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Abstract—Image recognition and understanding is considered as a remark-
able subfield of Artificial Intelligence (AI). In practice, retinal image data have 
high dimensionality leading to enormous size data. As the morphological retinal 
image datasets can be analyzed in an expansive and non-invasive way, AI more 
precisely Deep Learning (DL) methods are facilitating in developing intelli-
gent retinal image analysis tools. The most recently developed DL technique, 
Convolutional Neural Network (CNN) showed remarkable efficiency in identify-
ing, localizing, and quantifying the complex and hierarchical image features that 
are responsible for severe cardiovascular diseases. Different deep layered CNN 
architectures such as LeeNet, AlexNet, and ResNet have been developed exploit-
ing CNN morphology. This wide variety of CNN structures can iteratively learn 
complex data structures of different datasets through supervised or unsupervised 
learning and perform exquisite analysis for feature recognition independently 
to diagnose threatening cardiovascular diseases. In modern ophthalmic practice, 
DL based automated methods are being used in retinopathy screening, grading, 
identifying, and quantifying the pathological features to employ further therapeu-
tic approaches and offering a wide potentiality to get rid of ophthalmic system 
complexity. In this review, the recent advances of DL technologies in retinal 
image segmentation and feature extraction are extensively discussed. To accom-
plish this study the pertinent materials were extracted from different publicly 
available databases and online sources deploying the relevant keywords that 
includes retinal imaging, artificial intelligence, deep learning, and retinal data-
base. For the associated publications the reference lists of selected articles were 
further investigated.

Keywords—retinal imaging, segmentation, feature extraction (FE), deep learning 
(DL), convolutional neural network (CNN), retinopathy

1	 Introduction

In recent years retinal imaging has drawn up tremendous attention of ophthalmolo-
gists and scientists who are dedicated to developing novel diagnostic tools, as retinal 
imaging is important for predicting cardiovascular diseases. The excessive acquisition 
of retinal images has created the heap of data through the challenge to the clinicians 
to analyze and manage retinal image data [1]. To move with this big data challenge, 

iJOE ‒ Vol. 17, No. 14, 2021 103

https://doi.org/10.3991/ijoe.v17i14.24819

mailto:Hqenam.unimas@gmail.com


Paper—Deep Learning in Retinal Image Segmentation and Feature Extraction: A Review

developing intelligent tools have appeared as crucially important for the efficient and 
adequate management of this enormous size data [2], [3]. Moreover, most of the exist-
ing methods for retinal image analysis are manual, time-consuming, and need the 
interference of the bulk of individuals. The development of the automated retinal image 
analysis method is remarkably significant in the ophthalmic diagnostic system to detect 
severe cardiovascular diseases such as Diabetic Retinopathy (DR) and Hypertensive 
Retinopathy (HR). AI technology especially DL is being employed widely to develop 
smart tools for diagnosing the severe disease through retinal image analysis. In this 
regard, ophthalmologists are being facilitated excitingly with the most promising AI 
tools in terms of high-quality analysis and effective management of retinal image data 
in clinical practices.

One of the most important sub-fields of biomedical engineering is the analysis of 
fundus retinal images that have become the key point of diagnosing life-threatening 
cardiovascular diseases such as DR, HR, and stroke because of the simple and 
non-invasive visualization of retinal microvascular structure [4]–[8]. These risky cardio-
vascular diseases are related to the changes in the microvasculature of human retina [9]. 
According to the different researches, there is a close relationship between the ocular 
funduscopic abnormalities and acute stroke even-though the blood pressure and other 
vascular risk factors are stable [10], [11]. Any damage in retinal arterioles and venules 
cause the HR that can lead to blindness [12]. HR and the risk of stroke are closely asso-
ciated [13]. Some of the remarkable features of retinal microvascular structure such 
as Cotton Wool Spot (CWS), microaneurysm, hard exudates, focal retinal arteriolar 
narrowing and the changes in the vessel diameter and bifurcation angle, arteriovenous 
nicking are found to be associated with diabetes, hypertension, acute stroke and stroke 
mortality even the people are free from other stroke risk factors [14]–[16].

In this paper, a brief overview of the latest DL based approaches for retinal image 
analysis, segmentation, and feature extractions is demonstrated. Excessive acquisition 
of retinal image data is continuously offering the big data challenge to the ophthalmic 
practitioners. Implementation of DL techniques in retinal imaging is still in infantry 
level which needs an extensive and empirical exploration to create novel automated 
methods for retinal image analysis and dealing with a large amount of retinal image 
data. This paper is the preliminary footstep towards our future work for developing a 
new DL algorithm optimizing accurate feature detection of retinal microvasculature 
of retinal images. The consecutive sections of this paper manifest 1) the background 
of DL, 2) latest advancements of DL, CNN technologies in biomedical imaging, 
ophthalmology and 3) the contributions, performances, limitations, and challenges of 
recently introduced DL algorithms for retinal image segmentation and feature detec-
tion. A concise summary is included following the empirical discussion on the existing 
DL methods for retinal imaging and the potential scopes of this research area.

2	 Deep learning (DL)

In the recent revolution of computer science especially in AI research, DL has 
come up with interesting advancements that are excitingly impacting a wide range of 
scientific areas such as signal and information processing and developing AI machines 
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for healthcare. DL that is dedicated to depicting a new algorithm exploiting multi-
ple layers to process non-linear information for analyzing and classifying large data 
patterns, extracting, and transforming the supervised and unsupervised data features. 
The DL models consist of deep architecture more generally DNN employing Artificial 
Neural Network (ANN) technique. This can analyze the hierarchy of features where 
higher and lower level concepts can be defined from each level concepts and vice-versa 
[17]–[19]. Figure 1 demonstrates the fundamental working procedure of the traditional 
ML algorithm and the DL algorithm for retinal image processing.

Fig. 1. Demonstration of the fundamental difference in the working procedure of 
the traditional ML algorithm and recently developed DL algorithms

Convolutional Neural Network (CNN) is a specific class of Neural Network 
(NN) that imitates the processing of the visual cortex. In general, CNN is the form 
of Feed-forward ANN that is capable of learning complex hierarchies of features and 
patterns automatically and adaptively employing backpropagation technique. CNN 
exploits a fewer number of parameters compared to ANN as it does not require to use 
parameters in pooling and non-linearity layers. The hierarchical feature extraction abil-
ities of CNN allow it to extract different level features such as higher, mid and low-level 
features [20]. Generally, stochastic gradient descent method or backpropagation 
algorithm is used to train the CNN through supervised learning. To optimize the perfor-
mance of CNN models some regulatory units such as batch normalization and dropout 
are also integrated into different learning stages [20]. Batch normalization is employed 
to generate zero mean and unit variance for the distributed feature map values to unite 
them. This is also known as internal covariance shift. The internal covariance unit also 
plays a role in regulating factors and ease the flow of gradient.

The fundamental differences between traditional MLP and CNN are the integration 
of weight sharing and limited connectivity properties in CNN models. CNN models 
are classified as structural reformulation, parameter optimization, and regularization. 
“LeNet” and “AlexNet” are said to be the most popular CNN configuration [21], [22]. 
Following the illustration of ResNet [23] to train deep CNN, some other robust CNN 
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models had been introduced such as ResNet [24], WideResNet [25], Inception-ResNet 
[26] and Pyramidal-ResNet [27]. This advancement also bred the idea of integrating 
attention-based information processing, channel bosting, and spatial and channel-wise 
exploitation in CNN models [20]. As a powerful data processing tool, CNN is being 
employed massively in medical imaging specially in eye image processing task.

3	 DL in ophthalmology

The ophthalmic diagnostic system is mostly dependent on eye image analysis. 
Human retinal images can be analyzed in a fast and non-invasive manner employing 
DL to extract, localize and quantify the pathological features responsible for differ-
ent retinal diseases [28], [29]. Most of the recently developed DL-based retinal image 
analysis algorithm had been evaluated on different public retinal datasets. Some of 
the public datasets are Digital Retinal Images for Vessel Extraction (DRIVE) [30] 
Structured Analysis of the Retina (STARE) [31], Child Heart and Health Study in 
England (CHASE DB1) [32], Kaggle and Messidor [33]. These datasets contain images 
from healthy individuals and pathological images, images from retinopathy patients. 
Generally, Sensitivity (Se), Specificity (Sp), and Accuracy (Acc) are used as the perfor-
mance measurement metrics to evaluate the performance of the retinal vessel segmen-
tation and feature detection method. For the visual understanding of the quantitative 
measurement a graphical representation, Receiver Operating Characteristics (ROC) is 
used. Generally, ROC is plotted Se versus False Positive (Fp) fractions for different 
threshold values. The Area Under the ROC curve also utilized to evaluate the method’s 
performance where the value 1 is considered for the standard predictor [32], [34]–[37].

The recently introduced DL algorithms to facilitate ophthalmic disease detection 
can be categorized into lesion-based and image-based, black-box, detection system. 
To train the lesion-based system the previously known features such as haemorrhages, 
microaneurysm and exudates are given to the DL model as input. The black-box models 
are trained with manually graded fundus photographs [38]. Grassmann et al., (2018) 
developed a DL model integrating six different CNN architectures, AlexNet, Visual 
Geometry Group (VGG), GoogLeNet, Inception-V3, Inception ResNet V-2, and Res-
Net to classify the Age-related Macular Degeneration (AMD) [39]. Their model had 
been evaluated on Cooperative Health Research on the Region of Augsburg (KORA) 
data set and showed promising accuracy in AMD classification that obtained 84.20% 
Se and 94.30% Acc. The CNN model of [40] was designed combining AlexNet and 
VGG to DR detection and came out with 82.7% Se and 90.7% Acc.

The team of [41] developed a DL system based on CNN to detect Referable DR, 
vision-threatening DR, glaucoma and AMD analyzing the retinal image. The pro-
posed system obtained 0.936 AUC, 90.5% Se, 91.6% Sp for referable DR, 0.958 AUC, 
100% Se, 91.1% Sp for vision-threatening, 0.942 AUC, 96.4% Se, 87.2% Sp for possi-
ble glaucoma, and 0.931 AUC, 93.2% Se, 88.7% Sp for detecting AMD [41]. Though 
the performance of this DL system has been thought to be accepted by the clinicians, 
there was confusion to integrate this system into the ophthalmic diagnostic tool. This 
is because the used dataset for training was not completely graded by the experienced 
ophthalmologists and macular edema had not been identified appropriately. The retinal 
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lesions such as microaneurysm, haemorrhages were not considered to analyze though the 
system employed multiple levels of representations for learning. This black-box issue 
can create confusion among clinicians to integrate this system in clinical practice [41].

A DL algorithm had been reported by [42] that was developed implementing the 
CNN architecture, Inception-V3 to detect the DR analyzing retinal fundus image. [42] 
considered the feature macular edema as the representation of DR without training the 
network with the DR features such as microaneurysm and haemorrhages. The distrib-
uted stochastic gradient descent algorithm had been used to train the network and batch 
normalization function was combined to speed up the network training utilizing the 
weights obtained from the ImageNet dataset. This newly developed model had AUC 
0.991 and 0.990 for both EyePACS-1 and Messidor-2. This model obtained 90.3% Se 
and 98.10% Sp for EyePACS-1, and 87% Se and 98.50% Sp for Messidor-2 using first 
operating point while 97.50% Se and 93.40% Sp for EyePACS-1, and 96.10% Se and 
93.90% Sp for Messidor-2 were obtained using second operating point [42].

A DL model was introduced by [43] that employing the CNN architecture, AlexNet, 
and VGG to detect DR such as haemorrhages, exudates and neovascularization, and 
anatomy of retinal microvasculature from retinal images. The network was trained with 
samples contained lesions to be detected that were extracted from DR patients and 
then annotated manually by several experts. The AUC of this DL model was 0.980% 
and obtained 96.8% and 87% Se and Sp respectively [43]. Another DL algorithm had 
been proposed by [44] that employed a customized CNN to detect the DR and achieved 
0.97 AUC with 94% Se and 98% Sp on 5-fold cross-validation using a private dataset. 
Takahashi et al., modified the GoogLeNet DL network for grading DR from the fundus 
image [45]. Burlina et al., introduced a DCNN algorithm to detect AMD from the fun-
dus image and applied on a 2-class classification problem and obtained accuracy ranged 
from 88.4% to 91.6% and AUC ranged from 0.94 to 0.96 [46]. Zhao et al., proposed an 
automatic patch and image-based CNN model that can detect the branch retinal vein 
occlusion from the fundus image and showed a 97% accurate result [47].

Schlegl et al., developed an automated method to detect the Intraretinal Cystoid 
Fluid (ICR) and Subretinal Fluid, and Grassmann et al., developed an algorithm to 
predict the severity of age-related macular degeneration based on DL [48], [49]. 
A method to diagnosis the DR was developed by [50] following the CNN architecture 
that can classify the micro-aneurysms, exudate, and haemorrhages from retinal images. 
For retinal vessel segmentation and feature detection [51] and cardiovascular risk factor 
prediction [52] from the retinal image proposed different methods based on DL. Jiewei 
Jiang et al., developed an ophthalmic disease diagnosis method employing a deep resid-
ual CNN classifier [53]. An automated microaneurysm detection method was proposed 
by [54]. Niemeijer et al., developed an automated system based on ML to detect the 
CWS and differentiate this from drusen, exist in colour images that were collected from 
diabetic patients [40].

3.1	 DL in retinal image segmentation and feature detection

Segmentation of retinal image is a crucial step in ophthalmic image analysis as the 
output of this step is used for further analysis to extract qualitative and quantitative 
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features. The recent advancement of DL offers the platform to develop DL based 
automated retinal image segmentation algorithms incorporate with conventional image 
processing. Table 1 illustrates an overview of retinal image segmentation methods that 
had been developed recently based on the DL technique. In Table 1, columns 2 and 3 
describe the author profiles of the developed methods and the types of applied methods 
respectively. Columns 4 and 5 show the used data sets for performance evaluation and 
results of the developed DL methods respectively.

Table 1 shows that most of the newly developed DL based retinal image segmenta-
tion methods followed the supervised learning to build their algorithms while [55] and 
[56] followed the unsupervised learning approach. [57], [58] proposed retinal image 
segmentation methods based on deep max-pooling CNN utilizing GPU and ELM 
respectively. [59] named their model for retinal vessel segmentation as Deep-Vessel 
that had been developed combining multi-scale and multi-layered CNN with side 
output layers that are responsible to learn rich hierarchical representations. [59] also 
integrated the CRF that is dedicated to maintaining long-range interactions between 
pixels. Dense U-net was introduced as the model for semantic segmentation and [60] 
developed and trained a Dense U-net model following image patch-based technique 
for retinal image segmentation. To train the network the patches were obtained by 
random extraction strategy and the test images were also divided into patches to test 
the model. At the output end of the network, the predicted test patches by training 
model were reconstructed employing a sequential reconstruction strategy to gener-
ate the segmented output image overlapping the patches [60]. A DNN incorporating 
multilevel Deep Supervision (DS) layers was introduced by [61] and [62] developed 
a model for AV classification, retinal microvasculature segmentation based on opti-
mized deep CNN. Two different DNN models based on supervised learning were pro-
posed by [63] and [34] while [56] proposed an unsupervised learning based DNN for 
the detection of the retinal blood vessel. Liskowski and Krawiec [63] utilized global 
contrast normalization and zero-phase whitening for data pre-processing and geomet-
ric transformation and gamma corrections for data augmentation while [56] combined 
denoising auto-encoders (DAE) and RF for their development. Hajabdollahi et al., [64] 
proposed a CNN approach for retinal image segmentation pruning convolutional lay-
ers and quantized the fully connected layers to simplify the network. Alom et al., [65] 
developed a semantic segmentation method, Recurrent CNN (RCNN) and Recurrent 
Residual CNN(RRCNN) based on U-Net and [66] utilized rotation operation for data 
augmentation and prediction to develop their Fully CNN approach. A multilevel and 
multiscale deeply supervised CNN was developed by [37] where they used the short 
connection to transfer low-level semantic information to high level back and forth. 
Lahiri et al., [55] proposed an unsupervised Deep Neural Ensemble Network and [36] 
developed a three-stage DL model to segment thick and thin vessels to avoid the issue 
related to the imbalance pixels ratio of the pixels in the input image space. S. Wang 
et al., [67] combined CNN and RF to design their retinal vessel segmentation model 
where CNN contributed as the trainable hierarchical feature extractor and RF as the 
trainable classifier. A supervised learning-based model employing both classification 
and regression tree (CART) and AdaBoost had been proposed by [35]. A deeply super-
vised CNN developed by [32] showed robustness in accurate segmentation and faster 
processing speed. To validate their findings a cross-training experiment was carried out 
and showed that their proposed model obtained better performance.
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Table 1. Recently developed DL based retinal image segmentation methods

No Authors Method Applied Used Dataset
Outcome

Se Sp Acc AUC

1 [57] GPU*implication of 
Deep Max Pooling 
CNN

DRIVE 0.727 0.978 0.946 0.974

2 [59] Deep Vessel 
(Combined CNN and 
CRF*)

DRIVE
STARE
CHASE_DB

0.760
0.741
0.713

-------
-------
-------

0.952
0.958
0.948

-------
-------
-------

3 [58] ELM* DRIVE 0.714 0.986 0.960 -------

4 [60] Dense U-net and the 
patch-based learning 
strategy.

DRIVE
STARE

0.798
0.791

0.973
0.972

0.951
0.953

0.974
0.970

5 [61] DNN* DRIVE
STARE

0.828
0.897

0.973
0.970

0.960
0.964

0.978
0.989

6 [62] Optimized Deep CNN DRIVE
AVRDB
AV
Classification

-------
-------
-------

-------
-------
-------

0.9607
0.981
0.970

-------
-------
-------

7 [63] DNN* DRIVE
STARE

0.752
0.814

0.981
0.986

0.951
0.969

0.971
0.988

8 [64] CNN (Combining 
Quantization of fully 
connected layers and 
pruning Convolution 
layer)

STARE (CNN 
with original 
parameter)
STARE 
(Quantized CNN)
STARE (Pruned-
Quantized CNN)

0.782
0.779
0.7599

0.977
0.974
0.9757

0.961
0.958
0.9581

-------
-------
-------

9 [65] RU-Net* DRIVE
STARE
CHASE_DB1

0.775
0.811
0.745

0.981
0.987
0.983

0.955
0.970
0.962

0.978
0.990
0.980

R2U-Net* DRIVE
STARE
CHASE_DB1

0.779
0.829
0.775

0.981
0.986
0.982

0.955
0.971
0.963

0.978
0.991
0.981

10 [66] SWT* with FCNN* DRIVE
STARE
CHASE_DB1

0.803
0.831
0.777

0.980
0.985
0.986

0.957
0.969
0.965

0.982
0.990
0.985

11 [37] Deeply Supervised 
CNN

DRIVE 0.789 0.980 0.956 0.980

12 [55] DNN DRIVE ------- ------- 0.953 -------

13 [36] Three-stage DL DRIVE
STARE
CHASE_DB1

0.763
0.773
0.764

0.982
0.985
0.980

0.953
0.963
0.960

0.975
0.983
0.977

14 [67] CNN and RF* DRIVE
STARE

0.817
0.810

0.973
0.979

0.976
0.981

0.947
0.975

15 [35] Supervised method 
based on CART and 
AdaBoost

DRIVE
RIS (Improved)

0.746
0.831

0.983
0.960

0.961
0.953

-------
-------

(Continued)
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Table 1. Recently developed DL based retinal image segmentation methods (Continued)

No Authors Method Applied Used Dataset
Outcome

Se Sp Acc AUC

16 [32] Deep FCNN* DRIVE
STARE
CHASE_DB1

0.777
0.814
0.766

0.978
0.984
0.981

0.952
0.967
0.959

0.978
0.988
0.981

17 [56] DNN* DRIVE ------- ------- 0.932 0.919

18 [34] DNN* DRIVE
STARE
CHASE_DB1

0.756
0.772
0.750

0.981
0.984
0.979

0.952
0.962
0.958

0.973
0.987
0.971

Note: *(GPU = Graphical Processing Unit, RF =  Random Forest, CRF = Conditional Random Field, 
ELM = Extreme Learning Machine, DNN = Deep Neural Network, RU-Net = RCNN based U-Net, R2U-Net = 
RRCNN based on U-Net, SWT = Stationary Wavelet Transform, FCNN = Fully Convolutional Neural Network).

From the demonstration of Table 1 it is seen that the recently developed retinal 
image segmentation methods are in the form of DNN that had been modified employ-
ing CNN technique. U-net had been developed based on semantic segmentation 
method for medical image segmentation that had been used in the model of [60] 
and [65]. Most of the retinal image segmentation algorithms that are mentioned in 
Table 1 had been evaluated on the DRIVE, STARE, and CHASE_DB while another 
two different algorithms used AVRDB and AV-Classification dataset for their perfor-
mance evaluation. Amongst the mentioned algorithms [59], [65], [66], [36], [32], and 
[34] evaluated their performance on DRIVE, STARE and CHASE_DB1 together while 
[60], [61], [63], and [67] evaluated on both DRIVE and STARE. The DRIVE data-
base alone had been used for the performance evaluation of [57], [58], [37], [55], and 
[56], and [64] was evaluated on STARE database. [62] and [35] used DRIVE, AVRDB, 
AV-Classification, and DRIVE, RIS database respectively for their performance evalu-
ation. According to Table 1, it is seen that most of the methods obtained better accuracy 
on the STARE database and the performance on the DRIVE has partially deviated from 
the other databases. It can be said that the deviation of the performances of the existing 
methods on the DRIVE database is due to the quality of DRIVE images that contain DR 
signs. The cross-training findings of [32] demonstrate that the proposed model showed 
slightly lower accuracy when trained and tested on CHASE DB1 and DRIVE database 
respectively. The reason for this deviation was assumed as the CHASE DB1 images 
contained non-uniform background illumination, wider arterioles, and poor contrast of 
blood vessels compared to DRIVE images [32]. They [66] performed cross-training for 
further validation of their work and found that there was a slight deviation of sensitivity 
while training the model on STARE database and testing on the DRIVE database but 
the sensitivity was satisfactory in case of training the model on DRIVE database and 
testing on STARE database.

The developed method of [62] and [67] obtained the best accuracy amongst the 
described methods in Table 1. The work of [62] obtained 96%, 98%, and 97% Acc on 
the DRIVE, AVRDB and AV classification dataset respectively while [67] obtained 
0.817 Se, 0.973 Sp, 0.976 Acc, 0.947 AUC and 0.811 Se, 0.979 Sp, 0.981 Ac, 0.975 
AUC for both DRIVE and STARE database respectively. The Deep-Vessel model of 
[59] obtained 0.952 Se and 0.760 Sp for DRIVE, 0.958 Se and 0.741 Sp for STARE, 
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and 0.948 Se and 0.713 Sp for CHASE DB1. The DL model of [60] obtained 0.798 Se, 
0.973 Sp, 0.951 Acc and 0.974 AUC for DRIVE and 0.791 Se, 0.972 Sp, 0.953 Acc and 
0.971 AUC for STARE. The performance of [61] was recorded as 96.09% and 96.46% 
accurate for DRIVE and STARE database respectively. According to the performance 
analysis, it was found that the proposed method of [66] obtained the best accuracy, 
96.94% for the STARE database.

The work of [55], [56] and [34] obtained 95.33%, 93.27% and 95.27% Acc respec-
tively, [57] achieved 94.66% Acc and 0.974 AUC and [58] achieved 96% Acc, 0.714 Se 
and 0.986 Sp on DRIVE database. Besides [37] obtained 0.789, 0.980, 0.956 and 0.980 
Se, Sp, Acc, and AUC respectively while [35] obtained 0.746, 0.983, 0.961 Se, Sp, and 
Acc respectively on the DRIVE database. [36] obtained the best outcome on STARE 
that is 0.773 Se, 0.985 Sp, 0.963 Acc, and 0.983 AUC. The U-Net based method of [65] 
obtained better accuracy than [60] and amongst the DNN based methods, the accu-
racy of [61] was higher while the method of [56] obtained lower accuracy than the 
others’. The performance of ELM method of [58] outgrew the performances of the 
methods of [57], [59], [37], and [55] in terms of accuracy. Though [58] claimed that 
their method showed time efficiency on the new Retinal Images for Screening (RIS) 
database, according to Table 1 the Deep vessel method of [59] is the most time-efficient 
that had been recorded 1.3 seconds as run time.

4	 Discussion

Development of AI-assisted automated applications and tools for medical image 
analysis to-date is on the point of interest as it is potentially offering the feasibility in 
disease diagnostic and treatment systems. The relevant AI techniques need to under-
stand clearly as it is complex to implement and repeat the procedures for learning the 
systems to get expected outcomes automatically. Available different learning methods 
such as supervised, unsupervised, and reinforcement learning are the core techniques 
to train an intelligent tool. To develop AI machines, the algorithm should be selected 
empirically considering the facts that the characteristics of data, length of the training 
period, number of parameters and features, and training curve. For supervised learning, 
the two most popular algorithms in terms of data processing efficiency are ANN and 
SVM among the existing algorithms such as Decision Tree, Random Forest, Naive 
Bayes classifier, K-nearest neighbor (KNN), and Fuzzy logic [68]. Unsupervised learn-
ing mostly, associations rule and clustering algorithms are used to develop the DL 
model for medical data processing as DL that can deal with noisy and low-quality data. 
Among some recently introduced DL models such as LSTM, DNN, CNN and RNN, 
CNN and RNN [68] showed their efficiency in medical image processing to predict 
cardiovascular diseases state, detect the responsible abnormal features from brain MRI 
and Fundus retinal images.

Experts from ophthalmic discipline are responsible for manual segmentation of 
retinal image. Manual delineation of retinal microvasculature is challenging and time 
consuming due to its complex hierarchical structure and highly varied pixel intensity 
of vessel width that generally ranges from 1 to 20 pixels depending on both image 
resolution and the anatomical width of the vessel. Presence of pathological signs also 
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make the retinal image segmentation cumbersome [32], [34], [36]. Subtle features like 
lesions lie in the microvasculature of retina can significantly affect the performances 
of the DL approach. The existing DL based retinal image segmentation models were 
designed to segment the vessel irrespective of the pixel intensity utilizing a unified 
pixel-wise loss function. Due to the unequal distribution of pixels in image space, thick 
vessels principally influence the pixel-wise loss while thin vessels influence very less 
and this scenario affects the segment accuracy [36]. The result of the unsupervised 
model can be biased due to inefficient identification of the initial cluster pattern of data 
as the final cluster of the patterns of data depends on the initial cluster patterns [68]. 
Consequently, development of more robust DL-based vessel segmentation method 
attains the crucial focus. For securing consistency in automatic retinal disease detection, 
acurate segementation is critically significant as the complex microvascular structure 
need be understood more clearly.

According to the Table 1 under section 3.1 there is no individual DL-based method 
that can segment and extract both quantitative and qualitative features together. All the 
existing segmentation and feature extraction methods are dedicated to segment and 
detect single feature such as exudates, haemorrhages, microanurysms. To make task 
easy and time saving for the ophthalmic expert, it is worthwhile to develop DL-based 
algorithm that can handle the segmentation and multiple features detection simulta-
neously. Though most of the DL-based existing retinal image segmentation methods 
showed above 95% accuracy, development of these methods is important to secure 
the consistency in diagnostic performance. Inappropriate image acquisition leads to 
form highly varied datasets. It is important to annotate characteristics features in retinal 
image acurately. Using less quality dataset and poorly annotated images for training 
degrades the system accuracy.

Different CNN architectures such as deep CNN, recurrent CNN exploiting different 
non-linear functions have proved their robustness in retinal image segmentation and 
feature extraction and obtained higher processing performances compared to logistic 
regression. Exudates, haemorrhages, microaneurysms are the significant features for 
DR detection and some of the existing DR feature detection methods such as [69], 
[70], [71], and [72] examined their proposed method for both image-based and lesion-
based criteria for appraising detection results. Their developed methods obtained 
best detection result for the image-based criterion. The pixel intensity of each lesion, 
exudate, is comparatively less as lesions need to be annotated alone from a whole image 
and accurate ground truth estimation based on pixel is more complex in this instance. 
In this case the detection accuracy of the lesion-based criterion is compared with the 
manual grading of ophthalmologist that can lead poor performance of exudate detec-
tion. On the other hand, the logical features responsible for DR, exudates, are annotated 
in the training images during ground truth estimation for image-based criterion where 
algorithms examine the testing image to find the presence or absence of exudates in the 
entire image [72]. CNN offers advantages over conventional statistical analysis but still 
need to focus on the problems of overfitting training data, utilizing more parameters 
that make the computational process lengthier. To avoid overfitting in data augmen-
tation the training data can be increased and the hidden layers from DL architecture 
can be reduced. To develop the DL model for rare disease analysis, ocular tumor, or 
even common disease, a cataract that is not screened routinely for clinical purposes is 
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challenging due to an inadequate amount of data [73]. Besides training the DL or CNN 
architectures are time-consuming, not suitable to integrate into the real-time mobile 
application and low memory space but testing the algorithms needs less time and cost 
effective [74].

To speed up the computational process of the DL method the hardware needs to be 
highly configured with powerful graphical computing units. It is seen that integration of 
DL- based eye care tools efficiently supporting ophthalmic diagnostic system achieving 
promising outcome but still human interference is needed. Medical practioners need to 
have clear and comprehensive idea about the relevance of utilizing DL applications in 
contrast with the patients history. The clinicians need to enrich their understanding of 
how DL method works to maximize the ensurity of diagnosis authenticity [75]. There 
are also some technical and clinical challenges in developing and validating the DL 
algorithm as it is completely data-oriented. Some issues are raised in data acquisition 
related to patient’s consent and confidentiality, highly varying standards and regulations 
among the different institutions, lack of opportunities to test the algorithm in different 
population-based datasets [73]. Another challenge is that DL technology in healthcare 
still in the initial state which leads the patients and medical practitioners to think about 
DL being ‘Black Box’. As the ophthalmic and cardiovascular diseases diagnostic sys-
tems are mostly dependent on medical imaging, DL can be investigated to facilitate the 
lifestyle of the urban as well as a remote area providing reliable medical facilities and 
reducing obstacles.
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