
SPECIAL FOCUS PAPER
ONLINE CONTROL OF THERMO-OPTICAL PLANT VIA OPENMODELICA

Online Control of Thermo-Optical Plant
via OpenModelica

1http://dx.doi.org/10.3991/ijoe.v8iS3.2195

Ladislav Szolik and Katarína Žáková
Slovak University of Technology, Bratislava

Abstract—The paper deals with the web-based implementa-
tion of the thermo-optical plant control. The control of the
plant is based on the open-source Modelica-based modeling
and simulation environment OpenModelica which originally
is not designed for web-based applications. The paper shows
one possible way how to circumvent this limitation.

Index Terms— computer aided engineering, control design,
online services, student experiments.

I. INTRODUCTION

Experimental work is an inseparable part of engineering
education at universities. Experiments help to understand
theory, relations between incurred tasks and problems and
they give a hand to form, confirm and reject hypotheses
that lead to the problem solution. In spite of the fact that
some experimental work can be accomplished using
various animations and simulators, the best possibility is
to offer students the work with real devices. Unfortu-
nately, such experiments cannot be usually available for
the whole day. The rooms with experiments are usually
opened only during limited time. It means that except of
travelling to the university buildings students also need to
check the availability of laboratories. Therefore there
arises a question how to offer and deliver experiments to
all students whenever they need them. One possibility is
to use Internet as a medium and to provide experimental
work via remote access to the laboratory.

The paper demonstrates one possible way of remote
control of the thermo-optical plant presented in the next
section.

II. PLANT

The considered thermo-optical laboratory plant
uDAQ28/LT (Fig.1) presents a system that is very suitable
for all forms of the education process because of its easy
manipulation and a good portability. It can be connected
to the control computer via a USB interface and no special
A/D card is required. It enables to control two physical
variables – the temperature inside a plastic cylinder and
the intensity of a light source.

The plant [5] has three inputs – the bulb voltage (the
heat & light source), the ventilator voltage (system cool-
ing) and the light diode voltage (the second possible light
source). There also exist two parameter inputs for adjust-
ing the sampling period and the time constant of the built
in derivative filter. The user can use eight measured
outputs: the system temperature measured by a PT100
sensor, the light intensity (both measured directly, or with
a preliminary filtration by the filter of the 1st order) and

Figure 1. The combined thermo-optical laboratory plant

its derivative, the ambient temperature, the current and the
rotation speed of the ventilator.

The high number of measured outputs enables to ac-
complish a variety of experiments. However, students
mostly control only the light intensity that can be influ-
enced by the voltage on the light diode or the temperature
inside the plastic cylinder that is influenced by the bulb
heating and the ventilator cooling. The temperature is
usually controlled by the bulb voltage with the ventilator
being considered as a disturbance factor. Of course, the
control when the temperature is influenced by the bulb
heating and the ventilator cooling at the same time to-
gether is also possible. In addition to control, students also
have to solve tasks that are connected with the plant
identification, input-output data manipulation and com-
munication with outer computer environment.

The communication with the computer runs via the
string exchange. The data transfer rate is 250kbit/s. The
plant enables to use a sampling period 40-50 ms whereas
considering the dynamics of the presented system 1 sec-
ond it should be sufficient for its quasi-continuous control.
The whole plant is supplied by 12V/2A DC external
adapter.

III. OPENMODELICA ONLINE SUPPORT

OpenModelica [3] (developed on the base of open and
free technologies) enables to model and simulate the
behavior of the dynamical systems. In this way it is simi-
lar to Matlab, LabView or SciLab.

It is to say that OpenModelica is usually used for com-
putations that are accomplished on the computer locally.
However, the increased expansion of Internet together

iJOE – Volume 8, Special Issue 3: "REV2012/1", November 2012 5

http://dx.doi.org/10.1109/REV.2012.6293168�

SPECIAL FOCUS PAPER
ONLINE CONTROL OF THERMO-OPTICAL PLANT VIA OPENMODELICA

with the growing support of online education raised a
question how to exploit capabilities of OpenModelica for
these purposes, too. In such a case, one installation of
OpenModelica placed on the remote server could serve for
several clients whereby the client can be represented by a
person or an application.

We started to test OpenModelica for various online in-
teractive examples and simulations. Later we tried to use it
for a remote experiment, too. Such approach is also pre-
sented in this paper.

IV. REALISATION

For development of the presented web portal we de-
cided to use LAMP technologies (Linux – operating
system, Apache – web server, MySQL - database, PHP
and Python – script languages). The backend of the appli-
cation is also supported by the already mentioned Open-
Modelica environment that runs the whole experiment.
Except of that we also used the supplementing program
module omniORB that offers communication interface
between Python and OpenModelica. The driver for the
plant is written in C language.

The client side of application was developed using PHP
script language that dynamically generates HTML pages
by means of Smarty templates. The database abstraction
was done via Dibi library. The graphical layout was built
using cascade styles and Javascript language helped us to
achieve interaction with the web application. Except of
that we used some Javascript libraries that facilitated the
programming of some tasks: jQuery [12] (simplifying the
work with page elements), Flot [8] (graphical visualiza-
tion of results), jQuery Week Calendar [9] (graphical user
interface for experiment time reservation) and Can-
vas2image [16] (export of data to .png format).

A. Experiment running
The communication with the server is provided via the

web browser form where the user enters all necessary
parameters that are sent later to the OpenModelica engine
installed on the server. The same web page can also be
used for the result visualization.

Each user that wants to run experiment has to log in
into the web application environment and to start with
allocation of a time slot for the experiment. Without this
reservation the experiment cannot be executed. It should
ensure that in each moment only one user will have the
full access to the experimental plant.

Then according to preferences specified by the user the
application builds the control structure for the experimen-
tal work. Only then the experiment can be executed.

The created application requires accomplishing follow-
ing tasks in parallel:
 Accepting the data from the plant that are in succes-

sive steps saved to variables and globally available in
the application. Afterwards they can be used for con-
tinuous visualization of experimental results e.g. in
the form of graphical dependences.

 Enabling the change of controller parameters during
the run of experiments.

 Following the simulation time that was specified by
the user or by the application.

 Receiving information messages that are sent by the
plant model.

The experiment can be stopped by two ways. It can be
done manually by the user who presses the Stop button.
The experiment is also concluded after the predefined
simulation time elapses. In both cases all running proc-
esses are ended and the experiment report is completed by
the last measured experimental values. The communica-
tion between the server and the client side is closed only
after the results are visualized on the client side. Later, the
client can send new data that the server has to process
again.

B. Web Application
The structure of the whole application is sketched in

Fig.2. It consists of 3 main parts.
The presentation and application layer is realized using

PHP scripting language that is widely used for the devel-
opment of dynamical web applications.

The simulation layer was built using Python scripting
language. The main motivation for the change of the
programming language was the fact that PHP (in contrast
to Python) doesn’t allow building of native multi-
threading applications. Since we need to accomplish
several tasks in parallel one possible choice how to realize
them all at once was the selection of the programming
language that supports multi-threading in the native man-
ner. We didn’t want to use any alternative solution for
PHP (e.g. cURL extension).

Except of that Python programming language has the
ability to cooperate with CORBA interface that can be
used for communication with OpenModelica environment.

The presentation layer defines the appearance and lay-
out of the client application using Smarty templates. It
helps to manage requests and responses for users. The
data that are visualized in the presentation layer are dy-
namically prepared in the application layer.

The application layer processes the requests from users
and ensures that the user receives the corresponding
feedback information. After the user starts the experiment
and data are sent to the server, they have to be transformed
to the form that can be understood by OpenModelica. This
layer also support data manipulation using MySQL data-
bases and takes care about export of experimental results
to various formats according to the specification of the
user.

Figure 2. The web application structure

6 http://www.i-joe.org

SPECIAL FOCUS PAPER
ONLINE CONTROL OF THERMO-OPTICAL PLANT VIA OPENMODELICA

The simulation layer covers the communication be-
tween the real plant and OpenModelica environment that
is used for the control of the remote experiment. Open-
Modelica is running in the interactive mode that enables to
change parameters during the experiment. Without this
feature it would be not possible.

Before running the experiment the simulation layer cre-
ates its control structure on the base of requirements from
user. It consists from several model components that are
summarized in Fig.3.

 The structure of all model components, their nesting
and connection results from the Modelica language possi-
bilities. However, there are 2 essential parts:

The omReadWrite block covers the communication
with the thermo-optical plant. Its task is to write and to
read data from the system. The functionality requires
importing the driver that ensures approach to the real
device. The driver was written in C language using the
open source libusb library [2] that enables an unified
approach to USB interface based equipments on the user
level.

The UdaqCont model block describes the block scheme
that is used for the experiment control. It consists from
two main blocks:

The Udaq model block allows to specify and set inputs
and outputs of the plant. This block is written in Modelica
language and defines an interface between the real plant
and control algorithm calculations that are realized in the
OpenModelica environment.

The Controller model block enables to compute the
value of control signal according to the chosen control
algorithm. The application also allows running the ex-
periment without a controller. This setting permits to
measure step responses of the physical system and to
identify its dynamics. In such a case the Controller model
block is substituted by the open loop connection.

C. User Interface
The online experiment can be realized using Web portal

shown in Fig.4. After registration and login it enables user
 to allocate time slot for experiment
 to set suitable parameters
 to select type of experiment (open loop, control struc-

ture with PID controller or control structure with own
control algorithm)

 to follow results in form of graphical dependencies
 to export numerical results to various graphical or

text formats that can be used outside of the presented
web portal.

Our aim was to enable users to use not only a set of
predefined controllers but also to be able to experiment
with own control algorithm that is set up according to
personal preferences.

Since the structure of the OpenModelica file describing
the controller is quite complicated we decided to facilitate
the design as much as possible. The structure requires
specifying parameters, inputs, outputs and all other vari-
ables of the controller at the beginning of the controller
model description. Their number depends on the type of
the controller and therefore has to be flexible.

The implemented graphical user interface (Fig.5) al-
lows adding a new parameter or variable by simple click-

Figure 3. Control structure model components in OpenModelica

Figure 4. Web portal for online control

Figure 5. GUI for the definition of own controller

ing on a button whereby the user can define its type, name
and in the case of the parameter its default value, too. The
keywords for various types of parameters and variables
are predefined and therefore the risk of misspelling is
minimized. Variables have no associated values since
their values are changed in each time step of the experi-
ment.
By specifying parameters and variables the structure of
the controller model starts to be created (Fig.6 – blue
sections). Finally, the controller algorithm equations have
to be determined. We used the classical text area input
element (Fig.5) for their definition. The syntax of equa-

iJOE – Volume 8, Special Issue 3: "REV2012/1", November 2012 7

SPECIAL FOCUS PAPER
ONLINE CONTROL OF THERMO-OPTICAL PLANT VIA OPENMODELICA

Figure 6. The resulting controller code for OpenModelica

tions has to follow the OpenModelica specifications.
Unfortunately the misspelling errors in equations cannot
be automated checked so easily. The control algorithm
equations (Fig.6 – green section) form the last part of the
controller model structure. In Fig.6 it is possible to see the
example of PID controller defined by the user. Afterwards
the controller can be saved and it is prepared for the use. It
means the experiment can start.

Running the experiment the user can set up several pa-
rameters. Except of determining the required value of
output he or she can set up the sampling period, the run
time of experiment and parameters that were defined in
the controller. The values from the controller structure are
used as default parameter values but they can be changed
still before or later during the experiment. The experiment
duration can be determined as a concrete value in seconds
or by the string “inf”. In such a case the experiment is
running till the moment when it is stopped by the user or
when the reservation period elapses.

During the experiment the user can follow all available
variables. They are visualized in the form of graphical
dependencies that can be either switched on or switched
off (Fig.4). In the case that the user receives outputs that
are not expected the experiment can be stopped still before
the specified time or as it was already told the parameters
of the controller can be changed. The structure of the
controller (i.e. the controller algorithm) can be changed
only after the running experiment is ended.

All experiment data are saved to MySQL database and
can also be viewed later. Except of that the measured
values can be exported to several formats (.txt, .xml, .json,
.png) what enables processing of experimental results in
other software environments that can be more familiar to
the user.

V. CONCLUSIONS

The implementation of the presented remote control of
experiment was realized in frame of diploma work. Our
purpose is to support “learning by doing” method that
helps students to understand better the problem they meet.
In this case it was necessary to master not only program-
ming techniques, algorithmization, way of communication
but also all topics connected with control of the real plant.

ACKNOWLEDGMENT

Authors thank to Zoltán Magyar for his help and dis-
cussions.

REFERENCES
[1] P. Bisták, “Remote Control of Thermal Plant Using Easy Java

Simulation”, Int. Conf. on Interactive Computer Aided Learning
ICL’06, Villach, Austria, 2006.

[2] J. Erdfelt, D. Drake, “LibUSB Homepage”, http://www.libusb.org/
[3] P. Fritzson, et al., “OpenModelica Users Guide”, Linköping

University, Sweden: Wiley-IEEE Press, 2004.
[4] I. Gustavsson, K. Nilsson, J. Zackrisson, L. Hakansson, J. G.

Zubía, G. R. Alves, U. Hernandez, R. J. Costa, T. Lago, I. Claes-
son, “The VISIR Open Lab Platform 5.0 - an architecture of a
federation of remote laboratories”, 8th Intern. Conference on Re-
mote Engineering and Virtual Instrumentation (REV'11), Brasov,
Romania, 2011.

[5] M. Huba, “Thermo-Optical Laboratory Plant uDAQ28/LT”,
http://www.eas.sk/mod/product/show.php?ID=59, 2008.

[6] M. Huba, M. Šimunek, “Modular Approach to Teaching PID
Control”, IEEE Transactions on Industrial Electronics, ISSN
0278-0046, Vol. 54, No. 6, pp. 3112-3120, 2007.

[7] M. Jáno, K. Žáková, “SciLab Based Remote Control of Thermo-
Optical Plant”, Int. Journal of Online Engineering (iJOE), Vol. 7,
No. 4, pp. 10-15, 2011.

[8] O. Laursen, “Flot - Attractive Javascript plotting for jQuery”,
Online, http://code.google.com/p/flot/

[9] R. Monie, “jQuery Week Calendar”, Online,
https://github.com/robmonie/jquery-week-calendar/wiki, 2010.

[10] Nette Foundation. Dibi is Database Abstraction Library for PHP 5,
Online, http://dibiphp.com/cs/.

[11] New Digital Group, Inc. Smarty Template Engine, Online,
http://www.smarty.net/.

[12] The jQuery Project. jQuery: The Write Less, Do More, JavaScript
Library, Online, http://jquery.com/.

[13] M. T. Restivo, J. Mendes, A.M. Lopes, C.M. Silva, F. Chouzal, A
Remote Lab in Engineering Measurement, IEEE Trans. on Indus-
trial Electronics, vol. 56, no.12, pp. 4436-4843, 2009.

[14] F. Schauer, M. Ožvoldová, F. Lustig, “Real Remote Physics
Experiments across Internet – Inherent Part of Integrated E-
Learning” , Int. Journal of Online Engineering (iJOE), 4, No 2,
2008.

[15] Chr. Schmid, “Internet - basiertes Lernen”, Automatisierungstech-
nik, 51, No. 11, p. 485-493, 2003.

[16] J. Seidelin, “Canvas2Image”, Online, http://www.nihilogic.dk/
labs/canvas2image/.

[17] I. Zolotová, M. Bakoš, L. Landryová, “Possibilities of communi-
cation in information and control systems”, Annals of the univer-
sity Craiova, Series: Automation, Computers, Electronic and
Mechatronic, Vol.4(31), No.2, pp.163-168, ISSN 1841-062,
2007.

[18] J. G. Zubía, G. R. Alves (eds.), “Using Remote Labs in Education:
Two Little Ducks in Remote Experimentation”, University of
Deusto, Bilbao, ISBN: 978-84-9830-335-3, 2011.

[19] K. Žáková, M. Sedlák, “Remote Control of Experiments via
Matlab”, Int. Journal of Online Engineering (iJOE), 2, No. 3,
2006.

AUTHORS

L. Szolik is with is with the Accenture s.r.o., Plynáren-
ská 7/C, 824 86 Bratislava, Slovakia, (e-
mail:szolik.ladislav@gmail.com).

K. Žáková is with the Faculty of Electrical Engineering
and Information Technology, Slovak University of Tech-
nology, Ilkovičova 3, 812 19 Bratislava, Slovakia (e-mail:
katarina.zakova@stuba.sk).

This work has been supported by the Slovak Grant Agency, Grant
VEGA No. 1/0656/09. It is an extended and modified version of a paper
presented at the International Conference on Remote Engineering &
Virtual Instrumentation (REV2012), held at University of Deusto,
Bilbao, Spain, July 4-6, 2012. Manuscript received 18 July 2012.
Published as resubmitted by the authors 14 November 2012.

8 http://www.i-joe.org

http://www.libusb.org/�
http://www.eas.sk/mod/product/show.php?ID=59�
http://code.google.com/p/flot/�
https://github.com/robmonie/jquery-week-calendar/wiki�
http://dibiphp.com/cs/�
http://www.smarty.net/�
http://jquery.com/�
http://www.nihilogic.dk/ labs/canvas2image/�
http://www.nihilogic.dk/ labs/canvas2image/�

