot to the initial position
 Move the robot from one point to another
 Move the robot in a linear trajectory
 Move the robot an arc of a circular trajectory
 Open and close the gripper

The robot interface also has attributes to:
 Know the state of the robot and the gripper
 Set the approaching and moving speed

More specifically, Figure 5 shows the attributes and
methods proposed for the generic Robot class. These will
be described in the next paragraphs.

Some of the attributes are private, represented in Figure
5 with their names preceded by a minus (-), such as Arti-
Coord, CartCoord, GripperStatus and Status, which
keep internal information. In particular, ArtiCoord and
CartCoord keep the location of the robot using its joint
and Cartesian coordinates respectively. ArtiCoord is a
vector with as many components as Degrees of Freedom
that define each articulation in degrees in the case of a
joint rotation or meters if it is a translational joint (θ0, θ1,
θ2, θ3, θ4, θ5). CartCoord is a 6 element vector (x, y, z, a,
b, c) that defines the position and orientation of the grip-
per with respect to a coordinate system located in the base,
being a, b, c, the Euler angles for representing the orienta-
tion of the gripper. All robot movements and approaches
change these values. GripperStatus defines the status of
the gripper which may be Open or Close according to the
homonymous methods described below. Finally, Status is
a more general attribute that supplies the status of the ro-
bot. The values considered so far are Error, Waiting and
Standby.

Other attributes such as RobotType, DoF, MovRange
and Reach are public. These attributes, are represented in
Figure 5 with their name preceded by a plus (+).

In particular, RobotType allows the configuration of
the robot type to be used (Anthropomorphic, Cartesian,
Cylindrical, Polar, Scara or Other). This attribute is
related to the DoF attribute which describes the Degrees
of Freedom of the robot. MovRange is an array that de-
fines the maximum movement per articulation. Finally,
Reach defines the maximum reach of the robot as a
whole.

The proposed wrapper provides some methods that al-
low consulting the value of these attributes (not repre-
sented in Figure 5). The wrapper also proposes eleven
additional methods that allow using the robot in distrib-
uted applications. These methods are distinguished in dif-
ferent categories: Movement operations and configuration
operations.

«interface»
Robot

- ArtiCoord
- CartCoord
- GripperStatus
- Status
+ RobotType
+ DoF
+ MovRange
+ Reach

+ Move (Px, Py, Pz, d, t: short)
+ MoveS (Px, Py, Pz, d, t: short)
+ MoveC (P1, P2,, P3,: vector)
+ Drive (articulation, incre, speed: short)
+ Ready ()
+ Delay (time: short)
+ Close ()
+ Open ()
+ Speed (speed: short)
+ ArtSpeed (speed, articulation: short)
+ AllSpeed (speed: short)

Figure 5. Interface for the robot.

The movement operations Move, MoveS and MoveC
produce a change in the ArtiCoord and CartCoord attrib-
utes. The Move method is used to specify a free motion of
the end effector, i.e. a movement from the current position
to a new position given in Cartesian coordinates. MoveS
is similar to the previous method but combines the move-
ment of all joints in order to achieve a linear trajectory of
the end effector. Both methods receive as a parameter the
coordinates of the destination point (Px, Py, Pz), a distance
(d) which provides the vertical position in Z axe of point P
as well as a time interval (t) to reach the destination from
which the movement speed will be calculated. Finally,
MoveC produces a circular movement by interpolation of
the three points whose Cartesian coordinates are provided
in the method.

There are other movement operations provided by the
wrapper such as Drive, which allows moving a single
articulation a given increment or decrement of degrees at a
given speed and Ready, which sets the robot to its initial
position.

Other operations include, Delay which makes the robot
wait during a certain time interval. It is typically before
carrying out a movement in order to synchronize the robot
movements. Also, some actions such as Open and Close
are aimed at manipulating the gripper. Both of them affect
the GripStatus private attribute. And the Speed method
which defines the speed limit as a percentile of the real
maximum speed of the end effector, to prevent from pre-
cision loose or damage. ArtSpeed is a similar operation
but aimed at one articulation. Finally, AllSpeed config-
ures the maximum speed for all articulations.

6 http://www.i-joe.org

PAPER
A CORBA WRAPPER FOR APPLICATIONS WITH MULTIPLE ROBOTS

Figure 6. Robot Lynx axes.

TABLE I.
DESCRIPTION OF THE MODEL’S AXES

 Name Joint type Axis Turn Start

0 Base Rotate 0Z Right 0

1 Shoulder Rotate 0Y Right 10

2 Elbow Rotate 0Y Left 0

3 Wrist Rotate 0Y Right -45

IV. ROBOT DESCRIPTION

The previous interface has been validated over a robotic
arm. Namely, it has been implemented over a Lynx 5,
which is a robotic arm with 4 rotation axes created by
Lynxmotion. Even though this is an economical and com-
pact robot no generality is lost since it reproduces most of
the characteristics of more advanced and expensive indus-
trial robots. In fact, this robot has become a very interest-
ing alternative for educational environments. Figure 6
shows a picture where its 4 axis have been depicted. This
section describes the main issues related to the description
of the robot including the resolution of the Forward
Kinematics and Inverse Kinematics problem which are
used by the real-time tasks to produce the movements
described in the previous section.

Table I describes the characteristics of these axes,
which are shown in Figure 7. Note that except for the first
axis of rotation (Base), which is on the ‘Z’ absolute axis,
the other axes are over the ‘Y’ axis (see Figure 7 below).
Also note that all axis turn rightwards except the elbow
that turns leftwards. The robot can move in a fast, accurate
and repetitive way on behalf to a set of embedded servo
drives.

Since an origin of coordinates must be chosen for the
movements of the robot, Figure 8 shows the initial posi-
tion of the robot from which the movements will be exe-
cuted.

Figure 7. D-H Systems for the robot.

Figure 8. Initial position of the robot.

A. Forward Kinematics (FK)
The solution of the Forward Kinematics problem (FK)

of the robot is given by the Transformation Matrix T (1).
This matrix T relates the Cartesian position (Px, Py, Pz) of
the gripper or end effector respect to the reference coordi-
nate system at the base of the robot: {X0, Y0, Z0} with the
input values of every joint (θ0, θ1, θ2, θ3).

0
4

0 0 0 1

i i i i

i i i i

i i i i

nx ox ax Px

ny oy ay Py
T A

nz oz az Pz

 (1)

In order to obtain this matrix, the Denavit and Harten-

berg (D-H) convention is followed. This convention in-
volves the use of an algorithm that allows building the
resulting matrix, T, from the multiplication of a sequence
of matrixes like (2) that represent the transformations of
coordinates for every axis of the robot.

iJOE ‒ Volume 7, Issue 4, November 2011 7

PAPER
A CORBA WRAPPER FOR APPLICATIONS WITH MULTIPLE ROBOTS

1

0

0 0 0 1

i i i i i i

i i i i i ii
i

i i

C C S S S a S

S C C S C a C
A

S C d

i

i

i

 (2)

Thus, matrix (2) describes the coordinate transforma-

tion from the previous coordinate system (i-1) to the next
coordinate system (i). This matrix requires the calculation
of four parameters, known as Denavit-Hartenberg parame-
ters which are represent by θi, di, ai and αi. These parame-
ters depend on the geometry of the robot. Table II shows
the values of these parameters for each of transformations
of coordinates for every axis of the Lynx 5 robot used in
the case of study.

TABLE II.
PHYSICAL PARAMETERS USED IN THE D-H MODEL

 θi di ai αi
1 θ0 L0 0 90º
2 θ1+10º 0 L1 180º
3 θ2 0 L2 180º
4 θ3-45º 0 L3 0º

Figure 9 shows the length of each robot component tak-

ing into account the geometry of the Lynx 5 robot.

Figure 9. Length of the robot components.

By multiplying the individual matrixes of each system
in a noncommutative way the solution of the Forward
Kinematic problem is reached, i.e. the Cartesian position
of the end-effector with (θ0, θ1, θ2, θ3) known.

0 3 (1 2 3) 2 (1 2) 1 1xP C L C L C L C (3)

0 3 (1 2 3) 2 (1 2) 1 1yP S L C L C L C

oordinate system at the base of the robot {X0, Y0,
Z0

h a given point (for example, elbow up or
el

sing load when
co

ly the conse-
cu

y, Pz known)
is provided by the following equations (6-9):

 (4)

3 (1 2 3) 2 (1 2) 1 1 0zP L S L S L S L (5)

Where C0 and S0 are cos(θ0) and sin(θ0) respectively,

S(1-2+3) means sin(θ1-θ2+θ3-35º), C(1-2) means cos(θ1-
θ2+10º) and C1 means cos(θ1+10º). L1, L1, L1, represent
the length of the arms as shown in Figure 9. The same
notation has been used in the calculation of the other ex-
pressions.

B. Inverse Kinematics (IK)
The Inverse Kinematics (IK) problem allows to calcu-

late the values of each joint (θ0, θ1, θ2, θ3) in order to lo-
cate the end effector of the robot at a specific point given

in Cartesian coordinates (Px, Py, Pz), respect to the refer-
ence c

}.
In order to solve the IK problem an algorithm must be

provided. Unfortunately, solving the IK problem for a
robot is usually a more complex task than solving its FK
problem since there are no general algorithms to solve it.
In addition, a robot with 4 DoF like the Lynx 5 has several
solutions to reac

bow bellow).
Frequently, iterative numerical methods or algebraic

methods are used to solve the IK problem. However, in
this case it is possible to find the solution in a closed form
using geometric methods. This is a simple way to solve
the IK by relating the coordinates of the end effector and
the joint angles. This has been the approach followed in
this case study due to its lower proces

mpared with other types of algorithms.
For the sake of simplicity due to the ‘pick and place’

nature of the robot operation described in the next section,
it has been considered that the last articulation will always
move in parallel to the base plain. Thus, the inclination of
the last joint is 0 degrees, because of its parallel position
with the base plain. This fact simplifies large

tion of a simple algorithm to solve the IK.
The closed form for each joint (with Px, P

x

y
0 P

P
arctan (6)

PL

LLP

P

LPz

1

2
2

2
1

2
0

1 2
arccosarcsin (7)

21

2
2

2
1

2

2 2

)(
arccos

LL

LLP (8)

º35123 (9)

Where P is obtained from expression (10):

2 2 2 2 2 2
0 3 3() 2z x y x yP P L P P L L P P (10)

bots need to cooperate in
or

s could even be exchanged without too much
tro

V. CASE STUDY

In this section a simple pick and place operation is de-
scribed in order to illustrate how to use the wrapper pro-
posed in section 3. This case study aims at demonstrating
a scenario in which several ro

der to execute an operation.
In this case study, two Lynx 5 robots identical to the

robot described in Section Fehler! Verweisquelle konnte
nicht gefunden werden. were involved. Note that one of
the advantages of using the proposed wrapper is that dif-
ferent robots can be used as long as they support the ge-
neric wrapper described in Section 3. Different robot con-
figuration

uble.
Operation in both arms is similar and it is based on the

operations of the wrapper described above. This approach

8 http://www.i-joe.org

PAPER
A CORBA WRAPPER FOR APPLICATIONS WITH MULTIPLE ROBOTS

nodes that recognize
th

ynchronize sequences of movements
am

 one piece is present in a producer-
consumer fashion.

requires either using a central coordinator that implements
applications with multiple robots in an easy way or that
the operations are triggered by the

e images acquired by the cameras.
More specifically, pick and place operations at every

robot require the use of the commands Move, MoveS or
MoveC to execute the rough and approaching movements
of the robots, as well as the Open and Close methods in
order to get and leave the pieces. Also the Delay opera-
tion is used to s

ong the robots.
A diagram for this operation is provided in Figure 10.

Basically, a node with a camera starts the Pick & Place
operation in Robot 1 by calculating the coordinates of the
piece at the origin point of the ‘Pick’ operation in the Pal-
let 1 and then coordinates at the destination of the ‘Place’
operation in the Store 1. These coordinates are used to
trigger the movement of the robots with the central coor-
dinator (or directly by the camera node). In parallel, Robot
2 picks a piece from Store 1 and places it on Pallet 2 pro-
vided that at least

Currently, the authors are working on a graphical user
interface from where the robot could execute different
operations in an easy way.

REFERENCES
[1] A. K. M. Azad, M.O. Tokhi and M.H. Shaheed (2009). “A Virtual

Environment for Studying Flexible Robot Manipulators”, iJOE, 4
(4), http://dx.doi.org/10.3991/ijoe.v5i4.918

[2] OMG, Object Management Group, (2004) “Common Object Re-
quest Broker Architecture: Core Specification”, Version, 3.0.3,
March 2004.

[3] OMG, Object Management Group, “Real Time-CORBA Specifi-
cation”, Version, 2.0, November 2003.

[4] I. Ripoll, “A comparative analysis of RTLinux and RTAI”, Linux
Devices, Sep. 2002, at http://www.linuxfordevices.com/files/
misc/ripoll-rtl-v-rtai.html

[5] The ORBit2 Project, at http://orbit-resource.sourceforge.net/
[6] R. Sanz, A. Hernando, C. Martínez and I. López, “Wrapping a

Mobile Robot with RT-CORBA”, Proceedings of the 8th Interna-
tional IFAC Symposium on Robot Control (SYROCO06), Bolo-
gna, Italy, 2006

[7] I. Calvo, I. Cabanes, A. Noguero, A. Zubizarreta, L. Almeida and
M. Marcos, “Using a CORBA Synchronous Scheduling Service in
Pick&Place Operations”. Proc. of the 13th IEEE Int’l Conf. on
Emerging Technologies and Factory Automation (ETFA). pp:
464-467. Hamburg, Germany, Sept, 2008.

[8] J. Garcia-Zubia, I. Trueba and D. Lopez-de-Ipina, “Web 2.0
Pharmacy Robots”, iJOE, 6 (REV2010), http://dx.doi.org/10.3991/
ijoe.v6s1.1389

[9] Robot demo at http://lsi.vc.ehu.es/wdocs/pub/robots/avi.html
[10] S. Pérez, J. Vila, J.A. Alegre and J.V. Sala, “A CORBA Based

Architecture for Distributed Embedded Systems Using the
RTLinux-GPL Platform”, Proc. 7th IEEE Int'l Symp. on Object-
Oriented Real-Time Distributed Computing (ISORC’04), 2004.

Figure 10. Pick and place case study.

movements of the robot as well as to operate
th

t of one robot by using this wrapper
m

s with multiple robots by using the proposed
wrapper.

[11] RTAI – The RealTime Application interface for Linux from
DIAPM http://www.rtai.org/

[12] D. Floroian, D. Ursutiu, F. Moldoveanu and L. Floroian (2010).
“RoboSmith: Wireless Networked Architecture for Multiagent
Robotic System”, iJOE, 6 (4), http://dx.doi.org/10.3991/
ijoe.v6i4.1468.

VI. CONCLUSIONS AND FUTURE WORK

This article presents a generic CORBA wrapper to en-
capsulate industrial robots. This wrapper can be used to
create distributed applications with multiple robots in an
easy way either by coordinating nodes of the robotic ap-
plications or by triggering the operations from other nodes
of the distributed application. The proposed wrapper is
generic enough to be used with different types of indus-
trial robots and provides operations to execute rough and
approaching

e gripper.
This wrapper has been implemented to demonstrate its

viability for an economical and compact robot suitable for
educational environments. It has been implemented over a
Real-Time Operating System, namely Linux-RTAI which
ensures determinism in the local operations of the robot,
and a low resource consuming implementation of the
CORBA specification, namely ORBit. Video demonstra-
tions of the movemen

ay be found in [9].
One of the main advantages of this wrapper is its flexi-

bility since it allows creating applications with multiple
robots in an easy way. As a matter of example, a simple
‘Pick&Place’ operation that involves two robots is pre-
sented. This approach allows that students could create
application

AUTHORS

Isidro Calvo Gordillo is with the University College of
Engineering of Vitoria-Gasteiz, Department of Control
Engineering. University of the Basque Country, Spain
(email: isidro.calvo@ehu.es)

Itziar Cabanes Axpe is with the Faculty of Engineer-
ing of Bilbao. University of the Basque Country, Spain
(email: itziar.cabanes@ehu.es)

Ismael Etxeberria Agiriano is with the University
College of Engineering of Vitoria-Gasteiz, Department of
Computer Languages and Systems, University of Basque
Country, (e-mail: ismael.etxeberria@ehu.es).

Guillermo Sánchez Vitorica has been with the Faculty
of Engineering of Bilbao. University of the Basque Coun-
try, Spain.

Ekaitz Zulueta Guerrero is with the University Col-
lege of Engineering of Vitoria-Gasteiz, Department of
Control Engineering. University of the Basque Country,
Spain (email: ekaitz.zulueta@ehu.es)

This work was supported in part by the University of the Basque
Country through grant EHU09/29. Received 26 May 2011. Published as
resubmitted by the authors 26 October 2011.

iJOE ‒ Volume 7, Issue 4, November 2011 9

http://dx.doi.org/10.3991/ijoe.v5i4.918
http://www.linuxfordevices.com/files/misc/ripoll-rtl-v-rtai.html
http://www.linuxfordevices.com/files/misc/ripoll-rtl-v-rtai.html
http://orbit-resource.sourceforge.net/
http://dx.doi.org/10.3991/ijoe.v6s1.1389
http://dx.doi.org/10.3991/ijoe.v6s1.1389
http://lsi.vc.ehu.es/wdocs/pub/robots/avi.html
http://www.rtai.org/
http://dx.doi.org/10.3991/ijoe.v6i4.1468
http://dx.doi.org/10.3991/ijoe.v6i4.1468

	I. Introduction
	II. Architecture Description
	A. RTAI
	B. ORBit

	III. Wrapper Interface
	IV. Robot Description
	A. Forward Kinematics (FK)
	B. Inverse Kinematics (IK)

	V. Case Study
	VI. Conclusions and Future Work
	References
	Authors

	REV 2012_v2.pdf
	1stAnnouncement_ICL2012.pdf

