
SPECIAL FOCUS PAPER
A COMPONENTIZABLE SERVER-SIDE FRAMEWORK FOR BUILDING REMOTE AND VIRTUAL LABORATORIES.

A Componentizable Server-Side Framework for
Building Remote and Virtual Laboratories.

http://dx.doi.org/10.3991/ijoe.v8iS4.2278

Jesus L. Muros-Cobos, Juan A. Holgado-Terriza
University of Granada, Granada, Spain

Abstract—Currently, virtual/remotes laboratories are often
being built to improve learning and researching capabilities
in some areas of knowledge. Generally these virtual/remotes
laboratories are built from scratch again and again, instead
of reusing software and hardware infrastructures. This
paper presents a new framework, RVLab, to help develop-
ers building flexible and robust server-side virtual and
remotes laboratories quickly. RVLab affords support for
the basic requirements of these systems such as the user
management or the resources (instruments and devices)
reservation. Unlike other lab systems, RVLab is adapted to
devices and instruments of any real laboratory due to a
secure and robust mechanism that allows the remote
execution of lab programs. Moreover, it improves the user
interaction with real labs, providing a real-time visualiza-
tion of experiments and lab instruments by means of the
control of video camera placed into lab, and the transmis-
sion of video streaming with different quality to users.

Index Terms—Server-side framework, remote laboratory,
virtual laboratory

I. INTRODUCTION AND BACKGROUND

In university environment, especially in technical and
scientific degrees, it is usually necessary to manage
several sophisticated lab instruments for student forma-
tion, in many cases with a restrictive use, due to the high
costs associated with respect to the deployment, startup
and maintenance of these systems. A frequent strategy to
improve the utilization of these expensive labs, reducing
at the same time the overall costs, is the inclusion of
(some kind of) remote support or simulation capability.
Those inclusions do not significantly affect the effective-
ness and educational objectives achieved by a physical
laboratory [1]. However, the integration of hardware and
software technologies into a remote or virtual laboratory
supposes a very specific design, not reusable in general for
others labs.

Many confusing terms such as on-line, web-based,
remote, distance are mostly employed to describe and to
identify a remote laboratory in contrast with the traditional
one. Eick [2], for example, takes the term web lab to
highlight the web nature of the used tools and technolo-
gies, while Garcia-Zubia et al. [3] focus the importance on
the distance between the laboratory and the computer used
to manage the lab. However, the system architecture of
both proposals is very similar. Couter et al. [4] carried out
a study analyzing the terms used to characterize a remote
lab in a wide set of papers from the bibliography, and he
found that the differences basically depends on the
available features, the technologies used, the purpose or

scientific interest of the lab and, finally, the functionality
or possible activities performed by the lab.

In order to avoid confusion and misunderstanding [5],
we define a laboratory computing system (LCS) as a set of
hardware-software components and equipment necessary
to perform any researches, experiments, scientific or
technical work. The LCS can be considered a Virtual Lab
when the lab carried out simulations or a partial emulation
of the equipment available on a real lab. Instead, a Remote
Lab (RL) refers to the set of hardware-software compo-
nents which allows the access and control of real instru-
ments from any location in the world through a network
(e.g. Internet). Therefore a virtual/remote lab (VRL)
denotes a combined LCS which can operate with simula-
tion and real instruments. Similar definitions are found in
other paper [6]. In some examples of LCS are the follow-
ing: RLs for measuring instrument [7][8], VRLs for
program microcontroller [1], RLs for networking [9],
general RLs[10][11]. An inspection of the features and
capabilities of VRL reveals that there are some basic
services and applications shared by all the LCS such as
the management of users and lab resources, lab reserva-
tion, the scheduling, control and monitoring of experi-
ments or experimental sessions with laboratory system.
Most of the applications are developed specifically for
every LCS, instead of developing generic components that
should be integrated into laboratory system, making
difficult the reusability of LCS [12].

Despite the advances in software and hardware plat-
forms (or infrastructures), there are some aspects to be
improved in LCS. A user rich experience with the lab in
learning environments requires a continuous feedback of
students in order to enforce the learned concepts in
experimental sessions. An active way to achieve that
reinforcement is by enabling the interaction with instruc-
tor and other students during lab sessions [13], for exam-
ple, with the use of collaborative tools such as discussion
boards, online conferencing system or concurrent live
chat. Another option is adding video-camera management
in order to improve the perception of user interaction with
the lab.

The laboratory must organize the data generated (ex-
perimental data, measurements, video streaming, images,
etc.) during an experimental session, and then transmit it
to the users in order to give them the perception of a real
interaction with the lab. Couteur [4] pointed “Seeing is
believing – using a camera to see the experiment is
important to the student.” in order to incise that real-time
visualization of the laboratory with cameras is an impor-
tant data source to be managed by the LCS. Thus, an
effective coordination and synchronization should be
performed with heterogeneous data sources provided to

iJOE – Volume 8, Special Issue 4: "REV2012/2", December 2012 43

http://dx.doi.org/10.3991/ijoe.v8iS4.2278�

SPECIAL FOCUS PAPER
A COMPONENTIZABLE SERVER-SIDE FRAMEWORK FOR BUILDING REMOTE AND VIRTUAL LABORATORIES.

the user, and not individual unrelated components such
system with virtual desktop [14] or the use of webcam
used only with VNC [5].

The framework, RVLab, is proposed to implement
server side LCS systems to control remotely real and
virtual labs in an easy and free fashion. RVLab provides a
set of components adaptable to any LCS in two ways.
Firstly, it delivers a set of common basic pluggable
modules for the general management (users, lab resources,
reserve time) of any LCS, deployed on a server, not
necessary coupled with the LCS. The server hides the
localization of lab resources to users enabling the security
of system and provides a common endpoint to the startup
of client applications.

Secondly, RVLab includes an extensible component,
Instrument Management Subsystem, for the handling of
specific data sources (experimental data or images) from
physical instruments and the injection of commands from
client to instruments. RVLab supplies a set of communi-
cating channels adaptable to several communication
protocols between the instruments and the clients. Fur-
thermore, RVLab acts as a bridge between instruments
and the clients, monitoring and supervising the data and
commands between counterparts. The mechanism is very
flexible and not intrusive in the sense that it releases to
developers the way that client applications can handle the
instruments of a RVL lab system. Therefore, developers
must program the client applications within the context of
physical lab, and RVLab extents its remote execution
deriving the data and commands through secure commu-
nication channels.

The rest of the paper is organized as follows. Section 2
introduces presents the architecture and components of
RVLab. Section 3 describes how add new instruments to
RVLab step by step and how communicate the instrument
with clients. Section 4 details the proposed method to add
new cameras and how the system can be changed to
storage user data. Section 5 explains a study case of how it
is applied on a practical domain. Section 6 presents the
performance evaluation of RVLab achieved in the study
case. Section 7 describes some related works. Finally,
Section 8 exposes the conclusions of the pa-
per.Architecture

RVLab is a componentizable framework which builds
online lab systems, remote and virtual, adaptable to any
instruments of the lab, reducing the implementation tasks
only with respect to the instrument to be virtualized or to
be accessible remotely. RVLab produces lab systems with
three-tier architecture as it is shown in figure 1. Each tier
represents a logical piece of the lab system placed on a
computer or device into the network with a specific
responsibility with respect to overall system. For instance,
instrument-side applications are in charge of virtualizing
the real instruments of the lab, and give to server-side
applications, an interface to access and control the instru-
ments. Server-side applications arrange data from instru-
ments and hide the management of instrument resources
to client applications, and finally client-side applications is
responsible to show to an user (or several ones) the state
of the controlled environment where the experiment is
occurred in base of data obtained from instruments, and
the corresponding user’s interface with panels in order to
allow the supervision and control of the lab system. The
insertion of a server-side tier improves the security of the

TABLE I.
COMMANDS OF THE API OF SERVER-SIDE COMPONENTS

Call Input Output

User management

addUser
String:id, String:pass, String:name,
String:surname, String:group, String:type,
String:adminId, String adminPass.

“success” or
descriptive error.

modifyUser
String:id, String:pass, String:name,
String:surname, String:group, String:type,
String:adminId, String adminPass.

“success” or
descriptive error.

addType
String:name, String:priority, String:year,
String:web,String:group, String:professor,
String:adminId, String:adminPass

“success” or
descriptive error.

changePass String:id, String:oldPass, String:newPass
“success” or
descriptive error.

removeUser
String:id, String:adminId,
String:adminPass

“success” or
descriptive error.

removeType
String:type, String:adminId,
String:adminPass

“success” or
descriptive error.

removeType-
ByYear

String:year, String:adminId,
String:adminPass

“success” or
descriptive error.

clearByType
String:type, String:adminId,
String:adminPass

“success” or
descriptive error..

clear String:adminId, String:adminPass
“success” or
descriptive error..

listUser
String:value, String:filter, String:adminId,
String:adminPass

Array with all
data.

listMyType String:id, String:pass
Array with all
types of the user.

login String:id, String:pass
success” or
descriptive error..

Turns management

order-
Ticket<number
>

String:id, String:pass

Boolean true if
user has been
added to queue,
false if there was a
error

giveTurn<num
ber>

String:id, String:pass void

Reserves management

addReserve

String:beginDay, String:endDay,
String:beginHour, String:endHour,
String:User, String:repetitions, String:user,
String:pass

“success” or
descriptive error..

modifyReserve array:data
“success” or
descriptive error..

deleteReserve array:data
String “success” if
ok, else
descriptive error.

getReserves String:user, String:pass
String with dat in
xml format

Video management

addCamera array:data
int code, 0 if
success

modifyCamera array:data
int code, 0 if
success

removeCamera
int:number String:adminId,
String:adminPass

int code, 0 if
success

moveCamera
int:number, int:direction, String:dni,
QString:pass

int code, 0 if
success

moveSpeed-
Camera

int:number, int:velocity, String:dni,
String:pass

int code, 0 if
success

zoomCamera int:number, bool:in, String:dni, String:pass
int code, 0 if
success

Instrument management

addInstrument array:data
int code, 0 if
success

modifyInstru-
ment

array:data
int code, 0 if
success

removeInstru-
ment

int:number String:adminId,
String:adminPass

int code, 0 if
success

44 http://www.i-joe.org

SPECIAL FOCUS PAPER
A COMPONENTIZABLE SERVER-SIDE FRAMEWORK FOR BUILDING REMOTE AND VIRTUAL LABORATORIES.

Figure 1. Componets of RVLab framework

lab system, hiding the physical address of all instrument
resources. In contrast, the exposition of any instrument
resources directly to user (e.g., a webcam [5]) can be
dangerous with respect to security and it should be avoid
[10] [11].

RVLab facilitates the design of lab systems providing a
set of server-side pluggable components which simplify
the management of lab system. These components (figure
2) can be selected and parameterized at runtime using
program configuration. By default RVLab supports the
following modules:
a) User management subsystem. It checks the user’s
identity and controls his or her permission levels of any
lab resources. This subsystem can manage an individual
user or multiple users organized in groups. The user’s list
can be stored in XML files or a database depending on the
number of users to be controlled. RVLab can execute
secure scripts for the creation, modification or deletion of
multiple users in a secure way. The scripts can be stored
on a special secure ftp, and are executed by admin user.
b) Camera management subsystem is a basic parameter-
ized component of RVLab to install, control and configure
remotely the cameras placed on a physical laboratory. It is
also responsible to capture a video signal of the environ-
ment and the further transmission of video- streaming
with different quality to users. RVLab includes natively
support for commercial IP cameras from Axis and
Vivotek, fixed and PTZ. Opposite to a direct access to an
IP camera (not recommended in a secure lab), RVLab
addresses transparently video-streaming, removing even
the users limit usually imposed by some IP cameras to
control the video-streaming bandwidth.
c) The Time Reservation subsystem provides a common
flexible procedure to reserve and assign equitable time
access to laboratory (and lab resources). An user can
reserve an instrument the time necessary for his or her
experiment, and he or she can know the time limits to
carry out the experiment and the actual user reserves.
Then, RVLab schedule the lab time into a FIFO queue.
d) Instrument Management subsystem. RVlab has imple-
mented a flexible and adaptable module to administer

directly the instruments or instrument-based devices. The
instruments can be implemented by developers using the
preferred programming language, distributed paradigm or
network protocol. However, some restriction and rules
must be imposed in order to be controlled by the lab
system.
e) Lab Resources Management subsystem is a module
responsible of administering any other lab resources such
as manuals, tutorials, and so on, in general, necessary for
the training of users. Lab resources in some cases can be
also user logs, reserve lists or stored partial results.
RVLab includes a common way to deal with lab re-
sources, enabling commands to upload them to server, to
download them or to assign time use and user groups.
Each lab resource uploaded by a user is stored on a secure
ftp server after checking the nature of the uploaded files.
f) Chat Subsystem. RVLab includes a concurrent live
chat system to provide active interaction between users
(e.g. student-student and instructor-student in an education
domain). The subsystem opens a socket for each user once
they have been registered to broadcast all the messages to
user opened sessions.

Figure 2 shows the deployment diagram of the system
architecture for an online lab system, which indicates the
three main blocks, client-side, server-side and instrument-
side, and how they are connected. RVLab adds pluggable
server-side components into the server, which decouples
the instruments from clients using the same or different
communication protocols and gives a secure access
between clients and instrument resources. RVLab does not
provide code for instrument-side and client-side blocks,
only for server-side block, leaving to developers the
mission to implement the rest of blocks. Furthermore,
RVLab components impose a model to manage instru-
ments with some slight constraints (examined in next
section), and give an interface with a well-defined API to
help the coding of client-side applications.

Client-side applications can access to server by using
XML-RPC [15], a distributed paradigm based on remote
procedure call using XLM for data format and HTTP as
transport protocol. The selection of XML-RPC is because
it defines a simple RPC mechanism over usual HTTP
transport, which is language and platform independent;
there are multiple libraries in many programming lan-
guages such as c, c++, java or php, covering the require-
ments of any developer. RVLab provides an API to
server-side components in terms of commands to be
invoked by client-side applications through XML-RPC;
Table I shows a list of these commands, but developers
may add more commands for their instrument components
(see next section). To design RVLab we are focused on
three main aspects that become design goals: versatil-
ity/reusability, security and instruments ubiquity.

One of the major shortcomings of a VRL or an online
lab system is the reusability [12]. The most of VRLs are
developed for a specific type of laboratory instruments,
requiring a new development from scratch for every new
lab system. Instead of reinventing the wheel in the devel-
opment of a lab system, reusing common components
give to developers a reusable base to reduce the software
efforts and costs, achieving a new lab system in shorter
delivery time. Besides to reusability, the versatility is a
strong feature desirable for any real laboratory, and also a
key factor for the design of RVLab framework

iJOE – Volume 8, Special Issue 4: "REV2012/2", December 2012 45

SPECIAL FOCUS PAPER
A COMPONENTIZABLE SERVER-SIDE FRAMEWORK FOR BUILDING REMOTE AND VIRTUAL LABORATORIES.

 deployment Deployment Model

«device»
Serv er-Mac/Linux/Windows

«executionEnvironment»
:RVLab

«device»
Camera1

«device»
Camera2

«device»
cameraN

«device»
Instrument1

«device»
Instrument2

«device»
InstrumentN

«device»
PC-Mac/Linux/Windows

«device»
Tablet-Android

«executionEnvi...
Driv er

«executionEnvir...
Client

«executionEnvi...
Client

Proxy

«executionEnv...
Driv er

Instrument
Management

Cameras
Management

XML-RPC Serv er

BluetoothUsb, IEEE1394...

http

http

Usb

rtsp

Figure 2. Deployment diagram of an online lab system.

cmp Component Model

Serv er

Video

Reserv es
management

Intrument
management

CoreUser management

«subsystem»
http1

«subsystem»
http2

«subsystem»
httpN

Client

XML-data System Gestión de datos de
grupos

Chat

Proxy

«flow»

«flow»

«flow»

«flow»

«flow»

«flow»

Figure 3. Component diagram of server-side components

Sommerville recommends the use of some techniques
to ensure the reusability of the designed program [16],
listed in Table II. RVLab makes use of some of them to
improve the code reusability of server-side components.

A set of design patterns [17] such as factory pattern,
singleton and observer are applied in RVLab in order to
explode the capability of adapting the framework to any
instruments and cameras and extend the capabilities of its
block components. In addition, RVLab is implemented in
QT [18], a cross-platform application framework widely
used in multiple platforms, augmenting in this way the
portability of the code. RVLab is completely configurable
with configuration files and parameterized to change its
behavior.

Security is another important factor in RVL lab system
in order to maintain safe the devices, instruments, lab
resources and users of the laboratory. RVLab applies
security policies at two levels. First, it manages and routes
all data and command connections using SSL by checking
user and permissions in any request. Second, the RVLab
architecture benefits the security, exposing only one
access endpoint for lab clients and hiding all the devices,
Recommendation for reusability [Som95]

Approach Description

Design patterns
Generic abstractions that occur across applications
are represented as design patterns that show
abstract and concrete objects and interactions.

Component-
based
development

Systems are developed by integrating components
(collections of objects) that conform to compo-
nent-model standards.

Application
frameworks

Collections of abstract and concrete classes that
can be adapted and extended to create application
systems.

Legacy system
wrapping

Legacy systems that can be “wrapped" by defining
a set of interfaces and providing access to these
legacy systems through these interfaces.

Service-
oriented
systems

Systems are developed by linking shared services
that may be externally provided.

Application
product lines

An application type is generalized around a
common architecture so that it can be adapted in
different ways for different customers.

COTS
integration

Systems are developed by integrating existing
application systems (COTS: Commercial of the
shelf).

Configurable
vertical
applications

A generic system is designed so that it can be
configured to the needs of specific system
customers.

Program
libraries

Class and function libraries implementing
commonly-used abstractions are available for
reuse.

Program
generators.

A generator system embeds knowledge of a
particular type of application and can generate
systems or system fragments in that domain.

Aspect-
Oriented
software
development

Shared components are woven into an application
at different places when the program is compiled.

instruments and cameras which could be connected into

the same LAN or several LANs. A common weakness
found on many laboratories [5][9] in our opinion is the
separation of the lab management applications using
different technologies; i.e., an IP camera for the control
and visualization of the environment (some time directly),
and a web tool based on moodle for user and content
management. The technologies disaggregation makes
difficult the lab configuration and the protection against
security attacks. However, RVLab provides an effective
and unified mechanism to cope the technological diversity
required for the developing of lab tools and applications.
Then, although communication connections outside
RVLab control are possible and not recommended, it
exposes a set of secure communication channels in order
to apply security policies with XML-RPC protocol. In
addition, the model favors the reconfiguration of labora-
tory applications, without any notification to user client
application.

Instruments and cameras can be anywhere and they can
be connected to server using several internet protocols or
any other communication protocol. The server-side com-
ponents hide the instruments and cameras and address the
commands invoked by client-side applications. Insertion
of an instrument into a Lab system

A RVL or online lab system developed with the support
of RVLab must contain components for the management

46 http://www.i-joe.org

SPECIAL FOCUS PAPER
A COMPONENTIZABLE SERVER-SIDE FRAMEWORK FOR BUILDING REMOTE AND VIRTUAL LABORATORIES.

of users, cameras, time reserves, lab resources and
instruments. The last one, the instruments, is the depend-
ent part in any lab system. RVLab gives complete free-
dom in its design and coding with respect to the pro-
gramming language, distributed paradigm and communi-
cation protocol. But it is imposed some rules and restric-
tions that must be satisfied by the component to be added
in lab system.

RVLab applied some design patterns to simplify the
way that a developer could build a new instrument into the
lab system. For instance, abstract factory pattern facilitates
the adaptation of any instrument to RVLab vision in order
to manage them.

To design a component for an instrument with RVLab
we must distinguish several stages:
a) Implement the instrument component.
b) Register the instrument component into the server.
c) Prepare a configuration file to dynamically load the
instrument component by an instrument manager.
d) Design of an API for the new instrument component.

First we need to implement the instrument component
as a derived class which inherits from InstrumentResource
abstract class, and can be managed by the Instrument
Management subsystem. The derived class must have an
implementation of the instrument which supposes the
communication with the instrument device or the software
that controls the instrument using a specific communica-
tion protocol whether it is specified by the instrument, or
any other ones defined by the developer. In study cases we
have used TCP based communication protocols. Figure 4
shows the logic representation of any instrument as a
subclass of InstrumentResource.

In order to simplify the management of InstrumentRe-
source derived classes, a dynamic subclass registering
mechanism has been implemented. This mechanism
allows selecting dynamically the concrete subclass of the
abstract factory at runtime from a set of registered sub-
class..

The dynamic subclass registering mechanism must
store into a map, an id of the subclass and a pointer to a
constructor method of objects of this subclass. The static
method InstrumentResource::registerSubClass can be
called from anywhere, and allows registering a new
subclass. For example,

InstrumentRe-
source::registerSubClass("injector",Injecto
r::createInstance);

The above function stores into the map an id “injector”

with the function pointer Injector::createInstance, which is
a method that returns an instantiation of a new object for
Injector class. Using the above mechanism the developers
can register the potential instruments to be managed by
the framework.
The Instrument manager class is responsible to store all
the controlled instrument objects in the system, and in
general they might be read from configuration file. Using
same ids in configuration files than registered classes, the
instrument management subsystem can create new
instrument objects. Therefore it is important that ids
included into the configuration file will be the same ids of
the classes already registered. Otherwise the instrument

InstrumentResourceInstrumentResource InstrumentResource

IntrumentManager

InstrumentResource

InstrumentMCU InstrumentArduino

Figure 4. Logic representation of an instrument.

management subsystem throws an error and instrument
will not be instantiated. An example of a section the
configuration file is shown in the following code:

<instrument>
 <id>injector</id>
 <name>Injector PSD/3</name>
 <number>2</number>
 <groupInstrumentID>1</groupInstrumentID>
</instrument>

In above code, there are several parameters,. Instru-

mentManager is responsible for reading all parameter in
the xml file and it will instantiate the new class with these
data. The constructor of new class must accept an array of
QObjects. Another advantage of our registering mecha-
nism is that the constructor of new classes can accept on-
the-fly a variable array of parameters (i.e. using QObject
definition of QT) instead of a fixed list of parameters. This
allows a flexible instantiation of instrument classes, but
with the requirements of parsing each parameters of the
array. Therefore InstrumentManager will read all parame-
ter in xml file, it will create an array with the data and it
will call to the constructor of new class using the array as
parameter.

Finally, it is necessary to communicate clients with
instruments. The instrument objects could create a new
API for the instruments by the definition of specific
commands or services, which can be invoked by a XML-
RPC protocol from client-side applications. In order to
register a new service or command, developers only have
to register operation name, the object receptor and the
method of object receptor. An example is:

LocalLab::addMethod("executeExperiment",
instrument1, "loadAndExecute");

This operation registers new XML-RPC method with

name “executeExperiment”. When a client launches a
request with executeExperiment id, RVLab will call the
method loadAndExecute in object instrument1. The
invocation of a command by a client in executeExperiment
should have the same number of parameters with the same
type; in other case the command it is not accepted.

The above procedure uses a request-response mecha-
nism based on RPC paradigm to route the commands from
the client-side applications, blocking the object receptor
until a response is transmitted to client. But, sometimes
we can require an asynchronous mechanism to notify data
or any type of event to client. In these cases, RVLab

iJOE – Volume 8, Special Issue 4: "REV2012/2", December 2012 47

SPECIAL FOCUS PAPER
A COMPONENTIZABLE SERVER-SIDE FRAMEWORK FOR BUILDING REMOTE AND VIRTUAL LABORATORIES.

allows the opening of secure sockets to client to send data
stream or communicate client and instrument directly.

It is also possible to use the sockets to route the com-
mands directly to instrument. But in this case, the proxy
component of RVLab could be used in addition to adapt
these commands between different communication
protocols.

II. INSERTION OF NEW CAMERAS IN A LAB SYSTEM

It is possible to adapt or extend the functionality of
default pluggable components by using a similar register-
ing mechanism as it is describe in before section. We
applied it to simplify the inclusion of new cameras into the
Camera Management subsystem. The steps are:
a) Register the provided abstract superclass with a new
derived subclass with an “id” and a pointer to constructor.
An example for registering a new video camera is:

VideoRe-
source::registerSubClass("Logitech",VideoRe
sourceLogitech:: createInstance);

b) Define a configuration file from RVLab to read the
cameras to be instantiated. An example of a configuration
file is the following:

<camera>
 <vendor>Vivotek</vendor>
 <cameraIp>1.2.3.4:1026</cameraIp>
 <cgiPort>8080</cgiPort>
 <name>Camera2</name>
 <number>2</number>
 <type>normal</type>
 <streamName>live.sdp</streamName>
 <groupInstrumentID>1</groupInstrumentID>
</camera>

c) Use superclass “createInstance” method with subclass
id to obtain new subclass object. In our case, the objects
are read from the configuration file at runtime. Using the
above example, we can create a new camera object by the
following code:

vr=VideoResource::createInstance("Vivotek",
tk,recorderData, "1.2.3.4:1026", "Camera2",
2);

Actually RVLab can receive video data using most

popular codecs (mpeg2, mpeg4, h.263, h.264, divx, xvid,
vp8, theora) in several formats (mpeg, mp4, webm, ogg)
and it can transcode video using webm (vp8+vorbis), ts
(mpeg4+mp3 or h.264+acc), ogg (theora+vorbis).

RVLab can synchronize several video sources when
they are sent using rtsp or rtp. RVlab uses marks of time
included in the protocol. RVlab supports others protocols
such as http. However synchronization will not be avail-
able. These protocols are not metadata to synchronize.

III. STUDY CASE: DOMOLAB

RVLab has been used for the development of an online
lab system in order to verify the possibilities of this
framework. The support of RVLab provides the base for
the implementation of server-side application. But, in

addition, it has been necessary to perform the implementa-
tion of instrument-side and client-side applications.

Domolab is an online lab system for learning the prin-
ciples of concurrent, embedded and real time program-
ming using a house-scaled model as a didactic tool [19].
The house-scaled model is equipped with a microcontrol-
ler of 8, 16 or 32 bits and a plenty of sensors and actuators
to simulate home-automation systems in a home environ-
ment. Initially, the house-scaled model was placed on a
laboratory and was used directly by computer science
students to test their programs. In order to implement their
programs, the students must use the framework JavaES
(Java Embedded Systems) [20]. JavaES is a Java based
middleware that abstracts the hardware interaction to
sensors and actuators. Then, it provides a simplified way
to implement Java programs that access to hardware
devices independently of used microcontrollers.

Domolab gives to the students the opportunity to test
their programs directly from their houses, without being in
the lab. Domolab has a robust self-reset system loaded
onto the microcontroller that admits the upload of user
programs using a remote Domolab client-side program.
This is achieved by the support of RVLab framework. An
operational server-side program is executed using default
pluggable components, giving a control of users, lab
resources, time reserves, and the microcontroller where
the user program will be uploaded.Once the user program
is loaded into the microcontroller through server, its
execution is monitoring giving data directly to the user.
The user can see what happen in the remote house model
by the visualization of the laboratory with three IP
cameras, which can be also controlled by user. Therefore,
two static and one PTZ camera is placed on the physical

Figure 5. Remote Domolab client-side application.

Figure 6. Instruments of the Domolab lab.

48 http://www.i-joe.org

SPECIAL FOCUS PAPER
A COMPONENTIZABLE SERVER-SIDE FRAMEWORK FOR BUILDING REMOTE AND VIRTUAL LABORATORIES.

lab, that it allows users to see the consequences of their
program in the remote house model (e.g. switch on a light)
by transmitting video-streaming to user. For the uploading
of user program into microcontroller, a script on the server
is applied that store temporally the user program into a
secure ftp (vsftpd) for that user, before Instrument Man-
agement Subsystem might send it to microcontroller of
house-scaled model.

Figure 5 shows the user’s interface for the remote
Domolab client-side application on which user makes use
of lab system. It should be implemented completely using
commands from the API of server-side components that
are invoked through XML-RPC. Therefore, both instru-
ment-side and client-side application must be developed.

IV. PERFORMANCE EVALUATION

A preliminary performance evaluation is performed on
the server-side components supported by RVLab for
Domolab lab system.

The system has been tested with forty users connect at
time. In testing session, a server with two Intel Xeon Quad
Core E5405 @ 2Ghz, 4GB RAM a 100Mbits/s connection
was used. To control the experiment a virtual machine
with four cores and 512MB RAM was used.

The experiment consists of analyzing the registration of
one hundred fifty users, belonging to four different groups
at the same time to lab server. In this case there were
twenty reserves available, fourteen personal and five
reserves of group. During testing phase, there were two
valid reserves, a personal one from 11:00 to 12:00, and a
group one from12:00 to 13:00.

All the measurements are made from 11:39 to 12:19. At
12:19h we begin to disconnect the computers in the last
stage. When there were forty clients connected, we sent
numerous turn requests to the server, being the most
expensive task, since they need to check all the reserves.

First we carried out a measurement of the CPU rate,
and its variation with respect to time and connected
clients. Figure 7 shows that CPU rate has a little variance
in time because most of the calculation is the recoding of
the three video-streaming taken by the cameras.

Figure 8 measures the memory consumption in the
same time frame. As it is seen the memory consumption is
very stable, since the memory load is mainly due to the
reading of XML files, and especially to the recoding of the
video-streaming. In our case with the encoding of three
simultaneous streaming requires the use of approximately
95% of the 512 MB of RAM; this measure includes the
rest of processes of OS. Therefore, the CPU burden on the
connected clients is minimal, because their number has a
little impact on the use of main memory.

Another critical parameter for simultaneous user con-
nections is the bandwidth as it is shown in figure 9. This
gives a comparison between data sending and data
reception on the server. Received data (in blue) has a little
variation around 1.37 Mb/s, because the data received
from cameras had been arriving constantly with a similar
bitrate, and did not depend on the number of connected
users. In contrast, the red graph shows the data sent to
users. As it is shown in figure 8, the mean value of sent
data is 36.89MB/s, 27 times greater than received data.
The value is increasing when the number of connected
users grows, and is decreasing at the end of the experi-
ment when users decrease. The reason for this fact is that

Figure 7. Domolab, CPU usage

Figure 8. Domolab, Memory usage

Figure 9. Domolab, Bandwight used

when the users grow, the video-streaming must be send to
more users.

V. RELATED WORK

Ranaldo et al.[21] presented a similar flexible system
that manages both the real-time visualization of the
measurement instrumentation and data flows concerning
experiments on real measurement instrumentation. But,

iJOE – Volume 8, Special Issue 4: "REV2012/2", December 2012 49

SPECIAL FOCUS PAPER
A COMPONENTIZABLE SERVER-SIDE FRAMEWORK FOR BUILDING REMOTE AND VIRTUAL LABORATORIES.

RVLab manages any instrument, not only electronic
devices, in an unified way without the need of connecting
VPN or Windows environment. Moreover, RVLab can be
adapted to LabView, but it is not dependent of any
software and hardware platform. Harward et al. have
designed iLab Shared Architecture that it is used in
several universities around the world [10][22][23]. This
system provides a scalable, uniform platform to access to
lab systems. iLab and Ranaldo et al.[21] are focused to
work with LabView, which provides good interfaces to
work with several instruments in engineering and elec-
tronica areas. However there are several areas where
LabView is not used and it does not offer support for
video streaming.

VI. CONCLUSION

On conclusion, high costs associated to specific instru-
ments require the adoption of software and hardware
infrastructures that simplifies the development of laborato-
ries and maximize its use at the same time. RVLab is
implemented with the premise that any laboratory infra-
structure (including hardware and software) should be
sufficient flexible and versatile to adapt to any specific
instrument without losing the performance. The Instru-
ment Management Subsystem of RVLab offers a robust
and secure mechanism to developers that can be adaptable
and extensible for any instrument of a laboratory.

In addition, RVLab allows remote control of a set of
cameras (IP camera and USB camera) and the synchro-
nized transmission of video-streaming to user using
efficient lightweight codecs (included in RVLab). The
difference with other proposals is that RVLab includes
natively the support for the camera and video management
based on open network tools instead of working with
independent devices.

RVLab is applied for the development of two RV Labo-
ratories with good performance with respects to the
number of connected users with a moderate consumption
of resources. The implementation was relatively quick,
requiring the coding of a few classes.

VII. REFERENCES
[1] K. Choi, S. Han, S. Kim, D. Kim, J. Lim, D. Ahn, and C. Jeon, “A

combined virtual and remote laboratory for microcontroller.” in
ICHL’09, 2009, pp. 66–76.

[2] S. G. Eick, A. Mockus, T. L. Graves, and A. F. Karr, “A web
laboratory for software data analysis,” World Wide Web, vol. 1,
pp. 55–60, 1998, http://dx.doi.org/10.1023/A:1019299211575

[3] L.-d.-I. D. O. P. Garcia-Zubia, J., “Mobile devices and remote
labs in engineering education,” 2008, pp. 620–622, cited By (since
1996) 2. [Online]. Available: http://www.scopus.com/inward/-
record.url?eid=2-s2.0-51849148995&partnerID=40&md5=660e
1e76b41a0b7cd68066e78451c93e

[4] P. L. Couteur, “Review of literature on remote & web-based
science labs,” BCCampus Articulation, p. 22, 2009.

[5] N. Pavón and J. Ferruz, “Bender 3.0, una plataforma robótica
remota para aplicaciones docentes: aplicación a programación
concurrente,” Revista Iberoamericana de Automática e
Informática Industrial, vol. 7, no. 1, pp. 54–63, 2010.

[6] C. Maier and M. Niederstätter, “Lab2go - a repository to locate
online laboratories,” iJOE, vol. 6, no. 1, pp. 12–17, 2010.

[7] F. Cicirelli, A. Furfaro, D. Grimaldi, L. Nigro, and F. Pupo,
“Madams: A software architecture for the management of net-
worked measurement services,” Comput. Stand. Interfaces,
vol. 28, pp. 396–411, April 2006. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1648871.1649028

[8] H. W. S.-Z. S. Z. C. M. Zheng, S.a, “Development of gamma-ray
energy spectrum remote-measurement system based on lab view,”
He Jishu/Nuclear Techniques, vol. 29, no. 7, pp. 548–550, 2006,
cited By (since 1996) 0. [Online]. Available:
http://www.scopus.com/inward/record.url?eid=2-s2.0-337475021
06&partnerID=40&md5=ce23fcce21ef996c00b85bb75ca282d3

[9] J. Genci, “The "zero cost" remote lab,” 2009, pp. 572–575, cited
By (since 1996) 0. [Online]. Available: http://www.scopus.com/
inward/record.url?eid=2-s2.0-67650683174&partnerID=40&md5
=f6ff76d880f2da5cffcddab92e379df3

[10] V. Harward, J. del Alamo, S. Lerman, P. Bailey, J. Carpenter,
K. DeLong, C. Felknor, J. Hardison, B. Harrison, I. Jabbour,
P. Long, T. Mao, L. Naamani, J. Northridge, M. Schulz,
D. Talavera, C. Varadharajan, S. Wang, K. Yehia, R. Zbib, and
D. Zych, “The ilab shared architecture: A web services infrastruc-
ture to build communities of internet accessible laboratories,” Pro-
ceedings of the IEEE, vol. 96, no. 6, pp. 931 –950, june 2008.
http://dx.doi.org/10.1109/JPROC.2008.921607

[11] E. Grosclaude, F. L. Luro, and M. L. Bertogna, “Grid virtual
laboratory architecture,” in Proceedings of the 2007 conference on
Parallel processing, ser. Euro-Par’07. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 164–173. [Online]. Available: http://-
dl.acm.org/citation.cfm?id=1793434.1793458

[12] S. Odeh, “EnglishBuilding reusable remote labs with adaptable
client user-interfaces,” EnglishJournal of Computer Science and
Technology, vol. 25, no. 5, pp. 999–1015, 2010, cited By (since
1996) 0. [Online]. Available: http://www.scopus.com/inward/-
record.url?eid=2-s2.0-
78650214791&partnerID=40&md5=81a7860621b2e91e6b56d39e
50a7548d

[13] T. A. S. Mickell, B. D. S. Danner, and O. H. College, “Virtual labs
in the online biology course : Student perceptions of effectiveness
and usability,” of Online Learning and Teaching, vol. 3, no. 2, pp.
105–111, 2007.

[14] F. O. F.-T. M. L. Burget, P., “Remote labs and resource sharing in
control systems education,” vol. 17, no. 1 PART 1, 2008, cited By
(since 1996) 0. [Online]. Available: http://www.scopus.com/
inward/record.url?eid=2-s2.0-79961019331&partnerID=40&md5
=8cdd5b4ae88e5fdc48e53fd80845751a

[15] S. S. Laurent, E. Dumbill, and J. Johnston, Programming Web
Services with XML-RPC. Sebastopol, CA, USA: O’Reilly & As-
sociates, Inc., 2001.

[16] I. Sommerville, Software engineering (5th ed.). Redwood City,
CA, USA: Addison Wesley Longman Publishing Co., Inc., 1995.

[17] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns. Boston, MA: Addison-Wesley, January 1995. [Online].
Available: http://www.amazon.co.uk/exec/obidos/ASIN/02016336
12/citeulike-21

[18] (2011) Nokia consultado el 6 de junio de 2011.
http://doc.trolltech.com/4.7/signalsandslots.html.

[19] J. H. T. J. Viudez Aivar, “Diseño y construcción de una maqueta
domótica controlable a través de microcontroladores java,” Actas
de V Jornadas De Enseñanza A Través De Internet/Web De La
Ingeniería De Sistemas y Automática, Eiwisa™2007, pp. pags 47–
52, 2007, thomson. ISBN: 978-84-9732-603-2 (2007).

[20] J. A. Holgado-Terriza and J. Viudez-Aivar, “Javaes, a flexible
java framework for embedded systems,” in Distributed, Embedded
and Real-time Java Systems, M. T. Higuera-Toledano and A. J.
Wellings, Eds. Springer US, 2012, pp. 323–355,
http://dx.doi.org/10.1007/978-1-4419-8158-5_13

[21] N. Ranaldo, S. Rapuano, M. Riccio, and F. Zoino, “Remote
control and video capturing of electronic instrumentation for dis-
tance learning,” Instrumentation and Measurement, IEEE Transac-
tions on, vol. 56, no. 4, pp. 1419 –1428, aug. 2007.
http://dx.doi.org/10.1109/TIM.2007.900152

[22] J. Hardison, K. DeLong, P. Bailey, and V. Harward, “Deploying
interactive remote labs using the ilab shared architecture,” in Fron-
tiers in Education Conference, 2008. FIE 2008. 38th Annual, oct.
2008, pp. S2A–1 –S2A–6.

[23] M. Auer, D. Zutin, and C. Rajyaguru, “A labview toolkit for the
development of ilab batched lab servers,” in Global Engineering
Education Conference (EDUCON), 2011 IEEE, april 2011, pp. 26
–29. http://dx.doi.org/10.1109/EDUCON.2011.5773107

50 http://www.i-joe.org

http://dx.doi.org/10.1023/A:1019299211575�
http://www.scopus.com/inward/record.url?eid=2-s2.0-51849148995&partnerID=40&md5=660e�
http://www.scopus.com/inward/record.url?eid=2-s2.0-51849148995&partnerID=40&md5=660e�
http://www.scopus.com/inward/record.url?eid=2-s2.0-51849148995&partnerID=40&md5=660e�
http://www.scopus.com/inward/record.url?eid=2-s2.0-51849148995&partnerID=40&md5=660e�
http://dl.acm.org/citation.cfm?id=1648871.1649028�
http://www.scopus.com/inward/record.url?eid=2-s2.0-337475021�06&partnerID=40&md5=ce23fcce21ef996c00b85bb75ca282d3�
http://www.scopus.com/inward/record.url?eid=2-s2.0-337475021�06&partnerID=40&md5=ce23fcce21ef996c00b85bb75ca282d3�
http://www.scopus.com/�inward/record.url?eid=2-s2.0-67650683174&partnerID=40&md5�=f6ff76d880f2da5cffcddab92e379df3�
http://www.scopus.com/�inward/record.url?eid=2-s2.0-67650683174&partnerID=40&md5�=f6ff76d880f2da5cffcddab92e379df3�
http://www.scopus.com/�inward/record.url?eid=2-s2.0-67650683174&partnerID=40&md5�=f6ff76d880f2da5cffcddab92e379df3�
http://dx.doi.org/10.1109/JPROC.2008.921607�
http://www.scopus.com/�inward/�record.url?eid=2-s2.0-79961019331&partnerID=40&md5�=8cdd5b4ae88e5fdc48e53fd80845751a�
http://www.scopus.com/�inward/�record.url?eid=2-s2.0-79961019331&partnerID=40&md5�=8cdd5b4ae88e5fdc48e53fd80845751a�
http://www.scopus.com/�inward/�record.url?eid=2-s2.0-79961019331&partnerID=40&md5�=8cdd5b4ae88e5fdc48e53fd80845751a�
http://www.amazon.co.uk/exec/obidos/ASIN/02016336�12/�citeulike-21�
http://www.amazon.co.uk/exec/obidos/ASIN/02016336�12/�citeulike-21�
http://doc.trolltech.com/4.7/signalsandslots.html�
http://dx.doi.org/10.1007/978-1-4419-8158-5_13�
http://dx.doi.org/10.1109/TIM.2007.900152�
http://dx.doi.org/10.1109/EDUCON.2011.5773107�

SPECIAL FOCUS PAPER
A COMPONENTIZABLE SERVER-SIDE FRAMEWORK FOR BUILDING REMOTE AND VIRTUAL LABORATORIES.

AUTHORS

Jesus. L. Muros-Cobos. Author, is with the software
engineering department, University of Granada, Granada
18071 Spain (e-mail: jesusmuros@ugr.es).

Juan A. Holgado-Terriza Author, is associate profes-
sor in Software Engineering Department at University of
Granada 18071 Spain (e-mail: jholgado@ugr.es).

This article is an extended and modified version of a paper presented
at the International Conference on Remote Engineering & Virtual
Instrumentation (REV2012), held at University of Deusto, Bilbao, Spain,
July 4-6, 2012. Manuscript received 15 September 2012. Published as
submitted by the authors 28 November 2012.

iJOE – Volume 8, Special Issue 4: "REV2012/2", December 2012 51

