
SPECIAL FOCUS PAPER
TOWARDS MIDDLEWARE-BASED COOPERATION TOPOLOGIES FOR THE NEXT GENERATION OF CPS

Towards Middleware-Based Cooperation
Topologies for the Next Generation of CPS

http://dx.doi.org/10.3991/ijoe.v8iS4.2273

I. Etxeberria-Agiriano1, I. Calvo1, A. Noguero2 and E. Zulueta1
1 University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain

2 Tecnalia, Bilbao, Spain

Abstract—Cyber-Physical Systems (CPS) integrate
embedded computers that control physical processes.
Application domains for CPS may be found in intelligent
buildings, healthcare, transportation and factory
automation, among many others. Typically, they are based
on low profile computing elements, such as sensors and
actuators that must communicate to carry out complex
tasks. They must address certain issues such as managing
available resources and service redundancy, as well as
solving heterogeneity. In particular, managing
communication issues can be relatively complex. In this
scenario, middleware technologies can help developers in
the design of state-of-the-art CPS. This work describes the
design principles of CPS that require cooperation. More
specifically, it presents a generic family of logical
information exchange and cooperation topologies capable of
adapting dynamically to changes in the environment. These
topologies may be implemented on top of several
middleware specifications as a means for managing
distributed resources and service redundancy of CPS at
run-time.

Index Terms— CPS, Middleware, Fault-Tolerance, Energy
Efficiency.

I. INTRODUCTION
The term “Cyber-Physical Systems” (CPS) was coined
around 2006 by researchers from different disciplines,
mainly real-time systems, network communications,
hybrid systems and control systems (see Fig. 1).
Nowadays, CPS are becoming a hot research topic being
funded with a growing number of projects granted by
different organizations [1, 2].

Figure 1. Main disciplines involved in CPS.

CPS can be considered the next step forward in
computing, involving control/computing co-design [3].
More specifically, CPS are integrations of computation
and physical processes [4]. They include some relevant
characteristics such as taking care of computation
performing time and the intrinsic concurrency. Additional

characterization of CPS is provided by Shi et al. [5]. They
describe current research on the subject with some
paradigmatic applications. Wu et al. [6] review CPS
platforms and wireless sensor networks. They identify
several current technical challenges including Quality of
Service (QoS) requirements.

Unfortunately, there are still a surprisingly small
amount of theory and tools that help designers to build the
next generation systems in an efficient way [3]. An
interesting review of the different technologies and
approaches used to build these systems may be found in
[7, 8].

Regarding the application domains, base technologies
are needed to build large-scale safety-critical CPS
correctly, affordably, flexibly and on schedule [9]. Some
of these domains include intelligent buildings, healthcare,
transportation systems, process control, factory
automation or electrical power grids, just to name a few
[5, 7] (see Fig. 2).

During the last years distributed embedded systems
have increased in size. They have shifted from centralized
small applications, based on real-time operating systems
capable of handling multitasking and basic operations
locally, to large computer-controlled systems, such as
those found in nation-wide power grids, to supply power
to billions of devices simultaneously or world-wide
communication networks [3, 4]. These new systems
require the development of solid theory and semantics that
ease its construction. Thus, some of the main abstractions
introduced by the scheduling theories developed in the
early 1970s, such as RMS (Rate Monotonic Scheduling) or
EDF (Earliest Deadline First), are still used to build the
control application software. However, these abstractions
frequently do not suit the models of the physical entities
behind [4]. On top of that, it is not a matter of over scaling
the resulting systems: adopted solutions must be efficient,
applying Ockham’s razor.

In this scenario, the designers of CPS face several
challenges. Namely, (1) heterogeneous network
technologies must communicate efficiently; (2) individual
elements may fail but the whole system must be reliable
and able to perform correctly in a degraded reconfigured
mode; (3) maintenance corrective actions could be
delayed without service disruption when they are not
critical; (4) since energy consumption can be a limitation
in locations with difficult access, nodes with higher
energy load or easier to replace can be identified and
chosen to carry out the computations more frequently.

20 http://www.i-joe.org

SPECIAL FOCUS PAPER
TOWARDS MIDDLEWARE-BASED COOPERATION TOPOLOGIES FOR THE NEXT GENERATION OF CPS

Figure 2. Different types of CPS applications.

Communication issues related to CPS are of special

interest in this work. Some authors such as [4] propose the
adoption of new radical design approaches that match the
specific requirements of CPS; other authors, such as [10]
recommend using more pragmatic approaches, at least in
short to medium term. In particular, [10] propose the use
of worldwide standard technologies such as IP (Internet
Protocols) and IEEE 802.11 (WiFi) for CPS. Although
these standards are relatively poor in terms of efficiency
and Quality of Service (QoS), several patches have been
proposed for IP (such as Integrated Services,
Differentiated Services, etc) as well as for WiFi (e.g. IEEE
802.11e extension) to enhance their performance.
Actually, these technologies have beaten in acceptance
more sophisticated technologies that provide higher
performance.

As heterogeneous CPS grow, the use of middleware
solutions is desirable to reduce the design complexity of
programming communications issues, especially in
heterogeneous environments. In fact, the economic
benefits of using middleware in complex distributed
applications produce up to 50% decrease in software
development and costs [11]. Some examples of well
established distribution middleware technologies allowing
the integration of control devices are CORBA [12, 13,
14], ICE [15], OPC [16, 17] and Web Services [18]. More
recently the OMG specified DDS (Data Distribution
Service) [19, 20, 21]. DDS is a very promising
middleware technology that follows the
publisher/subscriber paradigm. One of the main features
of DDS is that it provides several mechanisms to set and
manage a broad number of QoS parameters in real-time
applications.

These middleware standards allow building CPS
applications on top of the well extended TCP/IP stack.
These technologies can hide the low-level implementation
details facilitating the construction of the new
applications. Middleware can serve as the backbone or
software bus for building CPS applications across many

domains. An early example of using standard middleware
in CPS can be found in [22], where the time-triggered
paradigm was applied to sensor networks. In this work,
physical nodes (sensors and actuators) were not connected
to the distributed system directly but by means of CORBA
gateways that encapsulate clusters of objects.

However, generic middleware technologies present two
main drawbacks; on one side they tend to be excessive
and source of performance overhead for CPS [23], and on
the other, they do not match some of the special
requirements of this kind of systems [10], such as
providing abstractions that represent the entities found in
CPS. This is why several high-level middleware
architectures that adapt better to CPS have been proposed.

This work focuses on high level middleware services
aimed at simplifying the construction of large CPS. In
particular, it presents a set of logical cooperating
topologies that may be used to manage the resources of
the distributed systems and redundancy of distributed
services. These topologies allow the creation of structures
that can be set up during the system bootstrap discovery
process. These structures may evolve at run-time with
nodes that join or leave the system dynamically. State
changes could happen as a result of a modification in the
functionality of the system, changes at the availability of
the resources or failures of one device. Communication
efficiency and other aspects can influence and modify this
relationship but, for the design of the CPS, these
requirements need only be configured. Some preliminary
simulations results that show the application of these
structures for load sharing can be found in [24].

Software migration and dynamic software updates are
desirable services. An approach to dynamically update
software in CPS using DDS is proposed in [25]. Dynamic
reconfiguration is particularly important in applications
with high availability requirements.

The reminder of this paper is structured as follows.
Section II describes the features of CPS with a potential to
profit from cooperation with QoS requirements, setting

iJOE – Volume 8, Special Issue 4: "REV2012/2", December 2012 21

SPECIAL FOCUS PAPER
TOWARDS MIDDLEWARE-BASED COOPERATION TOPOLOGIES FOR THE NEXT GENERATION OF CPS

the base cooperation; Section III introduces and analyzes
the construction of the logical cooperating topologies
proposed in this work. In Section IV a scenario is
presented to illustrate the application of the generic
mechanisms under study; Finally, Section V concludes
and discusses future work.

II. COOPERATION REQUIREMENTS AT CPS
Due to their nature CPS introduce particular safety and
reliability requirements which are qualitatively different
from those found in general purpose computing.
According to [4], new computing and networking
abstractions are needed to deal with the entities used in
CPS, since they must be able to represent the passage of
time and concurrency which are intrinsic to the physical
world. In addition, as CPS do not operate in controlled
environments, they must be designed in a robust way so
they are capable to adapt to subsystem failures.

In addition, most interesting CPS are cooperative
systems in which networking technologies play a key role.
Unfortunately, most widely used networking technologies
introduce a great deal of timing variability. As a
consequence, two main approaches can be followed: (1)
Using less widely accepted network technologies, like
CAN or FlexRay, typically confined geographically to
local area networks [26]; or (2) assuming lower
performance and proposing extended abstractions that
integrate in the existing network infrastructures and
reference models [10].

By cooperation we understand the capability of a
distributed system with autonomous subsystems to
dynamically decide which components will carry out a
certain task in order to optimize response time, energy
consumption or fulfill a QoS policy.

A. Features of CPS
Some of the most relevant features of CPS have been

identified by [5, 26, 27]. Namely, these are:
• Dealing with time: Since CPS deal with physical

processes, time and concurrency become relevant
issues. In addition, CPS present strict timing
restrictions to response times.

• Close integration: CPS are highly coupled systems
that may involve large number of devices.

• Solving heterogeneity: Most CPS use a mixture of a
high variety of technologies and platforms that include
different operating systems, programming languages
and network technologies.

• Use of the resources: Typically, CPS are implemented
over devices with low resources in terms of CPU,
memory, network bandwidth and energy consumption.
Consequently, the management of these resources is a
key issue.

• Dynamic reconfiguration and reorganization: CPS
should provide the capability to dynamically
reorganize and reconfigure in order to adapt to changes
in the physical world or to changing requirements.

• Dependability and robustness: CPS must be reliable
even in adverse situations, since the security and safety
of people and investments can be affected by its
malfunction. Sometimes, they must be certified.

B. Cooperation in CPS with QoS requirements
CPS involve a number of physically distributed

elements: sensors, actuators, processing/memory units and
communication devices, many of them with a low profile.
Frequently the amount of required elements can be
established, each with a number of duties statically
assigned in advance. However, many resources are mostly
idle while others cannot produce high quality results on
time. For such cases the implementation of cooperation
mechanisms is proposed.
• Autonomy: For many CPS the autonomy of their

subsystems is a highly desirable feature. Certainly, not
depending on the accurate functioning of the whole
system reduces security risks coming from human
errors, natural disasters and human attacks. This is
particularly true when communications are involved
and some subsystems are temporarily unavailable.

• Fault tolerance: Static CPS may be highly reliable and
predictable but after the failure of any of the physical
elements the whole system may fail. Restoring back
the system to a working situation can be a hard task
requiring identifying the failed elements and replacing
them, often with service disruption. To prevent such
situations single points of failure must be avoided.
Replication, fault detection and fault tolerance
mechanisms are often used. Services are distributed
along the CPS and backup physical elements are
present to dynamically replace similar devices when
their behavior is not the expected one. Faulty elements
can after be substituted without the urgency of
restoring a disrupted service.

• Scalability: Another common problem of CPS is the
difficulty to provide smooth scalability. Changing the
extension of the phenomenon being controlled may
require duplicating all the elements. Systems become
unnecessarily large and this size often implies higher
difficulties.

• Soft Real-Time Systems: Cooperation can be
appropriate for soft real-time systems. Indeed, hard
real-time systems must guarantee response times under
all failure free situations. Even under failures the
behavior in such systems must be highly predictable.
Many physical phenomena do not require such degree
of reliability and soft real-time solutions will be more
convenient. On top of that functional parts that are not
safety critical can often be distinguished. These are
often more sensible to hardware costs.

C. Basis for Cooperation in CPS
To develop middleware allowing generic cooperation in

CPS some preliminary concepts must be taken into
account.
• Control over Communications: CPS communications

must be well coordinated. It is desirable that different
components communicate with a common reference of
priority and other QoS aspects. This is a key factor to
allow growth without increasing system complexity.

• Communication Paradigm: The Client/Server
communications paradigm has been extensively used,
especially in combination with TCP/IP. It is very
common to find real-time features in CPS and as such
Publisher/Subscriber paradigms have advantages in the
distribution of data, especially when QoS features can
be controlled.

22 http://www.i-joe.org

SPECIAL FOCUS PAPER
TOWARDS MIDDLEWARE-BASED COOPERATION TOPOLOGIES FOR THE NEXT GENERATION OF CPS

• Resource Replication: The replication of some
resources can be used to implement fault tolerance
mechanisms. It also allows exploiting the parallel
execution when dealing with processing and memory
elements.

• Resource Availability Modeling: Truly dynamic
systems often include resource discovery mechanisms
to identify the potential candidates for cooperation.
This cooperation depends on the nature of the
resource. For example, a battery can be considered
available when it allows a normal functioning and
unavailable when it runs out. A quantitative value of
how charged the battery is can also be distinguished,
as a notion of load information. However, in order to
reduce the number of transitions and therefore the
information update needs, state categories will be
associated with resource states rather than quantitative
values.

• Process Migration: The dynamic execution of CPS
processes may involve the code mobility, data
distribution or process migration. Software
components may be transferred from one device to
another in reaction to resource availability.

D. Middleware architectures for CPS
Middleware is typically organized in a hierarchy of

several layers [28]. The model presented in [10] proposes
an additional layer, the so-called Cyber-Physical Layer,
which includes an abstract description of the properties
and nature of cyber-physical data. This layer, situated on
top of the application layer, should provide services for
the lower layer protocols to support an efficient cross-
layer design of the underlying application and
communication protocols. Fig. 3 reproduces this new layer
and its interaction with some of the OSI layers.

Figure 3. Cyber-Physical Layer [10].

In [29, 30] the authors present the FTT-CORBA
middleware architecture aimed at synchronizing the task
activations of a distributed system according to a plan that
may be changed at run-time; tasks are wrapped as
CORBA methods activated by a central node, the
Orchestrator, over a LAN. This architecture can be used at
CPS.

Several authors have proposed different solutions for
CPS on top of DDS. For example, in [31] the authors
present a discovery method on top of DDS to be used in
CPS. Also, in [32] a proprietary distribution service aimed
at CPS is presented. These methods may be used in
cooperation strategies to provide fault tolerance and
reconfiguration of CPS [33].

Alternative middleware architectures built on top of
Web services can also be found in the literature. An
example is the WebMed architecture [34], designed with a
service-oriented view point to support CPS applications. It
enables access to the underlying smart devices and allows
the integration of their specific functionality with other
software services.

E. Infrastructure Modeling of CPS
CPS require a close interaction with the underlying

infrastructure. However, most of the architectures do not
model the available resources to allow making
reconfiguration decisions. Some models only consider this
issue partially. For example, traditional scheduling
algorithms for distributed systems focus on the assignment
of a set of tasks in a set of CPUs. Frequently, the use of
other infrastructure resources or the interaction with the
environment are partially analyzed or not considered at
all. In CPS, it is necessary to simultaneously consider the
computing and communication processing together with
the physical system and their interactions [35]. An
example of this interaction is the management of the
energy consumption as described in [36]. More detailed
models for describing the whole underlying infrastructure
are required with algorithms to make decisions according
to its current state.

III. LOGICAL COOPERATION TOPOLOGIES
In this section some logical topologies and their use in
CPS for cooperation purposes are described. It must be
noted that these topologies may be implemented on top of
different distribution middleware specifications. Hence,
the current approach abstracts the underlying physical
communication technologies, e.g. Ethernet or WiFi.

Theses topologies represent associations between
nodes, which are abstractions of autonomous devices that
can be replicated. These topologies will be used to
maintain state information that allows quick reaction to
cooperation necessities. They may be used to provide
fault-tolerance mechanisms as well as resource
management at CPS.

Depending on the final application the use of one
simple topology may be sufficient, for example, when a
small number of participating nodes are present. More
sophisticated topologies will typically involve more
communication traffic but appropriate information
according to the requirements. The use of one topology or
another may similarly be established statically or changed
dynamically depending on the number of nodes and the
nature of the system.

A. Reliable Friend
The basic logical cooperation topology is called

Reliable Friend (RF). A similar structure can be found in
[37]. In this topology each node establishes a best-effort
compromise to carry out some service when necessary to
another node called its official sender (OSe) and gets the
compromise to carry out a service from another node, the
official receiver (ORe), according to a friendship
paradigm. This relationship is described in Fig. 4, where
circles represent nodes and the thick arrows represent this
official relationship, or compromise to provide a service.

iJOE – Volume 8, Special Issue 4: "REV2012/2", December 2012 23

SPECIAL FOCUS PAPER
TOWARDS MIDDLEWARE-BASED COOPERATION TOPOLOGIES FOR THE NEXT GENERATION OF CPS

Figure 4. Official relationship sender-receiver for a node ni.

This relationship can be established dynamically as
nodes incorporate to the system at bootstrap. This may be
achieved by exploiting the discovery service provided by
many middleware specifications. Fig. 5 illustrates this
construction process.

Figure 5. Dynamic construction of the Official relationship.

In 5.a only n0 is present and acts as OSe and ORe of
itself with no practical use apart from the construction
initiation. In 5.b a second node n1 is incorporated to the
structure therefore forming a two-node official structure.
In 5.c a third node n2 incorporates and it forms a logical
cooperation ring, being node n1 its OSe and node n0 its
ORe.

Node numbering has been used to describe the vision of
the official relationship for a node, ni, as illustrated in Fig.
6. It is noted that this simple vision from the perspective
of each node of only one OSe and one ORe maintains
regardless of the number of participating nodes.

Figure 6. Official relationship from a node’s point of view.

Nodes may be incorporated to the structure,
establishing a logical cooperating ring relationship. Fig. 7
depicts this logical official structure for a system with 10
nodes. As a reminder, the thick arrows represent the
cooperation compromise between nodes, a logical link
between nodes.

Figure 7. Reliable Friend 10 node Official Structure.

B. Temporal Structure
Depending on the nature of the participating resources

there will be some circumstances that will make some of
the nodes temporarily incapable of fulfilling the official
compromise. On the basic case two possible states are
considered: Available or able to fulfill compromises and
Unavailable, or temporarily unable to fulfill
compromises. The simultaneous presence of multiple

degrees of availability can be allowed as in the case of
different battery loads.

In those cases where some nodes are not available, a
temporal structure is dynamically maintained. Each node
keeps the identity of the first available node found
following node the official structure, the temporal
receiver (TRe). Obviously, due to information
propagation delays this information may be out of date. A
node may have more than one temporal sender (TSe) or
nodes temporarily relying on it.

From the point of view of a node denoted Me in general
there are only four possible situations, described in Fig. 8
with Available nodes shaded in light color, Unavailable
nodes shaded in dark color and the rest, not shaded, are
unknown or irrelevant.

a) ORe Available b) ORe not Available

c) Only Me Available d) None Available

Figure 8. Temporal Structure different situations for Me.

The scheme in 8.a illustrates a situation where the ORe
of a node Me is Available, so that it will be trusted. In 8.b
the ORe has become Unavailable and a temporal receiver
(TRe) is Available. The information exchange mechanism
presented here provides the identity of the first Available
node found following the official structure, so that it is
known by node Me. In 8.c only one node is Available,
Me. Only this node is aware of the fact that only one
Available node is left in the whole system. When this
node becomes Unavailable, the situation in 8.d will be
reached and the information exchange mechanism will
update that no Available node can be found in the whole
system. All nodes are aware of that condition.

Fig. 9 illustrates the snapshot of a RF structure with
three Unavailable nodes represented with dark circles and
the rest Available, represented in light circles. Thin arrows
represent the temporal compromise relationship. In this
example, n1 and n2 both rely on n3, their TRe. Additionally
n4, n5 and n6 they all share the same TRe, i.e. n7.

Figure 9. Reliable Friend Temporal Structure snapshot.

C. Bidirectional Reliable Friend
Sometimes having just one candidate may not be

sufficient, especially in CPS requiring a quick response.
When this ring structure results in an accumulation of
several Unavailable nodes it is convenient to have more
choice on cooperation candidates.

An alternative to the basic RF structure contemplates
maintaining for each node two official candidates,
resulting in the Bidirectional Reliable Friend (BRF)
logical cooperation topology. Fig. 10 depicts this official

24 http://www.i-joe.org

SPECIAL FOCUS PAPER
TOWARDS MIDDLEWARE-BASED COOPERATION TOPOLOGIES FOR THE NEXT GENERATION OF CPS

structure for 10 participating nodes, representing this
official relationship with bidirectional thick arrows.

Figure 10. BRF Official 10 node structure with bidirectional arrows.

In this BRF cooperation topology the basic solution is
to maintain the previously described temporal structure in
both senses. For the scenario shown Fig. 9 the
corresponding BRF temporal structure is depicted in Fig.
11, where every node has two TRe. The official structure
has been omitted. When only one node remains Available
in the whole system every node will be aware of this fact
as they all keep a duplicated TRe.

Figure 11. BRF Temporal Structure snapshot.

D. Simplified Bidirectional Reliable Friend
In order to reduce the message exchange activity of

Unavailable nodes, in the Simplified Bidirectional
Reliable Friend (SBRF) cooperation topology Unavailable
nodes only keep the identity of one temporal candidate.
This candidate has been chosen to be the topologically
closest in either direction or the one on the clockwise
sense when two possibilities exist. Fig. 12 illustrates a
scenario with 10 participating nodes and four dark shaded
Unavailable nodes.

Figure 12. SBRF Temporal Structure snapshot.

E. Multi-Level Reliable Friend
When the concept of availability may be categorized in

different degrees of load the Multi-Level Reliable Friend
(MLRF) can be appropriate to dynamically maintain the
temporal structure. The convention adopted here is to use
load of a specific resource as CPU workload, so that low
load means Available. However, for some resources, such
as batteries, is just the opposite, since batteries would be
highly Available at the highest load value.

Thus, at the beginning a low threshold th0 will be
established to separate Available A0 and Unavailable U0
nodes as illustrated in Fig. 13. According to the
convention, the higher the load is the less Available a
node will be. When all nodes are Unavailable in U0 state
the threshold will be redefined to th1 so that node with a
load in between th1 and th0 are now considered Available,

A1. Depending on the presence of one or many nodes with
a load lower than th1 a categorization down to set the
threshold in th0 can be carried out. This operations require
the participation of all nodes and publish/subscribe
mechanisms are appropriate for the propagation of this
information.

Figure 13. Multi-Level RF load categorizations.

F. Multi-State Reliable Friend
Similar to the MLRF, when different degrees of load

can be distinguished quantitatively, boundaries can be set
to establish load states. Nodes with different load states
may coexist at the same time in the so called Multi State
Reliable Friend (MSRF) cooperation topology. With a
similar ring logical official structure nodes keep the
identity of the next node with a lower load state if such a
node exists or one at the same load state, possibly itself. A
snapshot of the temporal structure of a system with 10
nodes is shown in Fig. 14. The convention adopted is
similar to that of MLRF, which means that a node in a
state labeled 5 means is aiming at sending workload to a
node with less workload, e.g. 3 or ideally 0.

Figure 14. MSRF temporal structure snapshot.

Intuitively, nodes may get loaded with no further
constraint. No load balancing is necessary and that is why
load state differences between nodes appear. Yet, when a
node anticipates that some cooperation can show
advantageous it has solid candidates for reconfiguration.

Compared to previous cooperation topologies, this
information exchange scheme requires more
communications for its maintenance. The advantage is
that a load gradient is obtained so that when necessary we
can visit nodes following this structure and each hop
reduces at least one degree until we reach the node with
the lowest load in the system.

G. Multiple Reliable Friends
The combination of coexisting Reliable Friend

structures may extend the power of this kind of
cooperation forming multiple Reliable Friend structures.
Two general approaches are considered: (i) the
combination of different RF structures within the same
hardware system dealing with information on different
resources (e.g. batteries, processing power or memory)
called Multi-Purpose RF (MPRF) and (ii) the combination

iJOE – Volume 8, Special Issue 4: "REV2012/2", December 2012 25

SPECIAL FOCUS PAPER
TOWARDS MIDDLEWARE-BASED COOPERATION TOPOLOGIES FOR THE NEXT GENERATION OF CPS

of different RF structures dealing with the same aspect,
called Multi RF (MRF).

In MPRF approaches a single information exchange
schema may be utilized to exchange and maintain this
information.

In MRF approaches individual RF structures form
autonomous groups that can collaborate with others in a
second degree of collaboration.

IV. CONCLUSIONS AND FUTURE WORK
This paper proposes the integration of some state
information exchange mechanisms in Cyber Physical
Systems (CPS). More specifically, various generic state
information exchange cooperation topologies are
described. The topology choice for a particular system
depends on the meaning given to the concept of state and
the characteristics of cooperation.

These information exchange mechanisms can be useful
in CPS built out of COTS middleware components in
order to provide reconfiguration mechanisms for fault
tolerance and resource management in a scalable manner.

Currently, the proposed cooperation topologies are
being implemented on top of DDS middleware, namely
OpenSplice, exploiting its discovery mechanisms. This is
consistent with the proposition of using a single
communication backbone middleware for the whole
system with control over the QoS, since DDS provides a
logical software bus.

In our current implementation the official and temporal
structures are maintained in a network of computers
simulating state changes.

Envisaged future work includes the implementation of
all the proposed information exchange mechanisms, and
individual and combined performance evaluation, together
with the development of solid middleware architecture
with an API allowing its use on various CPS scenarios.

The authors are also analyzing a case study for applying
the proposed topologies and high-level middleware,
consisting of a security surveillance system with
cooperation requirements similar to the applications found
in [29, 38]. More specifically, the considered case study
consists of a large building with multiple surveillance
subsystems installed in several strategic points. Each
surveillance subsystem has optional sensors including
temperature, pressure, noise and vibrations; smart
embedded cameras; batteries preventing service disruption
when electricity is cut; memory to store some minutes of
video of different qualities. These devices can
communicate with each other as well as with remote
headquarters. They can work in different modes, namely,
standby, remote control and standalone autonomous.
Cameras can capture raw images and video and process
them locally using demanding compression algorithms or
send them over so other subsystems are responsible for
compressing, storing or even sending them to remote
locations.

REFERENCES
[1] W. G. Gilroy, “NSF funds Cyber-Physical Systems Project,”

Available at: http://newsinfo.nd.edu/news/17248-nsf-funds-cyber-
phys/

[2] National Science Foundation Program Solicitation, Available at:
http://www.nsf.gov/pubs/2008/nsf08611/nsf08611.pdf.

[3] W. Wolf, “Cyber-physical Systems,” Computer, vol. 42, no. 3, pp.
88–89, March 2009. http://dx.doi.org/10.1109/MC.2009.81

[4] E. A. Lee, “Cyber Physical Systems: Design Challenges,” 11th
IEEE Symp. Object Oriented Real-Time Distributed Computing
(ISORC 2008), pp. 363-369.

[5] J. Shi, J. Wan and H. Y. Hui Suo, “A Survey of Cyber-Physical
Systems,” Intl. Conf. on Wireless Communications and Signal
Processing (WCSP), 2011.

[6] F-J. Wu, Y-F. Kao and Y-C. Tseng, “From wireless sensor
networks towards cyber physical systems,” Pervasive and Mobile
Computing (2011). http://dx.doi.org/10.1016/j.pmcj.2011.03.003

[7] K.D. Kim, P.R. Kumar, “Cyber-Physical Systems: A Perspective
at the Centennial,” Proc. of the IEEE (Centennial-Issue), vol. 100,
pp. 1287-1308, May 2012.

[8] P. Marwedel, “Embedded and cyber-physical systems in a
nutshell,” DAC.COM	 Knowledge	 Center	 Article, 2010.

[9] A. Koubâa, B. Andersson, “A Vision of Cyber-Physical Internet,”
Proc. of the Workshop of Real-Time Networks (RTN 2009),
Satellite Workshop to (ECRTS 2009), pp. 1-6, July 2009.

[10] R. Rajkumar, I. Lee, L. Sha, J. Stankovic, “Cyber-physical
systems: The next computing revolution,” Design Automation
Conference (DAC), 2010 47th ACM/IEEE , vol., no., pp.731-736,
13-18 June 2010.

[11] T. Pearson, “Save time and money with COTS middleware for
network equipment,” www.commsdesign.com/printableArticle
/?articleID=174402378. Nov 2005.

[12] OMG, Object Management Group, “Common Object Request
Broker Architecture: Core Specification,” Version 3.0.3, March
2004.

[13] OMG, Object Management Group, “Notification Service
Specification,” Version 1.1, October 2004.

[14] Sanz R., M. Alonso, “CORBA for Control Systems,” Annual
Reviews in Control, No 25, 2001, pp. 169-181. http://dx.doi.org/
10.1016/S1367-5788(01)00016-5

[15] Henning, M., “A new approach to object oriented middleware,”
IEEE Internet Computing, Vol. 8, Issue 1, pp. 66-75, 2004.
http://dx.doi.org/10.1109/MIC.2004.1260706

[16] OPC foundation, http://www.opcfoundation.org/.
[17] F. Perez, D. Orive, M. Marcos, E. Estévez, G. Morán, and I.

Calvo, “Access to Process Data with OPC-DA using IEC61499
Service Interface Function Blocks,” 14th IEEE Intl. Conf. ETFA-
2009, Palma de Mallorca, Spain, Sep. 2009.

[18] F. Jammes and H. Smith, “Service-oriented paradigms in
industrial automation,” IEEE Trans. Industrial Informatics, vol. 1,
issue 1, pp. 62-70, Feb. 2005. http://dx.doi.org/10.1109/TII.
2005.844419

[19] OMG, Object Management Group, “Data Distribution Service for
Real-time Systems,” v1.2, June 2007.

[20] J.A. Dianes, M. Díaz and B. Rubio, “Using standards to integrate
soft real-time components into dynamic distributed architectures,”
Computer Standards & Interfaces, Vol. 34, Issue 2, Feb. 2012, pp.
238-262. http://dx.doi.org/10.1016/j.csi.2011.10.002

[21] Ryll, M. and S. Ratchev, “Application of the Data Distribution
Service for Flexible Manufacturing Automation,” Proc. of World
Academy of Science, Engineering and Technology, vol. 31, July
2008, pp. 178-185.

[22] W. Elmenreich, “Time-triggered smart transducer networks,”
IEEE Transactions on Industrial Informatics, vol. 2, no. 3, pp.192-
199, Aug. 2006. http://dx.doi.org/10.1109/TII.2006.873991

[23] A. Dabholkar, A. Gokhale, “An Approach to Middleware
Specialization for Cyber Physical Systems,” Proc. of the 29th IEEE
Intl. Conf. on Distributed Computing Systems Workhops, 2009.
http://dx.doi.org/10.1109/ICDCSW.2009.70

[24] I. Etxeberria-Agiriano, I. Calvo and E. Zulueta, “Simulation of
Various Candidate Selection Strategies for Migration in
Distributed Systems,” 16th Intl. Conf. on Soft Computing, 2010,
pp. 338-345.

[25] M.J. Park, D. K. Kim, W-T. Kim and S-M. Park, “Dynamic
Software Updates in Cyber-Physical Systems,” Intl. Conf. on
Information and Communication Technology Convergence (ICTC
2010), pp. 425-426.

26 http://www.i-joe.org

SPECIAL FOCUS PAPER
TOWARDS MIDDLEWARE-BASED COOPERATION TOPOLOGIES FOR THE NEXT GENERATION OF CPS

[26] E.A. Lee, “Cyber-Physical Systems – Are Computing Foundations
Adequate?,” Position Paper for NSF Workshop on Cyber-Physical
Systems: Research Motivation, Techniques and Roadmap (2006).

[27] I. Calvo, I. Etxeberria-Agiriano and A. Noguero, “Distribution
Middleware Technologies for Cyber Physical Systems,” Proc. of
the Remote Engineering & Virtual Instrumentation (REV-2012),
pp. 298-301, July 2012.

[28] Schmidt, D.C. “Middleware for real-time and embedded systems,”
Communications of the ACM 45(6), 43-48 (2002).
http://dx.doi.org/10.1145/508448.508472

[29] I. Calvo, L. Almeida, F. Pérez, A. Noguero and M. Marcos,
“Supporting a reconfigurable real-time service-oriented
middleware with FTT-CORBA,” 15th IEEE Intl. Conf. of the
Emerging Technologies and Factory Automation (ETFA-2010),
Bilbao, Spain, pp. 1-8, Sep. 2010.

[30] A. Noguero and I. Calvo, “A Time-Triggered Data Distribution
Service for FTT-CORBA,” Proc. of the Emerging Technologies
and Factory Automation (ETFA-2012), Sept. 2012, 1-8 (to be P.).

[31] S.H. Lee, J.H. Kim, W.T. Kim and J.C. Ryou “Communication
Entities Discovery in Complex CPS System,” Control and
Automation, and Energy System Engineering - Communications
in Computer and Information Science, Springer Heidelber, Berlin,
Vol. 256, pp. 213-219, 2011.

[32] W. Kang, K. Kapitanova, S. H. Son, “RDDS: A Real-Time Data
Distribution Service for Cyber-Physical Systems,” IEEE Trans. on
Industrial Informatics, vol. 8, no. 2, pp. 393-405, May 2012.
http://dx.doi.org/10.1109/TII.2012.2183878

[33] I. Etxeberria-Agiriano, I. Calvo, A. Noguero and E. Zulueta,
“Configurable Cooperative Middleware for the Next Generation of
CPS,” Proc. of the Remote Engineering & Virtual Instrumentation
(REV-2012), pp. 315-319, July 2012.

[34] D. Hoang, H. Paik and C. Kim, “Service-Oriented Middleware
Architectures for Cyber-Physical Systems,” Intl. Journal of
Computer Science and Network Security, Vol. 12, no. 1, Jan. 2012.

[35] M. Lindberg and K. E. A! rzén, “Feedback control of cyber-
physical systems with multi resource dependencies and model
uncertainties,” in Proc. of the 31st IEEE Real-Time Systems
Symposium, Dec 2010.

[36] L. Parolini, B. Sinopoli, B.H. Krogh, Z. Wang, “A Cyber–Physical
Systems Approach to Data Center Modeling and Control for
Energy Efficiency,” Proc. of the IEEE, vol.100, no. 1, pp. 254-
268, Jan. 2012. http://dx.doi.org/10.1109/JPROC.2011.2161244

[37] I. Echeverria and M.C. Woodward, “‘A Reliable Friend’: a
Method for Maintaining the Load Information in a Distributed
Computer System,” 3rd Intl. Conf. Software Engineering for Real
Time Systems, 1991, pp. 63-68.

[38] M. Jovanovic and B. Rinne, “Middleware for Dynamic
Reconfiguration in Distributed Camera Systems,” 5th Workshop
on Intelligent Solutions in Embedded Systems, 2007, pp. 139-150.
http://dx.doi.org/10.1109/WISES.2007.4408495

AUTHORS
Ismael Etxeberria-Agiriano is with the University

College of Engineering of Vitoria-Gasteiz, Department of
Computer Languages and Systems, University of the
Basque Country (UPV/EHU), as Senior Lecturer, (e-mail:
ismael.etxeberria@ehu.es).

Isidro Calvo is with the University College of
Engineering of Vitoria-Gasteiz, Department of Systems
Engineering and Automatic Control, University of the
Basque Country (UPV/EHU), Spain, as Senior Lecturer
(email: isidro.calvo@ehu.es).

Adrián Noguero is with the Software Systems
Engineering division of Tecnalia, as a Software Engineer,
(e-mail: adrian.noguero@tecnalia.com).

Ekaitz Zulueta Guerrero is with the University
College of Engineering of Vitoria-Gasteiz, Department of
Systems Engineering and Automatic Control, University
of the Basque Country (UPV/EHU), Spain, as Senior
Lecturer (email: ekaitz.zulueta@ehu.es)

This work was supported in part by the ARTEMIS JU through the
iLand project (grant no. 10026), the Basque Government (Saiotek) under
project S-PE11UN061 and the University of the Basque Country
(UPV/EHU) through grant EHU11/35. It is an extended and modified
version of a paper presented at the International Conference on Remote
Engineering & Virtual Instrumentation (REV2012), held at University of
Deusto, Bilbao, Spain, July 4-6, 2012. Received 14 September 2012.
Published as resubmitted by the authors 28 November 2012.

iJOE – Volume 8, Special Issue 4: "REV2012/2", December 2012 27

