
SPECIAL FOCUS PAPER
ONTOLOGY: A SUPPORT STRUCTURE FOR A V-LABS NETWORK: EURONET-LAB

Ontology: A Support Structure for a V-Labs
Network: Euronet-Lab

http://dx.doi.org/10.3991/ijoe.v8iS3.2257

C.C. Raúl1, M.F. José2 and D. Andrew3
1 EST – Instituto Politécnico de Setúbal, Setúbal, Portugal

2 FCT – Univ. Nova de Lisboa, Caparica, Portugal
3 ITT – Inst. Technology Tallaght, Dublin, Ireland

Abstract—Our propose is to build a network of virtual labo-
ratories, based in a Virtual Closet that will contain all the
elements and parts that are needed to build the various
experiences available in a v-labs network (that we call Eu-
ronet-Lab).

To build this complex network we need to find a system that
supports effectively this structure. This probably will be a
enormous database of v-labs and independent elements,
where will be possible sometimes to “recycle” some of the
elements. This means “re-use” the same element several
times in many experiences. To do this is necessary to have a
structure that allows us to have several instances of the same
element.

It’s important that in our structure and virtual environment
we can create several “images” of the same reality and this
images can be used simultaneously in different cir-
cuits/experiments. This means that we can create several
instances of the same element, to be used in different experi-
ences and exercises.

Index Terms—Virtual Labs, CMS, Ontology, Remote Labo-
ratory.

I. INTRODUCTION
The main problem that we want to solve is to find a

structure that allow us to define a efficient and logical
database that is completely able to support our virtual labs
network.

This structure must permit to classify all the compo-
nents and parts used in our experiences, and allow us to go
get this elements/objects in a “Virtual Closet”, that we
must build and define, prior to anything else. We defend
that this structure is an Ontology.

This “Virtual Closet” will be the base of our system to
build the virtual experiments. And the structure that sup-
ports this “closet” ,must allow to use and define several
instances of the same object that we go to use in different
experiments that can exist and run at the same time.

One of the most important points to develop in this pro-
ject is the “user interface” that will be used by all users of
the system.

So in this point we will try to make and discuss a defi-
nition of user interface integration.

To integrate this user interface in all the EURONET
LAB system, it is important to define logically and techni-
cally how we will make this integration.

So, the way we choose, is first to see what is now the
“State of the Art” in this matter.

So, after consulting several documents in that area, we
think that the most important point to see and study is the
“Application Integration” with the developed ontology
and the other components of the system that we will
choose.

The application integration of the user interface is one
of the most used techniques to connect the user with soft-
ware applications.

There are several kinds of approach to solve this issue.
In this point we go discuss the definition of “user inter-

face integration”.
One of the most accepted models of integration inter-

face is the model of Fowler [7],[10], and following that
model we can define the three main layers:

1. The source layer
2. The business logic layer (or domain layer)
3. Presentation layer

Several authors derived from this classification. This
leads to the simplest model of system integration;
 An integration layer can be placed in the top of each

one of the layers, facilitating by this way the applica-
tion integration in the 3 layers:

 Data layer (source layer)
 Business layer
 Presentation layer

To better understand the figure 1 we go present a little
resume of the classification criteria for some authors:
 Amsden[8] introduces a variation of integration; one

application may “involve” another, i.e. start it via ac-
cess to the underlying operation system.

 Nisson [9] introduces a separation of integration on
the user interface layer: that distinguishes the integra-
tion of “user interface parts” from the integration on
the “screen handling” layer, for architectures as X
Windows Scheifler and Gety [11] ,[10] defends that
the implementation on User Interface components
(UI components) is separated from the implementa-
tion of the display and the interaction with those
component parts, which is what the author calls
“screen handling”. So, these authors Scheifler and
Gaty [11],[10] propose two different strategies of in-
tegration on the UI components and also make
changes on the screen handling layer.

26 http://www.i-joe.org

http://dx.doi.org/10.3991/ijoe.v8iS3.2257�

SPECIAL FOCUS PAPER
ONTOLOGY: A SUPPORT STRUCTURE FOR A V-LABS NETWORK: EURONET-LAB

The classification of levels can be shown in the follow-
ing diagram (Figure 1) of levels that show us the classifi-
cation of levels made by several authors.

Linthicum [12] proposes and discusses several ways of
“enterprise application integration”, i.e. in the way of
allowing the integration of different applications from
several enterprises.

As main concept, Linthicum distinguishes two types of
integration on the business logic level:
 Application interface integration
 Method integration

Let’s see its differences with more detail:
 The application interface integration means that the

application call methods from another one.
 Method integration implies the exchange of models

and also more complex patterns of interaction be-
tween applications, going beyond simple method
calls [10].

Other authors, Benatallah Nezad [13] provide an even
finer-grained distinction of integration business layer. This
comes besides the distinction of Linthicum’s between
application interface (called “function integration” by the
authors). In this case they introduce the need for addic-
tionally coordinating the message exchange itself (called
basic coordination) as well as policies, such as privacy
policies and quality of service agreements between sys-
tems. Also the authors introduce the communication layer
as another layer of integration, thereby stressing that when
integration distributed applications, the communication
protocol heterogeneities must be overcome [14].

We must also take in consideration the main advantages
and benefits of “Application Integration” on the “User
Interface Layer”.

There are two main benefits for performing application
integration for the user interface level:
 Increasing the usability of software systems
 Reducing development efforts for those software sys-

tems.

We can see these benefits from two points of view:
 From the user, the end’s user
 From the software engineer

From the end user point of view, we can say that any
system that is integrated on a deeper level than the user
interface, will come with an individually developed user
interface [15] .

So the user will be confronted with a new unfamiliar
user interface that requires time to the user to learn how to
use this interface.

On the other hand, if we have a simple interface system
the user easily learn how to work with the interface and is
easier to use and doesn’t require learning and adaptation
time from the user.
From the software engineers point of view, reusing an
existing interface, as opposed to developing a new inter
face from the “zero point” means saving time and having
less programming work.

It’s important have in mind that the user interface is
normally the most expensive part of a software system.
The portion of development effort dedicated to the user

Figure 1. Classification of levels

interface system in a project goes from 50% (Myers and
Rosson, 1992) to 70% [17] of the total development effort.

In resume we can say that without an approach for inte-
gration of the user interface level the degree of reuse will
never be higher than 50%. If we use UI integration, this
action can therefore reduce development efforts of inte-
grated software systems drastically.

Another very important aspect of the project to consider
is; what are the requirements and challenges of Applica-
tion Integration on the User Interface layer.

This application integration on the UI layers take us to
some challenges. About these challenges [15] enumerates
five requirements for UI integration approaches:

1. Definition of a common model and language for
specifying components.

2. Definition of a model and language for specifying the
integration.

iJOE – Volume 8, Special Issue 3: "REV2012/1", November 2012 27

SPECIAL FOCUS PAPER
ONTOLOGY: A SUPPORT STRUCTURE FOR A V-LABS NETWORK: EURONET-LAB

3. Create a support system for interaction and commu-
nication among the components.

4. Definition of a mechanism for visualizing the indi-
vidual UI components.

5. Development of a mechanism for component discov-
ery and binding.

A framework for the user interface integration has to
have access to components to integrate in the ontology.
Also is necessary to define a common model for those
components, because is this model that will define how to
access and control each component in the necessary ac-
tions to develop.

Typically, if we use a API, these components are API
components. These API can be a high-level API, working
at the level of business objects or, in another approach,
can be a low-level API where the UI entities can be con-
sidered as buttons [15],[10].

Normally API’s at both levels are very useful as way to
facilitate meaningful user interface integration. For inte-
grating the user interface components, the developer has
to specify coordination of the different components and
also, the kind of relations that exists among them. This
can be done in any general purpose programming lan-
guage (C++ or Java) or in specialized languages.

To implement interactions between components, some
mechanisms for communication between components has
to be provided. This can be a message exchange facility,
event-based communication, etc. Communication between
components can be performed either directly or centrally
mediated [15],[10]. As user interface programming itself
is most often event-oriented but is normal too the use of
event-based communication for UI integration as well
[16]. In an integrated UI, the individual application user
interface components have to be displayed on the screen.
The framework can either split and delegate the display to
individual components or performed a unified display, e.g.
based on markup as HTML. The last issue is the discovery
and binding of components. The most common solution
applies when the set of applications to integrate is not
fixed at the time when the development code of the sys-
tem is built. In this case the components can be registered,
for example in an online repository, and then sought,
found and bound when necessary at run-time.

The work already done to build this system was the pro-
ject and drawing of the system, and also the definition of
the main branches and elements of the ontology to use.

We use Protégé Software as a tool to draw our ontol-
ogy. So the definition of superclasses, sub-classes, and all
the hierarchy is already build.

Also is already defined the concepts for each class build
and also the properties of this concepts, also called is
restrictions.

The contribution of this paper is explain and justify
why, in our opinion, the better solution to implement this
structure is an Ontology, and also define, and build all the
objects and elements that we need in our system.

So we start to make an introduction, where we explain
how to build an ontology, and what are the rules and steps
that we must follow to correctly build the ontology we
want to implement.

II. DEFINITION OF ONTOLOGY:
Generally we can define an Ontology as:
“A Ontology defines a common vocabulary for re-

searches, and someone who need to share information in a
domain”. [1]

Ontologies are widely used in integration of application
scenarios, most of the times in the data and business logic
level.

In a frequently cited article “Ontologies: Principles,
Methods and Applications”, [18], point the usefulness of
ontologies for promote inter-operability between IT sys-
tems.

The ontologies are proposed as a mean for “inter-
lingua” for information exchange between applications.

The word “ontology” has its origin in the greek words:
 (“being”) and  (“theory” or “science”). So,

ontology is “being theory” or “being science”, in fact it is
a sub-area of philosophy that deals directly with the ques-
tion of what existence actually is, and also it makes sev-
eral categorization and organization of the existing things
at a particular domain.

In computer science, “Ontology” is a formal model of a
knowledge domain.

In philosophy area, ontology is used as singular word
and refers a field of study, the computer science typically
deals with many and various “ontologies” that are “formal
models of a domain”, but for the same domain can exist
more than one model.

So there is a variety of definitions for ontologies in
computer science:

Gruber [10],[19] says: “An ontology is an explicit
specification of a conceptualization”.

Guarino and Giaretta [10],[20] presents a more detailed
definition as: “An ontology is a logical theory which gives
an explicit, partial account of a conceptualization”.

But Guarino [10],[21] defines an ontology as: “A set of
logical axioms designed to account for the intended mean-
ing of a vocabulary”.

The authors outlined a new web semantic, which was
not made up of texts that could only be understood by
humans, but of information that could be processed by
intelligent software’s agents.

Figure 2 shows the so called “semantic web stack”, that
is a reference architecture which illustrates the language
proposed by W3C for implementing the semantic web.

The technological foundations on which the semantic
web languages are built are the general-purpose eXtensi-
ble Markup Language, XML [10].

Figure 3 shows the 200 large datasets which are cur-
rently available as linked data.

Some rules can be used to express additional axioms
that most ontology languages do not foresee. In the se-
mantic web stack, various rule interchange formats to
express rules defined with different individual rule lan-
guages, such as the Semantic Web Rule Language SWRL
or the Rule Markup Language Rule ML [10]. Those rule
languages allow for more flexible definitions than prop-
erty chains in OWL2.

28 http://www.i-joe.org

SPECIAL FOCUS PAPER
ONTOLOGY: A SUPPORT STRUCTURE FOR A V-LABS NETWORK: EURONET-LAB

Figure 2. The semantic webstack

Figure 3. Aspect of the linked open datacloud

The Rule Interchange Format RIF provides an abstrac-
tion from those rule languages which is based in formal
logic. It can be seen as an instantiation of the unified logic
layer [10].

III. QUERY SYSTEMS:
To query the information contained in the semantic web

or defined in RDF, ontologies and rules, various lan-
guages have been proposed, as we can see in the surveys
made by Hease and others authors [10].

The query languages that were widely accepted for the
ontologies are in RDF-based documents [10] are:
 SQL
 SPARQL

Apart from languages standardized or recommended by
the World Wide Web Consortium, there are others that are
used both in industry and universities.

The F-Logic is one of the most often used of these lan-
guages [10]. F-Logic which integrates ontology defini-
tions and rules is one uniform language. Other than se-
mantic web languages proposed by W3C, which follow
the open world assumption, F-Logic uses closed world
semantics. The basic building blocks of F-Logic ontolo-
gies are:
 Class and sub-class definitions.
 Relation definitions. Other than OWL, F-Logic does

not support sub-relation definitions.
 Rules. Most of the definitions in F-Logic are rules.

Like Prolog rules they consist of a head (i.e., what is
stated to be true) and a body (the condition under
which the head is true).

The next picture shows an example of an ontology in F-
Logic, which corresponds to the OWL example depicted
in the code above.

Figure 4. Code-example F-Logic Ontology definition

There are also other ontology languages as:
 KIF – Knowledge Interchange Format
 A Lisp - based notation for predicate logic

IV. TYPES OF ONTOLOGIES
There may be various types of ontologies, developed

and employed for different purposes. Various classifica-
tion approaches have been presented, discussed and em-
ployed for different purposes. Various classification ap-
proaches have been discussed for comparing and distin-
guish these ontologies.

One of the first classifications of ontologies has been
proposed by Heijst [10] and other authors who make their
classification based in two properties:
 Their amount of structures or degrees of formality
 Their subject

Regarding their degree of formality, they distinguish:
 Termonological ontologies (that specify a list of

terms and their meaning)
 Information ontologies (that specify the structure of

data)
 Knowledge modeling ontologies (that makes a con-

ceptualization of knowledge)

In 2001 lassila and McGuiness [10] provide a more de-
tailed description and distinction between several types of
ontologies shown and classified in the next picture:

iJOE – Volume 8, Special Issue 3: "REV2012/1", November 2012 29

SPECIAL FOCUS PAPER
ONTOLOGY: A SUPPORT STRUCTURE FOR A V-LABS NETWORK: EURONET-LAB

Figure 5. Ontology types based on the degree of formality

Glossaries – are catalogs that are enriched with descrip-
tions for the terms.

Thesauri – contain additional relations between terms.
Typically, those are relations such as “synonym of”,
“broader term than” or “narrower term than”.

Informal taxonomies – arrange the terms in a hierarchy.
An example is the concept hierarchies used by web shops.

Formal instances – are taxonomies that also esplicitly
define instances.

Frames – are used to define relations between concepts,
e.g. that each food products is made from ingredients.

Value restrictions – impose additional domain and
range constraints on such frames, such as that only eatable
substances can be used as ingredients for food products.

Logic constraints – are constraints that go beyond do-
main and range definitions, e.g. stating that categories of
objects are disjoint.

It exist another wide level of classification of ontolo-
gies: referring the figure 5, we can say that the first four
(from the up) are sometimes referred as “informal ontolo-

gies”, and the last five (near the lower side) are “formal
ontologies”.

Another distinction that is several times used is “light-
weight” and “heavyweight”, where “heavyweight” in-
cludes value restriction and logic constraints and “light-
weight” includes all the other categories, like show in the
figure at left. As depicted in the figure, Uschold and
Grünninger [10] further refine the classification given by
Lassila and McGuiness [10] by adding the following clas-
sifications:

Ad hoc hierarchies – are even weaker than informal
taxonomies. The hierarchies do not even intend to create
correct is-a relations, but only group things that roughly
belong together.

Data dictionaries – define complex types of data based
on simple ones e.g., a date being composed by a day, a
month, a year.

Structured glossaries – contain further relations be-
tween terms, e.g. synonym and antonym relations.

XTML DTD’s – are meta-descriptions of XML docu-
ments. They define which elements in a XML file can
exist and how they can be nested, showing the relations
between all its elements. These nesting and relations pro-
vide informal, unnamed relations between nested ele-
ments.

Database schemas – describe tables in a database, their
elements and their relations.

XML schemas – have the same purpose as XML
DTD’s but are more expressive.

Data models – refer to models that go beyond database
schemas, e.g., UML-based models, possibly with addi-
tional constraints.

There are some other criteria to classify the ontologies;
regarding its contents, Van Heijst [10] enumerates four
types of ontologies:
 Domain Ontologies - define concepts of one specific

domain.
 Generic Ontologies – define concepts that are general

enough to be used across various domains.
 Application Ontologies – define concepts from a

domain that are required for one application.
 Representation Ontologies – define the concepts that

are used to define ontologies, i.e. they define con-
cepts such as term or relation. They can also be con-
sidered as meta-ontologies (Ontologies used to define
ontologies).

V. REUSABILITY
In “domain ontologies” and “generic ontologies” we

registered a high level of reusability of the concepts and
terms but not in “application ontologies”, because nor-
mally they refer to a very particular domain of knowledge.

A similar distinction is used by Uschold and Jasper [10]
The authors distinguish three meta-type (or meta-levels)
of ontologies:

L0 – Operational Data – defines knowledge about in-
stances such as “Lisbon is a city”.

L1 – Ontologies – define the concepts and terms of a
domain. Ontologies provide the vocabulary to define op-
erational data.

30 http://www.i-joe.org

SPECIAL FOCUS PAPER
ONTOLOGY: A SUPPORT STRUCTURE FOR A V-LABS NETWORK: EURONET-LAB

L2 – Ontology representation languages provide means
for defining L1 ontologies.

The classification proposed by Guarino [10] distinguish
ontologies by their level of abstraction and their usage as
shown in figure 6.

Some of the ontology types resemble those in the clas-
sification by Heijst [10] and other authors as referred
above.

Top-level ontologies of upper-ontologies – are equiva-
lent to “generic ontologies”. They contain general con-
cepts that are useful across several domains, most often
based on human perception of the world [10], proposed by
Kiryakov and other authors.

Domain Ontologies – are equivalent to domain ontolo-
gies as are defined by Heijst and other authors[10].

Task Ontologies – define the activities of a task but
without pointing a specific domain. For example scientific
experiments contain hypotheses, measurements and
evaluations, all of which can be defined agnostic to the
actual domain of the experiment.

Application Ontologies – are equivalent to domain on-
tologies as defined by Heijst and other authors[10].

They identify the concepts defined in domain and task
ontologies to define specific activities. This is done by
stating which entities from the domain of that particular
ontology plays which role in an activity defined in the task
ontology.

The ontologies of the different levels are interconnected
with specialization relationships. Thus, ontologies reuse
definitions made by other ontologies on a higher level,
therefore making them modular and comparable.

We choose to use an ontology, considering the main
advantages is use, that are:
 Share common understanding of the structure of the

information among people or software agents
 To enable reuse of domain knowledge
 To make domain assumptions explicit
 To separate domain knowledge from the operation

knowledge
 To analyze domain knowledge
For the purposes for what we want use the ontology, we

can consider that an Ontology is a formal explicit descrip-
tion of concepts in a domain of discourse.

The main elements of an Ontology are:
 Classes, sometimes called concepts
 Slots, are the properties of each concept describing

various features and attributes of the concept. Some-
times slots are also called roles or properties

 Facets , are restrictions on slots, or even properties of
slots, or restrictions of slots

An Ontology together with a set of individual instances
of classes constitutes a knowledge base.

In reality, there is a fine line where the ontology ends,
and the knowledge base begins.

In pratical terms, developing an Ontology includes:
 Defining the classes of the Ontology
 Arranging the classes in a taxonomic (sub-class – su-

perclass) hierarchy

Figure 6. Classification of ontologies based on their level of abstrac-

tion

 Defining slots and describing allowed values for
these slots

 Filing in the values for slots for instances

We can then create a knowledge base by defining indi-
vidual instances of each classes filling in specific slot
value information and additional slot restrictions.

To design correctly an ontology we must respect the
following rules. These rules may seem rather dogmatic,
but they can help to make correct design decisions in most
of the cases where ontologies can be applied:

1. There is no one correct way to model a domain of
knowledge – there are always several alternatives.
The best way to implement our ontology depends on
the application that we have in hands, and all the ex-
tensions of it that was possible to us to anticipate.

2. Continuous ontology developement process is neces-
sary, and is an iterative process

3. Concepts in ontology should be very close to objects
(physical or logic) and also close from the relation-
ship that exist in the domain where we define the on-
tology.

4. Probably the most common is to define nouns (ob-
jects) or verbs (relationships) in sentences that de-
scribe your domain.

In a most detailed way, we can say that there are some
steps that we must follow to define our ontology:

Step n. 1: Determine the domain and scope of our on-
tology.

To do this we must essentially to respond to the follow-
ing questions:
 What is the domain that the ontology will cover ?
 For what we going to use the ontology ?
 For what types of questions the information on the

ontology should provide answers ?
 Who will use and maintain the ontology ?

Step n. 2: Consider reusing existing ontologies:
It most always worth considering what someone else

has done and checking if we can refine and extend exist-
ing sources for our particular domain and task.

Reusing existing ontologies may be a requirement if our
system needs to interact with other applications that have
already committed to particular ontologies or controlled
vocabularies.

Step n. 3: Enumerate important terms in the Ontology:
It is useful it write down a list of all terms we would

like either to make statements about or to explain to a
user.

iJOE – Volume 8, Special Issue 3: "REV2012/1", November 2012 31

SPECIAL FOCUS PAPER
ONTOLOGY: A SUPPORT STRUCTURE FOR A V-LABS NETWORK: EURONET-LAB

Step n. 4: Define the classes and the class hierarchy:
These are several possible approaches in developing a

class hierarchy (Uschold and Gruminger 1996):
 Top-down development process:

o Starts with the definitions of the most general con-
cepts in the domain and subsequent specialization
of concepts.

 Bottom-up development process:
o Starts with the definition of the most specific

classes, the leaves of the hierarcly, with subsequent
grouwing of these classes in more general concepts.

 Combination development process:
o This is really a combination of top-down and bot-

tom-up approaches: we define the most salient con-
cepts first and then generalize and specialize them
appropriately.
None of these three methods is inherently better
then any of the others. The approach to take de-
pends strongly on the personal view of the domain
and the situation in particular.
If a developer has a personal top-down view of the
domain, then it may be easier to use the top-down
approach.
However the combination approach is often the
easiest way for many ontology developers, since
the concepts “in the middle” tend to be the more
descriptive concepts in the domain (Roch 1978).

Step n. 5: Define the properties of class-slots:
The classes done will not provide enough information

to answer the competency questions.
Once we have defines some of the classes, we must de-

scribe the internal structure of concepts.
In general, there are several types of object properties

that can become slots in an ontology:
If we take as example a Ontology about wines, we must

considerer the following:
 “Intrinsic” properties (ex: flavor of a wine)
 “Extrinsic” properties (Name of the wine and area of

production)
 “Parts” if the object is structures, these can be both

physical and abstract “parts” (Indicated dishes to
drink with)

 “Relationships to other individuals," these are rela-
tionships between individual members of the class
and other items(maker of the wine, type of greap”

Note: All the subclasses of a class inherit the slot of a
class.

Step n. 6: Define the facets of the slots:
Slots can have different facets describing the value

type, allowed values, the number of values (cardinality),
and other features of the value the slot can take.

Some normal common facets are:
Slot Cardinality: Defines how many values a slot
can have some details:

 Some systems distinguish between single cardinality
(Allowing at least one value) and multiple cardinality
(allowing any number os values)

 Some systems allow the specification of a maximum
and a minimum cardinality to describe the number of
slots more that a slot must have at least N Values.

Slot value Type, they have some possible types that
corresponds to the common variable data types:
 String
 Number (Float or integer)
 Boolean (yes-no flag`s)
 Enumerated (list of specific allowed values)

o Instance (instance-type slots allows the definition of
relationship between individual.

 Instance must also define a list of allowed classes
from which the instances can come.

The classes to which a slot is attached or the classes
which property a slot describes, are called the domain of
the slot.

We can define the range of a slot as the allowed classes
for slots of type instance.

Some systems allow restricting the range of a slot when
the slot is attached to a particular class.

Step n. 7: Create instances:
The last step to create an ontology is creating individual

instances of classes in the hierarchy. To accomplish this
step we must do the following “sub-steps”:

1. Choosing a class
2. Creating as individual instance of that class
3. Filling the slot values

One of the objectives of this work is to build and define
libraries of reusable knowledge components, (like RLO
reusable learning objects in SCORM specification) and
also Knowledge – based services than can be invoked over
networks; to achieve this objective the most indicated
structure to define and describe all the elements of a vir-
tual laboratory as parts and components is an ontology, by
the above reasons exposed.

Also we can say that an ontology permit to describe in a
very detailed way the components / elements of the “vir-
tual closet”, with all is details and features.

So formally we can say that an Ontology is the state-
ment of a logical theory.

In a pragmatic way we can say that an Ontology defines
the vocabulary with which queries and assertions are ex-
changed between systems that communicate in the v-labs
network.

Ontological commitments constitutes agreements that
should be used as shared vocabulary in a coherent and
consistent way.

As conclusion of this introduction we can say: “an on-
tology is a particular system of categories accounting for a
certain vision of the world. This system does not depend
of a particular language. A shared ontology need only
describe a vocabulary for talking about a domain, where
as a knowledge base may include the knowledge needed
to some a problem or answer arbitrary about a domain”.

VI. OUR SOLUTION TO THE PROBLEM / OUR ONTOLOGY:
To implement and build the ontology we go use the

software “Protégé” that is a tool specially developed to
build ontologies.

32 http://www.i-joe.org

SPECIAL FOCUS PAPER
ONTOLOGY: A SUPPORT STRUCTURE FOR A V-LABS NETWORK: EURONET-LAB

Protegé is a software that allows easily to build ontolo-
gies respecting all the rules that we define in our system.

In Protegé we define what will be the classes and also
we can define all the relations between them.

In our particular case the “root” or Master-class of our
ontology is “LABORATORY” (figure 7).

From there we define three main classes:
 Experiment
 Real Component
 Virtual Component

Essentially the ontologies used in this field of knowledge
using semantic web technologies. We can define, ac-
cordinng to the W3C, "The Semantic Web provides a
common framework that allows data to be shared and
reused across application, enterprise, and community
boundaries." Tim Berners-Lee defines the Semantic Web
as "a web of data that can be processed directly and indi-
rectly by machines."

Figure 7. EuronetLab Ontology definition

All the laboratories are composed by experiments, that
we can define as:

 “An experiment is the smallest enclosed unit of an
online laboratory. It provides also the execution of virtual
or real experiments to observe the behavior and output of
a system. An online laboratory consists of one or more
experiments in different fields of science and engineer-
ing”. Ref. [1]. Also normally, associated to an online
laboratory, there must be other learning resources like a
laboratory tutorial and lecture notes to provide the theo-
retical background necessary to carry out an experiment.
Therefore, it is necessary to provide a variety of additional
documents and references. Ref. [1]. So is very important
to have as support of all this system a CMS or a e-learning
platform that interconnect the build ontology with the v-
labs proposed in the “virtual closet”.

The CMS , LMS or a e-learning platform allows the ex-
istence and organization of all this pedagogical and tech-
nical pedagogical contents and supports.

The proposed network as the following block-diagram:

Figure 8. EuronetLab main structure

In this network we have three main actors:
 Teachers
 Students and Researchers
 Administrative staff

A login, forms and database must be created using ASP
or PHP that allows students to:
 Schedule an experiment in a certain lab;
 Verify available labs and in which universities or in-

stitutes are located;
 Verify the experiments they have done, their grade

and comments from their teachers;
 Read or review pedagogical contents that support the

different experiments.

The teachers should be able to:
 Send pedagogical contents;
 Review contents and materials;

iJOE – Volume 8, Special Issue 3: "REV2012/1", November 2012 33

SPECIAL FOCUS PAPER
ONTOLOGY: A SUPPORT STRUCTURE FOR A V-LABS NETWORK: EURONET-LAB

 Evaluate the students’ Works;
 Communicate with the students using email, chat,

video-conference in order to give orientations and
clarify subjects.

The administrative staff should support all the non-
technical issues and administrative issues derived from the
communication between universities, institutions, teach-
ers, researchers and students.

This is the way that we think that this V-labs network ,
the “Euronet – Lab” should work. Ref. [5]. Ref [6].

VII. FUTURE DEVELOPMENTS
The following action to take in this project is to build a

prototype system that interconnects the build ontology
with the v-labs network and the LMS databases that sup-
port the administrative parts of the system as shown in
figure 9.

REFERENCES
[1] Abul K.M. Azad et al., Internet Accessible Remote Laboratories:

Scalable E-Learning Tools for Engineering and Science Disci-
plines, Engineering Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue Hershey PA 17033 Tel: 717-533-8845
Fax: 717-533-8661 E-mail: cust@igi-global.com Web site:
http://www.igi-global.com.

[2] Gruber, T.R., 1993a. Toward Principles for the Design of Ontolo-
gies Used for Knowledge Sharing N. Guarino & R. Poli, eds. In-
ternational Journal of Human-Computer Studies, 43(5-6), pp.907-
928. Available at:
http://linkinghub.elsevier.com/retrieve/doi/10.1006/ijhc.1995.1081
.

[3] Gruber, T.R., 1993b. Toward Principles for the Design of Ontolo-
gies Used for Knowledge Sharing N. Guarino & R. Poli, eds. In-
ternational Journal of Human-Computer Studies, 43(5-6), pp.907-
928. Available at:
http://linkinghub.elsevier.com/retrieve/doi/10.1006/ijhc.1995.1081
.

[4] Noy, N.F. & Mcguinness, D.L., 2000. Ontology Development
101: A Guide to Creating Your First Ontology. Development,
32(1), pp.1-25. Available at:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.136.508
5&rep=rep1&type=pdf.

[5] Cordeiro, R., Fonseca, J. M., & Donellan, A. (n.d.). A Cloud
Based Laboratory Environment.

[6] Cordeiro R., Passos, H., ed. Virtual Labs in the E-Learning Con-
text as Tools of Collaboration Work. EDULEARN 09. 2009: Bar-
celona.

[7] FlecharM (2010) HypeCycle for Application Develop-
ment.http://www.gartner.com/DisplayDocument?id=1412014,acce
ssed April12th,2011.

[8] AmsdenJ(2001) Levels Of Integration-Fiveways you can integrate
with the EclipsePlatform. http://www.eclipse.org/articles/Article-
Levels-Of-Integration/levels-of-integration.html,accessed April
12th,2011.

[9] Nilsson EG, NordhagenEK,OftedalG(1990) Aspects of systems
integration.In:ISCI’90:Proceedingsof the first international confer-
ence on systems integrationon Systems integration’90,
IEEEPress,pp 434–443

[10] Paulheim, Heiki, Ontology-based Application Integration, e-
books: www.e-books.com, accessed August 17 th , on 2012.

[11] Scheifler RW,GettysJ (1986) The X WindowSystem.ACM Trans-
actions on Graphics5(2):79–109 http://dx.doi.org/10.1145/
22949.24053

Figure 9. EuronetLab database and VPN structure

[12] LinthicumDS(1999) Enterprise Application Integration. Addison
Wesley

[13] BenatallahB,NezhadHRM(2007) Service Oriented Architecture:
Overviewand Directions. In: B¨orgerE,CisterninoA(eds) Advances
in Software Engineering, Springer,LNCS,vol5316,pp 116–130

[14] Rebstock M,Fengel J,Paulheim H(2008) Ontologies-based Busi-
ness Integration. Springer

[15] Daniel F,Matera M(2008) Mashing Up Context-Aware Web
Applications: AComponent-Based Development Approach.In:
WISE’08: Proceedings of the 9th international conferenceon Web
Information Systems Engineering,Springer,LNCS,vol5175,pp250–
263

[16] WestermannU,Jain R(2007) Toward a Common Event Model for
Multimedia Applications.IEEE MultiMedia14(1): 19–29
http://dx.doi.org/10.1109/MMUL.2007.23

[17] SergevichK A,ViktorovnaG V (2003)From an Ontology-Oriented
Approach Conception to User Interface Development.
International Journal”Information Theories and
Applications”10(1):89-98

[18] Uschold M,Gruninger M (1996) Ontologies:Principles, Methods
and Applications.Knowledge Engineering Review11:93–136
http://dx.doi.org/10.1017/S0269888900007797

[19] Gruber T R (1995) Toward Principles for the Design of Ontolo-
gies Used for Knowledge Sharing. International Journal Human-
Computer Studies 43(5-6):907–928 http://dx.doi.org/10.1006/
ijhc.1995.1081

[20] Guarino N,Giaretta P (1995) Ontologies and KnowledgeBases:
Towards a Terminological Clarification. In:MarsNJI(ed) Towards
Very Large Knowledge Bases:Knowledge Building and Knowl-
edge Sharing,IOSPress,Amsterdam, pp25–32

[21] Guarino N,Welty CA(2009)An Overview of Onto Clean.
In:(StaabandStuder,2009),chap10,pp 201–220

34 http://www.i-joe.org

http://linkinghub.elsevier.com/retrieve/doi/10.1006/ijhc.1995.1081�
http://linkinghub.elsevier.com/retrieve/doi/10.1006/ijhc.1995.1081�
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.136.5085&rep=rep1&type=pdf�
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.136.5085&rep=rep1&type=pdf�
http://www.e-books.com/�
http://dx.doi.org/10.1145/�22949.24053�
http://dx.doi.org/10.1145/�22949.24053�
http://dx.doi.org/10.1109/MMUL.2007.23�
http://dx.doi.org/10.1017/S0269888900007797�
http://dx.doi.org/10.1006/�ijhc.1995.1081�
http://dx.doi.org/10.1006/�ijhc.1995.1081�

SPECIAL FOCUS PAPER
ONTOLOGY: A SUPPORT STRUCTURE FOR A V-LABS NETWORK: EURONET-LAB

AUTHORS
C.C. Raúl, Raúl Cordeiro Correia is with the

Instituto Politécnico de Setúbal – Escola Superior de
Tecnologia de Setubal, Largo Defensores da Republica nº
1, 2910-470 Setúbal, PORTUGAL. E-mail:
raul.correia@estsetubal.ips.pt

M. F. José, José Manuel Fonseca is Professor in the
Electrical Engineering Department of the Universidade
Nova de Lisboa, Campus da FCT/UNL, 2829-516
Caparica, Portugal. Email: jmrf@fct.unl.pt

D. Andrew, Andrew Donnellan is a lecturer in the
Department of Electronic Engineering, Institute of Tech-
nology, Tallaght, Dublin 24, Ireland. Email: an-
drew.donnellan@ittdublin.ie

This work was supported in part by IPS – Instituto Politécnico de
Setúbal – escola Superior de Tecnologia de Setúbal. It is an extended and
modified version of a paper presented at the International Conference on
Remote Engineering & Virtual Instrumentation (REV2012), held at
University of Deusto, Bilbao, Spain, July 4-6, 2012. Received 9 Septem-
ber 2012. Published as resubmitted by the authors 14 November 2012.

iJOE – Volume 8, Special Issue 3: "REV2012/1", November 2012 35

mailto:raul.correia@estsetubal.ips.pt�
mailto:jmrf@fct.unl.pt�

