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Abstract—Cyber-Physical Systems (CPS) integrate 
embedded computers that control physical processes. 
Application domains for CPS may be found in intelligent 
buildings, healthcare, transportation and factory 
automation, among many others. Typically, they are based 
on low profile computing elements, such as sensors and 
actuators that must communicate to carry out complex 
tasks. They must address certain issues such as managing 
available resources and service redundancy, as well as 
solving heterogeneity. In particular, managing 
communication issues can be relatively complex. In this 
scenario, middleware technologies can help developers in 
the design of state-of-the-art CPS. This work describes the 
design principles of CPS that require cooperation. More 
specifically, it presents a generic family of logical 
information exchange and cooperation topologies capable of 
adapting dynamically to changes in the environment. These 
topologies may be implemented on top of several 
middleware specifications as a means for managing 
distributed resources and service redundancy of CPS at 
run-time. 

Index Terms— CPS, Middleware, Fault-Tolerance, Energy 
Efficiency. 

I. INTRODUCTION 
The term “Cyber-Physical Systems” (CPS) was coined 
around 2006 by researchers from different disciplines, 
mainly real-time systems, network communications, 
hybrid systems and control systems (see Fig. 1). 
Nowadays, CPS are becoming a hot research topic being 
funded with a growing number of projects granted by 
different organizations [1, 2]. 

 
Figure 1. Main disciplines involved in CPS. 

CPS can be considered the next step forward in 
computing, involving control/computing co-design [3]. 
More specifically, CPS are integrations of computation 
and physical processes [4]. They include some relevant 
characteristics such as taking care of computation 
performing time and the intrinsic concurrency. Additional 

characterization of CPS is provided by Shi et al. [5]. They 
describe current research on the subject with some 
paradigmatic applications. Wu et al. [6] review CPS 
platforms and wireless sensor networks. They identify 
several current technical challenges including Quality of 
Service (QoS) requirements. 

Unfortunately, there are still a surprisingly small 
amount of theory and tools that help designers to build the 
next generation systems in an efficient way [3]. An 
interesting review of the different technologies and 
approaches used to build these systems may be found in 
[7, 8]. 

Regarding the application domains, base technologies 
are needed to build large-scale safety-critical CPS 
correctly, affordably, flexibly and on schedule [9]. Some 
of these domains include intelligent buildings, healthcare, 
transportation systems, process control, factory 
automation or electrical power grids, just to name a few 
[5, 7] (see Fig. 2). 

During the last years distributed embedded systems 
have increased in size. They have shifted from centralized 
small applications, based on real-time operating systems 
capable of handling multitasking and basic operations 
locally, to large computer-controlled systems, such as 
those found in nation-wide power grids, to supply power 
to billions of devices simultaneously or world-wide 
communication networks [3, 4]. These new systems 
require the development of solid theory and semantics that 
ease its construction. Thus, some of the main abstractions 
introduced by the scheduling theories developed in the 
early 1970s, such as RMS (Rate Monotonic Scheduling) or 
EDF (Earliest Deadline First), are still used to build the 
control application software. However, these abstractions 
frequently do not suit the models of the physical entities 
behind [4]. On top of that, it is not a matter of over scaling 
the resulting systems: adopted solutions must be efficient, 
applying Ockham’s razor. 

In this scenario, the designers of CPS face several 
challenges. Namely, (1) heterogeneous network 
technologies must communicate efficiently; (2) individual 
elements may fail but the whole system must be reliable 
and able to perform correctly in a degraded reconfigured 
mode; (3) maintenance corrective actions could be 
delayed without service disruption when they are not 
critical; (4) since energy consumption can be a limitation 
in locations with difficult access, nodes with higher 
energy load or easier to replace can be identified and 
chosen to carry out the computations more frequently. 
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Figure 2. Different types of CPS applications. 

 
Communication issues related to CPS are of special 

interest in this work. Some authors such as [4] propose the 
adoption of new radical design approaches that match the 
specific requirements of CPS; other authors, such as [10] 
recommend using more pragmatic approaches, at least in 
short to medium term. In particular, [10] propose the use 
of worldwide standard technologies such as IP (Internet 
Protocols) and IEEE 802.11 (WiFi) for CPS. Although 
these standards are relatively poor in terms of efficiency 
and Quality of Service (QoS), several patches have been 
proposed for IP (such as Integrated Services, 
Differentiated Services, etc) as well as for WiFi (e.g. IEEE 
802.11e extension) to enhance their performance. 
Actually, these technologies have beaten in acceptance 
more sophisticated technologies that provide higher 
performance. 

As heterogeneous CPS grow, the use of middleware 
solutions is desirable to reduce the design complexity of 
programming communications issues, especially in 
heterogeneous environments. In fact, the economic 
benefits of using middleware in complex distributed 
applications produce up to 50% decrease in software 
development and costs [11]. Some examples of well 
established distribution middleware technologies allowing 
the integration of control devices are CORBA [12, 13, 
14], ICE [15], OPC [16, 17] and Web Services [18]. More 
recently the OMG specified DDS (Data Distribution 
Service) [19, 20, 21]. DDS is a very promising 
middleware technology that follows the 
publisher/subscriber paradigm. One of the main features 
of DDS is that it provides several mechanisms to set and 
manage a broad number of QoS parameters in real-time 
applications. 

These middleware standards allow building CPS 
applications on top of the well extended TCP/IP stack. 
These technologies can hide the low-level implementation 
details facilitating the construction of the new 
applications. Middleware can serve as the backbone or 
software bus for building CPS applications across many 

domains. An early example of using standard middleware 
in CPS can be found in [22], where the time-triggered 
paradigm was applied to sensor networks. In this work, 
physical nodes (sensors and actuators) were not connected 
to the distributed system directly but by means of CORBA 
gateways that encapsulate clusters of objects. 

However, generic middleware technologies present two 
main drawbacks; on one side they tend to be excessive 
and source of performance overhead for CPS [23], and on 
the other, they do not match some of the special 
requirements of this kind of systems [10], such as 
providing abstractions that represent the entities found in 
CPS. This is why several high-level middleware 
architectures that adapt better to CPS have been proposed. 

This work focuses on high level middleware services 
aimed at simplifying the construction of large CPS. In 
particular, it presents a set of logical cooperating 
topologies that may be used to manage the resources of 
the distributed systems and redundancy of distributed 
services. These topologies allow the creation of structures 
that can be set up during the system bootstrap discovery 
process. These structures may evolve at run-time with 
nodes that join or leave the system dynamically. State 
changes could happen as a result of a modification in the 
functionality of the system, changes at the availability of 
the resources or failures of one device. Communication 
efficiency and other aspects can influence and modify this 
relationship but, for the design of the CPS, these 
requirements need only be configured. Some preliminary 
simulations results that show the application of these 
structures for load sharing can be found in [24]. 

Software migration and dynamic software updates are 
desirable services. An approach to dynamically update 
software in CPS using DDS is proposed in [25]. Dynamic 
reconfiguration is particularly important in applications 
with high availability requirements. 

The reminder of this paper is structured as follows. 
Section II describes the features of CPS with a potential to 
profit from cooperation with QoS requirements, setting 
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the base cooperation; Section III introduces and analyzes 
the construction of the logical cooperating topologies 
proposed in this work. In Section IV a scenario is 
presented to illustrate the application of the generic 
mechanisms under study; Finally, Section V concludes 
and discusses future work. 

II. COOPERATION REQUIREMENTS AT CPS 
Due to their nature CPS introduce particular safety and 
reliability requirements which are qualitatively different 
from those found in general purpose computing. 
According to [4], new computing and networking 
abstractions are needed to deal with the entities used in 
CPS, since they must be able to represent the passage of 
time and concurrency which are intrinsic to the physical 
world. In addition, as CPS do not operate in controlled 
environments, they must be designed in a robust way so 
they are capable to adapt to subsystem failures. 

In addition, most interesting CPS are cooperative 
systems in which networking technologies play a key role. 
Unfortunately, most widely used networking technologies 
introduce a great deal of timing variability. As a 
consequence, two main approaches can be followed: (1) 
Using less widely accepted network technologies, like 
CAN or FlexRay, typically confined geographically to 
local area networks [26]; or (2) assuming lower 
performance and proposing extended abstractions that 
integrate in the existing network infrastructures and 
reference models [10]. 

By cooperation we understand the capability of a 
distributed system with autonomous subsystems to 
dynamically decide which components will carry out a 
certain task in order to optimize response time, energy 
consumption or fulfill a QoS policy. 

A. Features of CPS 
Some of the most relevant features of CPS have been 

identified by [5, 26, 27]. Namely, these are: 
• Dealing with time:  Since CPS deal with physical 

processes, time and concurrency become relevant 
issues. In addition, CPS present strict timing 
restrictions to response times. 

• Close integration: CPS are highly coupled systems 
that may involve large number of devices. 

• Solving heterogeneity: Most CPS use a mixture of a 
high variety of technologies and platforms that include 
different operating systems, programming languages 
and network technologies. 

• Use of the resources: Typically, CPS are implemented 
over devices with low resources in terms of CPU, 
memory, network bandwidth and energy consumption. 
Consequently, the management of these resources is a 
key issue. 

• Dynamic reconfiguration and reorganization: CPS 
should provide the capability to dynamically 
reorganize and reconfigure in order to adapt to changes 
in the physical world or to changing requirements. 

• Dependability and robustness: CPS must be reliable 
even in adverse situations, since the security and safety 
of people and investments can be affected by its 
malfunction. Sometimes, they must be certified. 

B. Cooperation in CPS with QoS requirements 
CPS involve a number of physically distributed 

elements: sensors, actuators, processing/memory units and 
communication devices, many of them with a low profile. 
Frequently the amount of required elements can be 
established, each with a number of duties statically 
assigned in advance. However, many resources are mostly 
idle while others cannot produce high quality results on 
time. For such cases the implementation of cooperation 
mechanisms is proposed. 
• Autonomy: For many CPS the autonomy of their 

subsystems is a highly desirable feature. Certainly, not 
depending on the accurate functioning of the whole 
system reduces security risks coming from human 
errors, natural disasters and human attacks. This is 
particularly true when communications are involved 
and some subsystems are temporarily unavailable. 

• Fault tolerance: Static CPS may be highly reliable and 
predictable but after the failure of any of the physical 
elements the whole system may fail. Restoring back 
the system to a working situation can be a hard task 
requiring identifying the failed elements and replacing 
them, often with service disruption. To prevent such 
situations single points of failure must be avoided. 
Replication, fault detection and fault tolerance 
mechanisms are often used. Services are distributed 
along the CPS and backup physical elements are 
present to dynamically replace similar devices when 
their behavior is not the expected one. Faulty elements 
can after be substituted without the urgency of 
restoring a disrupted service. 

• Scalability: Another common problem of CPS is the 
difficulty to provide smooth scalability. Changing the 
extension of the phenomenon being controlled may 
require duplicating all the elements. Systems become 
unnecessarily large and this size often implies higher 
difficulties. 

• Soft Real-Time Systems: Cooperation can be 
appropriate for soft real-time systems. Indeed, hard 
real-time systems must guarantee response times under 
all failure free situations. Even under failures the 
behavior in such systems must be highly predictable. 
Many physical phenomena do not require such degree 
of reliability and soft real-time solutions will be more 
convenient. On top of that functional parts that are not 
safety critical can often be distinguished. These are 
often more sensible to hardware costs. 

C. Basis for Cooperation in CPS 
To develop middleware allowing generic cooperation in 

CPS some preliminary concepts must be taken into 
account. 
• Control over Communications: CPS communications 

must be well coordinated. It is desirable that different 
components communicate with a common reference of 
priority and other QoS aspects. This is a key factor to 
allow growth without increasing system complexity. 

• Communication Paradigm: The Client/Server 
communications paradigm has been extensively used, 
especially in combination with TCP/IP. It is very 
common to find real-time features in CPS and as such 
Publisher/Subscriber paradigms have advantages in the 
distribution of data, especially when QoS features can 
be controlled. 
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• Resource Replication: The replication of some 
resources can be used to implement fault tolerance 
mechanisms. It also allows exploiting the parallel 
execution when dealing with processing and memory 
elements. 

• Resource Availability Modeling: Truly dynamic 
systems often include resource discovery mechanisms 
to identify the potential candidates for cooperation. 
This cooperation depends on the nature of the 
resource. For example, a battery can be considered 
available when it allows a normal functioning and 
unavailable when it runs out. A quantitative value of 
how charged the battery is can also be distinguished, 
as a notion of load information. However, in order to 
reduce the number of transitions and therefore the 
information update needs, state categories will be 
associated with resource states rather than quantitative 
values. 

• Process Migration: The dynamic execution of CPS 
processes may involve the code mobility, data 
distribution or process migration. Software 
components may be transferred from one device to 
another in reaction to resource availability. 

D. Middleware architectures for CPS 
Middleware is typically organized in a hierarchy of 

several layers [28]. The model presented in [10] proposes 
an additional layer, the so-called Cyber-Physical Layer, 
which includes an abstract description of the properties 
and nature of cyber-physical data. This layer, situated on 
top of the application layer, should provide services for 
the lower layer protocols to support an efficient cross-
layer design of the underlying application and 
communication protocols. Fig. 3 reproduces this new layer 
and its interaction with some of the OSI layers. 

 
Figure 3. Cyber-Physical Layer [10]. 

In [29, 30] the authors present the FTT-CORBA 
middleware architecture aimed at synchronizing the task 
activations of a distributed system according to a plan that 
may be changed at run-time; tasks are wrapped as 
CORBA methods activated by a central node, the 
Orchestrator, over a LAN. This architecture can be used at 
CPS. 

Several authors have proposed different solutions for 
CPS on top of DDS. For example, in [31] the authors 
present a discovery method on top of DDS to be used in 
CPS. Also, in [32] a proprietary distribution service aimed 
at CPS is presented. These methods may be used in 
cooperation strategies to provide fault tolerance and 
reconfiguration of CPS [33]. 

Alternative middleware architectures built on top of 
Web services can also be found in the literature. An 
example is the WebMed architecture [34], designed with a 
service-oriented view point to support CPS applications. It 
enables access to the underlying smart devices and allows 
the integration of their specific functionality with other 
software services. 

E. Infrastructure Modeling of CPS 
CPS require a close interaction with the underlying 

infrastructure. However, most of the architectures do not 
model the available resources to allow making 
reconfiguration decisions. Some models only consider this 
issue partially. For example, traditional scheduling 
algorithms for distributed systems focus on the assignment 
of a set of tasks in a set of CPUs. Frequently, the use of 
other infrastructure resources or the interaction with the 
environment are partially analyzed or not considered at 
all. In CPS, it is necessary to simultaneously consider the 
computing and communication processing together with 
the physical system and their interactions [35]. An 
example of this interaction is the management of the 
energy consumption as described in [36].  More detailed 
models for describing the whole underlying infrastructure 
are required with algorithms to make decisions according 
to its current state. 

III. LOGICAL COOPERATION TOPOLOGIES 
In this section some logical topologies and their use in 
CPS for cooperation purposes are described. It must be 
noted that these topologies may be implemented on top of 
different distribution middleware specifications. Hence, 
the current approach abstracts the underlying physical 
communication technologies, e.g. Ethernet or WiFi. 

Theses topologies represent associations between 
nodes, which are abstractions of autonomous devices that 
can be replicated. These topologies will be used to 
maintain state information that allows quick reaction to 
cooperation necessities. They may be used to provide 
fault-tolerance mechanisms as well as resource 
management at CPS. 

Depending on the final application the use of one 
simple topology may be sufficient, for example, when a 
small number of participating nodes are present. More 
sophisticated topologies will typically involve more 
communication traffic but appropriate information 
according to the requirements. The use of one topology or 
another may similarly be established statically or changed 
dynamically depending on the number of nodes and the 
nature of the system. 

A. Reliable Friend 
The basic logical cooperation topology is called 

Reliable Friend (RF). A similar structure can be found in 
[37]. In this topology each node establishes a best-effort 
compromise to carry out some service when necessary to 
another node called its official sender (OSe) and gets the 
compromise to carry out a service from another node, the 
official receiver (ORe), according to a friendship 
paradigm. This relationship is described in Fig. 4, where 
circles represent nodes and the thick arrows represent this 
official relationship, or compromise to provide a service. 
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Figure 4. Official relationship sender-receiver for a node ni. 

This relationship can be established dynamically as 
nodes incorporate to the system at bootstrap. This may be 
achieved by exploiting the discovery service provided by 
many middleware specifications. Fig. 5 illustrates this 
construction process. 

 
Figure 5. Dynamic construction of the Official relationship. 

In 5.a only n0 is present and acts as OSe and ORe of 
itself with no practical use apart from the construction 
initiation. In 5.b a second node n1 is incorporated to the 
structure therefore forming a two-node official structure. 
In 5.c a third node n2 incorporates and it forms a logical 
cooperation ring, being node n1 its OSe and node n0 its 
ORe. 

Node numbering has been used to describe the vision of 
the official relationship for a node, ni, as illustrated in Fig. 
6. It is noted that this simple vision from the perspective 
of each node of only one OSe and one ORe maintains 
regardless of the number of participating nodes. 

 
Figure 6. Official relationship from a node’s point of view. 

Nodes may be incorporated to the structure, 
establishing a logical cooperating ring relationship. Fig. 7 
depicts this logical official structure for a system with 10 
nodes. As a reminder, the thick arrows represent the 
cooperation compromise between nodes, a logical link 
between nodes. 

 
Figure 7. Reliable Friend 10 node Official Structure. 

B. Temporal Structure 
Depending on the nature of the participating resources 

there will be some circumstances that will make some of 
the nodes temporarily incapable of fulfilling the official 
compromise. On the basic case two possible states are 
considered: Available or able to fulfill compromises and 
Unavailable, or temporarily unable to fulfill 
compromises. The simultaneous presence of multiple 

degrees of availability can be allowed as in the case of 
different battery loads. 

In those cases where some nodes are not available, a 
temporal structure is dynamically maintained. Each node 
keeps the identity of the first available node found 
following node the official structure, the temporal 
receiver (TRe). Obviously, due to information 
propagation delays this information may be out of date. A 
node may have more than one temporal sender (TSe) or 
nodes temporarily relying on it. 

From the point of view of a node denoted Me in general 
there are only four possible situations, described in Fig. 8 
with Available nodes shaded in light color, Unavailable 
nodes shaded in dark color and the rest, not shaded, are 
unknown or irrelevant. 

  
a) ORe Available b) ORe not Available 

  
c) Only Me Available d) None Available 

Figure 8. Temporal Structure different situations for Me. 

The scheme in 8.a illustrates a situation where the ORe 
of a node Me is Available, so that it will be trusted. In 8.b 
the ORe has become Unavailable and a temporal receiver 
(TRe) is Available. The information exchange mechanism 
presented here provides the identity of the first Available 
node found following the official structure, so that it is 
known by node Me. In 8.c only one node is Available, 
Me. Only this node is aware of the fact that only one 
Available node is left in the whole system. When this 
node becomes Unavailable, the situation in 8.d will be 
reached and the information exchange mechanism will 
update that no Available node can be found in the whole 
system. All nodes are aware of that condition. 

Fig. 9 illustrates the snapshot of a RF structure with 
three Unavailable nodes represented with dark circles and 
the rest Available, represented in light circles. Thin arrows 
represent the temporal compromise relationship. In this 
example, n1 and n2 both rely on n3, their TRe. Additionally 
n4, n5 and n6 they all share the same TRe, i.e. n7. 

 
Figure 9. Reliable Friend Temporal Structure snapshot. 

C. Bidirectional Reliable Friend 
Sometimes having just one candidate may not be 

sufficient, especially in CPS requiring a quick response. 
When this ring structure results in an accumulation of 
several Unavailable nodes it is convenient to have more 
choice on cooperation candidates. 

An alternative to the basic RF structure contemplates 
maintaining for each node two official candidates, 
resulting in the Bidirectional Reliable Friend (BRF) 
logical cooperation topology. Fig. 10 depicts this official 
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structure for 10 participating nodes, representing this 
official relationship with bidirectional thick arrows. 

 
Figure 10. BRF Official 10 node structure with bidirectional arrows. 

In this BRF cooperation topology the basic solution is 
to maintain the previously described temporal structure in 
both senses. For the scenario shown Fig. 9 the 
corresponding BRF temporal structure is depicted in Fig. 
11, where every node has two TRe. The official structure 
has been omitted. When only one node remains Available 
in the whole system every node will be aware of this fact 
as they all keep a duplicated TRe. 

 
Figure 11. BRF Temporal Structure snapshot. 

D. Simplified Bidirectional Reliable Friend 
In order to reduce the message exchange activity of 

Unavailable nodes, in the Simplified Bidirectional 
Reliable Friend (SBRF) cooperation topology Unavailable 
nodes only keep the identity of one temporal candidate. 
This candidate has been chosen to be the topologically 
closest in either direction or the one on the clockwise 
sense when two possibilities exist. Fig. 12 illustrates a 
scenario with 10 participating nodes and four dark shaded 
Unavailable nodes. 

 
Figure 12. SBRF Temporal Structure snapshot. 

E. Multi-Level Reliable Friend 
When the concept of availability may be categorized in 

different degrees of load the Multi-Level Reliable Friend 
(MLRF) can be appropriate to dynamically maintain the 
temporal structure. The convention adopted here is to use 
load of a specific resource as CPU workload, so that low 
load means Available. However, for some resources, such 
as batteries, is just the opposite, since batteries would be 
highly Available at the highest load value. 

Thus, at the beginning a low threshold th0 will be 
established to separate Available A0 and Unavailable U0 
nodes as illustrated in Fig. 13. According to the 
convention, the higher the load is the less Available a 
node will be. When all nodes are Unavailable in U0 state 
the threshold will be redefined to th1 so that node with a 
load in between th1 and th0 are now considered Available, 

A1. Depending on the presence of one or many nodes with 
a load lower than th1 a categorization down to set the 
threshold in th0 can be carried out. This operations require 
the participation of all nodes and publish/subscribe 
mechanisms are appropriate for the propagation of this 
information. 

 
Figure 13. Multi-Level RF load categorizations. 

F. Multi-State Reliable Friend 
Similar to the MLRF, when different degrees of load 

can be distinguished quantitatively, boundaries can be set 
to establish load states. Nodes with different load states 
may coexist at the same time in the so called Multi State 
Reliable Friend (MSRF) cooperation topology. With a 
similar ring logical official structure nodes keep the 
identity of the next node with a lower load state if such a 
node exists or one at the same load state, possibly itself. A 
snapshot of the temporal structure of a system with 10 
nodes is shown in Fig. 14. The convention adopted is 
similar to that of MLRF, which means that a node in a 
state labeled 5 means is aiming at sending workload to a 
node with less workload, e.g. 3 or ideally 0. 

 
Figure 14. MSRF temporal structure snapshot. 

Intuitively, nodes may get loaded with no further 
constraint. No load balancing is necessary and that is why 
load state differences between nodes appear. Yet, when a 
node anticipates that some cooperation can show 
advantageous it has solid candidates for reconfiguration. 

Compared to previous cooperation topologies, this 
information exchange scheme requires more 
communications for its maintenance. The advantage is 
that a load gradient is obtained so that when necessary we 
can visit nodes following this structure and each hop 
reduces at least one degree until we reach the node with 
the lowest load in the system. 

G. Multiple Reliable Friends 
The combination of coexisting Reliable Friend 

structures may extend the power of this kind of 
cooperation forming multiple Reliable Friend structures. 
Two general approaches are considered: (i) the 
combination of different RF structures within the same 
hardware system dealing with information on different 
resources (e.g. batteries, processing power or memory) 
called Multi-Purpose RF (MPRF) and (ii) the combination 
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of different RF structures dealing with the same aspect, 
called Multi RF (MRF). 

In MPRF approaches a single information exchange 
schema may be utilized to exchange and maintain this 
information. 

In MRF approaches individual RF structures form 
autonomous groups that can collaborate with others in a 
second degree of collaboration. 

IV. CONCLUSIONS AND FUTURE WORK 
This paper proposes the integration of some state 
information exchange mechanisms in Cyber Physical 
Systems (CPS). More specifically, various generic state 
information exchange cooperation topologies are 
described. The topology choice for a particular system 
depends on the meaning given to the concept of state and 
the characteristics of cooperation. 

These information exchange mechanisms can be useful 
in CPS built out of COTS middleware components in 
order to provide reconfiguration mechanisms for fault 
tolerance and resource management in a scalable manner. 

Currently, the proposed cooperation topologies are 
being implemented on top of DDS middleware, namely 
OpenSplice, exploiting its discovery mechanisms. This is 
consistent with the proposition of using a single 
communication backbone middleware for the whole 
system with control over the QoS, since DDS provides a 
logical software bus. 

In our current implementation the official and temporal 
structures are maintained in a network of computers 
simulating state changes. 

Envisaged future work includes the implementation of 
all the proposed information exchange mechanisms, and 
individual and combined performance evaluation, together 
with the development of solid middleware architecture 
with an API allowing its use on various CPS scenarios. 

The authors are also analyzing a case study for applying 
the proposed topologies and high-level middleware, 
consisting of a security surveillance system with 
cooperation requirements similar to the applications found 
in [29, 38]. More specifically, the considered case study 
consists of a large building with multiple surveillance 
subsystems installed in several strategic points. Each 
surveillance subsystem has optional sensors including 
temperature, pressure, noise and vibrations; smart 
embedded cameras; batteries preventing service disruption 
when electricity is cut; memory to store some minutes of 
video of different qualities. These devices can 
communicate with each other as well as with remote 
headquarters. They can work in different modes, namely, 
standby, remote control and standalone autonomous. 
Cameras can capture raw images and video and process 
them locally using demanding compression algorithms or 
send them over so other subsystems are responsible for 
compressing, storing or even sending them to remote 
locations. 
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