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Abstract—Analysis without adequate handling of missing values may lead 

to inconsistent and biased estimates. Despite multiple imputations becoming a 

widely used approach in handling missing data, manuscript researchers general-

ly encounter missing data in their respective studies. In high-dimensional data, 

penalized regression is a popular technique for performing feature selection and 

coefficient estimation simultaneously. However, one of the most vital issues 

with high-dimensional data is that it often contains large quantities of missing 

data that common multiple imputation approaches may not work correctly. 

Therefore, this study uses imputations penalized regression models as an exten-

sion of the penalized methods to improve the performance and impute missing 

values in high-dimensional data. The method was applied to real-life high-

dimensional datasets for the different number of features, sample sizes, and 

missing dataset rates to evaluate its efficiency. The method was also compared 

with other existing imputation penalized methods for high-dimensional data. 

The comparative experimental results indicate that the proposed method outper-

forms its competitors by achieving higher sensitivity, specificity, and classifica-

tion accuracy values.  

Keywords—high-dimensional data, feature selection, missing data, multiple 

imputations, penalized regression 

1 Introduction 

Missing data exist in almost all areas of biomedical, epidemiological, and social re-

search. This may be due to various reasons including unavailability of measurements, 

survey nonresponse, and data loss [1]. Many statistical techniques often require com-

plete cases without any missing data. This as inaccurate estimates and conclusions 

may result from an analysis that does not properly handle missing values [2]. Though, 

the problem of missing data may be addressed using a number of statistical approach-

es. Jiang et al. [1] argued that ignoring the observation with missing values is a 

straightforward solution. This is due to the fact that when there are a few observations 

with missing values, there is usually no significant problem. However, delete a high 
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number of observations with missing values, on the other hand, results in a considera-

ble loss of data [3], [4]. It also has a negative impact on the data's statistical power 

and efficiency [5]. By filling in the missing values with some reasonable values, im-

putation produces the complete data without eliminating the missing cases for analy-

sis. Some ad-hoc methods, including mean substitution, maximum likelihood ap-

proaches, single imputation, and multiple imputation (MI), can be used to impute 

missing data [6]. Therefore, to overcome the missing values in high-dimensional data, 

reliable imputation approaches are required. 

High-dimensional data is another issue that is often faced in a wide range of scien-

tific study domains, including genetics, health sciences, economics, chemometrics, 

sociological surveys, environmental sciences, finance, and machine learning, amongst 

others [7]. In high-dimensional data analysis, variable selection is crucial. Recently, 

the use of gene selection techniques in biological datasets has risen significantly, 

where the number of genes is usually more than the number of samples [8], which can 

lead to overfitting and have a detrimental influence on learning. Furthermore, only a 

few genes have relevant meanings and are directly related to the associated disease 

from both a biological and knowledge discovery standpoint [9]. As a result, identify-

ing informative genes is an efficient technique to handle these challenges, which may 

be considered a machine learning feature selection problem [10], [11]. In the previous 

decade, there has been major progress in variable selection methods. Among these 

methods, penalized methods were identified. The penalized method is used to select 

features and classify them. Penalized logistic techniques are those that include a type 

of penalty term into the logistic regression in order to perform both selection and 

classification simultaneously. The logistic regression method has attracted a great deal 

of attention. A variety of logistic regression models with varying penalties may be 

utilized. "Least Absolute Shrinkage and Selection Operator" is the name of one of 

these penalties (“also known as Lasso”), which is based on the L1-norm [12]. Another 

penalty that is based on the L2-norm is ridge regression [13]. Other penalties are the 

so-called "Smoothly Clipped Absolute Deviation" (SCAD) [14], the elastic net [15], 

the adaptive Lasso method [16], and the adaptive elastic net methods [17], [18]. 

Consequently, in high-dimensional data, penalized regression is a popular tech-

nique for performing variable selection and coefficient estimation simultaneously. 

However, one of the most vital issues with high-dimensional data is that it often con-

tains large quantities of missing data. According to previous researches, most micro-

array datasets are incomplete to varying degrees, ranging from fifty percent to ninety-

five percent [19]. Multiple imputation (MI) [20], [21] has become a widely used ap-

proach in handling missing data, with significant improvement in the methods and 

software [22], [23]. However, MI approaches may not work correctly in high-

dimensional data, where the number of variables (𝑝) in the imputation model exceeds 

the sample size (𝑛), i. e. , (𝑝 > 𝑛 or 𝑝 ≫  𝑛) [2]. As it is now, the problem gets more 

critical, and conventional likelihood estimates become unavailable. It has also become 

challenging to apply sequential regression imputation in this situation. [6], [24]. 

In the existence of high-dimensional data, it is possible that the current MI methods 

and software packages may perform inadequately. To address this issue, this study 

uses imputations penalized regression models as an extension of the penalized meth-
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ods to improve the performance and impute missing values in high-dimensional data. 

This is done by employing the “one-dimensional weighted Mahalanobis distance” (1-

DWM) as an initial weight inside L1-norm with imputing missing values for each 

predictor variable (feature). The proposed method referred by imputations adaptive 

penalized logistic regression (IAPLR) is compared with other existing imputation 

methods for high-dimensional data. The remainder of this article is arranged in the 

following. Detailed descriptions of the materials and methods are included in Section 

2. Section 3 presents and debates the findings of the experimental investigation de-

signed to assess the effectiveness of IAPLR compared to other penalized approaches. 

This paper is then concluded in Section 4. 

2 Materials and methods  

2.1 Missing data imputation 

The missing data is one of the most prevalent problems in several fields of re-

search. Traditional statistical methodologies demand entire cases without missing data 

in order to analyze the data. The removal of missing data is a loss of important data, 

and which could lead to an inaccurate statistic inference. Though, by imputing plausi-

ble values to the missing values, the imputation provides the whole data without re-

moving the missing analytical data. Little and Rubin [20], [21] divided missing mech-

anisms into three main categories: First, missing completely at random (MCAR). This 

involves missing data independently of both observed and unobserved data. The sec-

ond is Missing at Random (MAR). It is in the probability of a missing value, which is 

determined by the observed values but not by the data values that are missing., i.e., 

𝑃(𝑚𝑖𝑠𝑠𝑖𝑛𝑔/𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑑𝑎𝑡𝑎) =  𝑃(𝑚𝑖𝑠𝑠𝑖𝑛𝑔/𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑑𝑎𝑡𝑎). The third is missing 

not at random (MNAR), in which the probability of a missing data value is deter-

mined by the missing data, i.e., 𝑃(𝑚𝑖𝑠𝑠𝑖𝑛𝑔/𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑑𝑎𝑡𝑎)  ≠  𝑃(𝑚𝑖𝑠𝑠𝑖𝑛𝑔/
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑑𝑎𝑡𝑎). 

For a missing real value in a dataset, single imputation approaches create a speci-

fied value. This method has a lower computational cost. The researchers have pro-

posed a variety of single imputation strategies. The primary strategy is to analyze 

other replies and choose the most significant possible response. The value may be 

calculated using the mean, median, and mode of the variable's available values [3]. 

Imputed values are treated as actual values in single imputation. The uncertainty of 

the imputed values is ignored in single imputation-based approaches. Standard errors 

may exist for these values. As a result, the results are biased [25]. Also, for single 

imputation, other methodologies, such as machine learning-based methods, may be 

utilized [26]. 

However, using several simulation models, MI methods yielded various values for 

the imputation of a single missing data. The variability of imputed data is introduced 

in these approaches to find a range of reasonable responses. MI approaches are more 

complicated than single imputation, but they do not suffer from bias values. MI can 

be summarized into three steps. The first step is imputation, in which 𝑀 independent 
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imputed values matching to missing data are obtained. The analysis is the second step, 

which involves analyzing each of the 𝑀 imputed datasets using standard statistical 

techniques for complete data. The third step combines results of the analysis, in which 

𝑀 sets of desired estimates are combined into one set of parameter estimates using 

Rubin’s rules [27]. Several previous studies have proposed packages in 𝑅 to imple-

ment MI methods more efficiently. One of these packages is called "Multivariate 

Imputation via Chained Equations" (also known as packages ”mic”) [22]. Other pack-

ages are “mi” [23] and “Amelia” [28].  

2.2 The penalized logistic regression model 

The logistic regression is a statistical approach for predicting the value of a cate-

gorical response variable with just two potential values represented by 0 and 1. When 

dealing with low-dimensional data, logistic regression works well. Nevertheless, 

when dealing with high-dimensional data sets, such as those including gene expres-

sion data, it may become inefficient in terms of prediction accuracy and computation-

al efficiency. Another issue that affects the use of logistic regression is overfitting, 

which occurs when the number of features exceeds the number of observed values 

[29]. The logistic regression with a penalty is used in various classification fields to 

perform gene selection and classification simultaneously [30]. This model is penal-

ized, and its coefficients are shrunk as part of the regularization procedure [31]. Over 

the last decade, penalized regression approaches have gained popularity due to their 

superior prediction accuracy and computational efficiency. 

For illustration purposes, suppose a set of data is designed as a matrix 𝑋 ∈
𝑅𝑛×𝑝 (𝑛 ≪ 𝑝),  𝑋 = (𝑥1, 𝑦1), (𝑥2, 𝑦2), . . . , (𝑥𝑛 , 𝑦𝑛) , where each column indicates a 

feature, each row denotes a sample, 𝑥𝑖 = (𝑥𝑖1 , 𝑥𝑖2, . . . , 𝑥𝑖𝑝) is the 𝑖𝑡ℎ input sample, the 

entry 𝑥𝑖,𝑗 denotes the value of the 𝑗𝑡ℎ feature of the 𝑖𝑡ℎsample and 𝑦 = (𝑦1, . . . , 𝑦𝑛)𝑇  is 

the 𝑛 −dimensional vector of binary responses coded as {0, 1}. The class posterior 

probability is defined in the logistic regression function as follows: 

 𝑝(𝑦𝑖 = 1|𝑥𝑖𝑗) = 𝜋(𝑥𝑖) =
𝑒𝑥𝑝(𝑥𝑗

𝑇𝛽𝑗)

1+𝑒𝑥𝑝(𝑥𝑗
𝑇𝛽𝑗)

, 𝑗 = 1,2, . . . , 𝑝 (1) 

where 𝛽 = (𝛽1, . . . , 𝛽𝑝)𝑇  is a 𝑝 −dimensional vector of the unknown parameters. 

Then, the estimator 𝛽̂ is obtained as the minimizer of the log-likelihood function as 

follows: 

ℓ(𝛽, 𝑦𝑖) = − ∑ {𝑦𝑖 𝑙𝑜𝑔 𝜋 (𝑥𝑖) + (1 − 𝑦𝑖) 𝑙𝑜𝑔( 1 − 𝜋(𝑥𝑖)}𝑛
𝑖=1  (2) 

The classification method of logistic regression is a powerful discriminative tool 

(variable selection). However, logistic regression is not useful as a classification tech-

nique when the dataset is high dimensional since the design matrix is singular. As a 

result, it is unable to produce accurate regression coefficient estimations. Further-

more, overfitting occurs when datasets are high dimensional, such as when there are a 

large number of genes (or features in general). Furthermore, multicollinearity might 

affect its estimators [32], [33]. 
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From a statistical point of view, other (unrelated) features may cause noise and re-

duce classification effectiveness. To increase classification accuracy, statisticians 

commonly use feature selection methods that can eliminate irrelevant and redundant 

features. Besides the logistic regression, there are other classification methods availa-

ble, such as penalized logistic regression (PLR), which is used to reduce high dimen-

sionality and enhance classification accuracy [34]. Although regularization methods 

are often applied to high-dimensional data, [35] claimed that they might also be ap-

plied to low-dimensional data. 

The log-likelihood function is modified by the addition of a positive penalty term 

in penalized logistic regression, imposing certain coefficients to become zero to pro-

duce a sparse solution. The PLR penalizes a logistic model with too many features by 

adding a penalty term to the equation. As a result, when the coefficients are con-

strained, the coefficients of less essential features become either extremely near to 

zero or precisely zero. Regularization is another name for this technique. The follow-

ing is the setting for the technique. 

The penalized log-likelihood is represented as: 

PLR = − ∑ {𝑦𝑖 𝑙𝑜𝑔 𝜋 (𝑥𝑖) + (1 − 𝑦𝑖) 𝑙𝑜𝑔( 1 − 𝜋(𝑥𝑖)}𝑛
𝑖=1 + 𝜆𝑔(𝛽), (3) 

where, 𝑔(𝛽)  indicates a regularization term that can be expressed in different 

forms and 𝜆 > 0 denotes a control parameter. Then the PLR of Eq. (3) is minimized 

with regard to 𝜆 to obtain estimates of the coefficients. The use of a penalty ensures 

that each parameter has a unique estimate and results in better predictions than the 

conventional “Maximum Likelihood Estimation” (MLE), with a reasonable balance 

between bias and variance [36]. Without loss of generality, y and the columns of X 

are considered to be standardized, ∑ 𝑦𝑖
𝑛
𝑖=1 = 0,  ∑ 𝑥𝑖𝑗

𝑛
𝑖=1 = 0, and 

1

𝑛
 ∑ 𝑥𝑖𝑗

2 = 1𝑛
𝑖=1  for 

𝑗 = 1,2, . . . , 𝑝. Consequently, the intercept term(𝛽0) is not penalized. 𝛽 is estimated 

employing Lasso technique by: 

𝛽̂𝐿𝐴𝑆𝑆𝑂 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽[− ∑ {𝑦𝑖 𝑙𝑜𝑔 𝜋 (𝑥𝑖) + (1 − 𝑦𝑖) 𝑙𝑜𝑔( 1 − 𝜋(𝑥𝑖))}𝑛
𝑖=1                    

                   +𝜆 ∑ |𝛽𝑗|
𝑝
𝑗=1 ],  (4) 

where, 𝜆 is a control parameter. When 𝜆 = 0, Eq. (4) reduces the likelihood esti-

mator to its lowest possible value. As 𝜆 → ∞ penalization forces all features to be 

zero. 

The adaptive Lasso (ALasso) method is an extension of Lasso. It was originally 

proposed by [16] to overcome the shortcomings of Lasso by combining the L1 penalty 

with the weighted penalty [37]. Zou [16] modified the L1-penalty by providing vari-

ous weights to various coefficients in order to make it more efficient. Shrinkage tech-

niques such as Ridge, Lasso, and other similar methods might be used to assign 

weights. The ALasso associated with the logistic regression is given by: 

𝛽̂𝐴𝐿𝐴𝑆𝑆𝑂 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽[− ∑ {𝑦𝑖 𝑙𝑜𝑔 𝜋 (𝑥𝑖) + (1 − 𝑦𝑖) 𝑙𝑜𝑔( 1 − 𝜋(𝑥𝑖))}𝑛
𝑖=1                

                     +𝜆 ∑
|𝛽𝑗|

(|𝛽̂𝑗
𝑖𝑛𝑖𝑡𝑖𝑎𝑙|)

𝛾
𝑝
𝑗=1 ] , (5) 

44 http://www.i-joe.org



Paper—Improving Penalized Logistic Regression Model with Missing Values in High-Dimensional Data 

where, 𝜆, 𝛾 ≥ 0 and 𝛽̂𝑗
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 is an initial estimate for each 𝛽𝑗  estimated using the 

Lasso technique or other shrinkage techniques. Here we set 𝛾 = 1, for simplicity. 

2.3 The proposed method 

Missing data is a problem that affects performance in data analytics. An inaccurate 

prediction might result from incorrect imputation of missing values. Recently, when a 

vast amount of data is created every second, data usage become a key concern for 

stakeholders. Thus, managing missing data efficiently becomes increasingly crucial. 

This research is also motivated by the fact that in PLR, the L1-norm penalty may be 

used to apply the PLR approach to high-dimensional data sets. However, because the 

L1-norm is inconsistent with feature selection, this technique may result in the selec-

tion of irrelevant and redundant features [38]. To put it another way, PLR estimates 

based on the L1-norm may be biased for large coefficients since they receive more 

enormous penalties. 

Peng et al. [39] employed the “one-dimensional weighted Mahalanobis distance” 

(1-DWM) as a criterion of gene efficiency to extend the effect of individual genes to 

the joint impact of multigene, that is defined as: 

 𝐽(𝑥.𝑗) =
(𝑥̄1𝑗−𝑥̄2𝑗)2

𝜎𝑤𝑗
2 ,   (6) 

where 𝑥𝑗is a column vector, denotes feature 𝑗across samples, and 𝜎𝑤𝑗
2 = 𝑤1𝑗 . 𝜎1𝑗

2 +

𝑤2𝑗 . 𝜎2𝑗
2 , denotes the weighted variance of feature 𝑗, 𝜎𝑘𝑗

2  denotes variance of feature 𝑗 

in class 𝑘, 𝑤𝑘 is the prior probability or weight of class 𝑘, where 𝑘 = 2 in this study 

and 𝑤1 = 𝑤2 = 0.5. 

Therefore, this study uses imputations adaptive penalized logistic regression 

(IAPLR) as an extension of the penalized methods to improve the performance and 

impute missing values in high-dimensional data. This is done by employing the (1-

DWM) as an initial weight inside L1-norm with imputing missing values for each 

feature (gene). The proposed method addresses missing values and improves feature 

selection in high-dimensional. 

The 𝑗𝑡ℎcomponent of the p-dimensional vector of features is denoted as: 

 𝑤𝑗 =
1

|𝐽(𝑥.𝑗)|
,  𝑗 = 1,2, . . . , 𝑝, (7) 

where 𝐽(𝑥.𝑗) is the weight for every feature j that is indicated as Eq. (6). 

The proposed method imputes missing values by the "naniar" package in R. More-

over, to alleviate inconsistency in feature selection, the proposed weight in this work 

gives a relatively large amount of weight to the feature with a low ratio value while 

giving a small weight to the feature with a high ratio value. The IAPLR becomes 

capable of reliably picking related features after correctly assigning weights to fea-

tures. Figure 1 shows the implementation algorithm for the IAPLR technique. The 

fact that the IAPLR equation is convex ensures the presence of a global maximum 
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point for the solution. The coordinate descent method can be used to find the IAPLR 

solution by: 

 𝛽̂𝐼𝐴𝑃𝐿𝑅 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽[− ∑ {𝑦𝑖 𝑙𝑜𝑔 𝜋 (𝑥𝑖)𝑛
𝑖=1  

          + (1 − 𝑦𝑖) 𝑙𝑜𝑔( 1 − 𝜋(𝑥𝑖))}+𝜆 ∑ 𝑤𝑗|𝛽𝑗|
𝑝
𝑗=1 ]. (8) 

 

Fig. 1. Flowchart of IAPLR  

2.4 Evaluation metrics 

In this subsection, three evaluation metrics are used to evaluate the performance of 

the method. These criteria are widely used in the healthcare setting [40]. These crite-

ria involve classification accuracy (CA), sensitivity (SEN), and specificity (SPE) that 

are given as: 

 𝐶𝐴 =
𝑇𝑁+𝑇𝑃

𝐹𝑃+𝑇𝑃+𝑇𝑁+𝐹𝑁
× 100% (9) 
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 𝑆𝐸𝑁 =
𝑇𝑃

𝐹𝑁+𝑇𝑃
× 100% (10) 

 𝑆𝑃𝐸 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
× 100% (11) 

where TP, FP, TN, and FN are denoted in Figure 2. The greater the values of the 

applied assessment criteria, the better the classification performance is expected to be. 

 

Fig. 2. Confusion matrix of classification  

2.5 Dataset description 

In order to assess its effectiveness, the proposed method (IAPLR) is used for two 

datasets with varying numbers of genes and observations. These datasets are freely 

accessible and have been used by a large number of researchers in the previous. First, 

the colon cancer data set, in which the number of observations is 62 people (40 ma-

lignant tumors and 22 noncancerous cells) and 6500 genes. Affymetrix oligonucleo-

tide array technology was used to get it. Only 2000 gene expressions were utilized in 

this data set, and they were selected based on the samples' lowest minimum intensity 

[41]. The second data set is the Bipolar disorder (Bip) dataset, which had a sample 

size of 61 observations, including 31 control observations and 30 bipolar disorder 

observations. Again, Affymetrix technology was used to capture the expression of 

22,283 human genes. [42], [43]. 

3 Results and discussion 

In this section, the datasets described above were considered to show various 

methods regarding feature selection with missing values. The proposed method 

(IAPLR) was demonstrated to be efficient throughout comparative experiments with 

Lasso and ALasso. We first applied these methods to complete data without missing 

data. We randomly partitioned each dataset into a training dataset with 70% of the 

samples and a test dataset with 30% of the samples to allow for a fair comparison. 

The 10-fold cross-validation (CV) was used with the training dataset 100 times in 

order to obtain the optimal value of 𝜆, using the “glmnet” package in R. On the other 

hand, to evaluate the methods with missing values, the process as follows. First, we 

seed missing values in our datasets with the different rates (10%, 20%, 30%) using 

the “missForest” package in R. This study assumes no missing data in the response 

variable. Secondly, we used the “naniar” package of the programing language R to 

 Prediction (+) Prediction  (−) 

Actual (+) True Positive (TP) False Negative (FN) 

Actual (−) False Positive (FP) True Negative (TN) 
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impute the missing values. Thirdly, we applied penalized methods on imputing data 

as complete data. The average number of selected genes, the averaged CA, SEN, and 

SPE in both the training and testing datasets are presented in Tables 1 and 2.  

It can be seen from the data in Tables 1 and 2. The proposed method selected fewer 

genes than the Lasso and ALasso in both colon and Bip datasets with different rates of 

missing values. For example, in the colon with 20% missing data, IAPLR selected 13 

genes compared to 16 genes for Lasso and 15 genes for ALasso. On the contrary, we 

observed that Lasso usually produces the highest number of picked genes in both 

datasets. 

Furthermore, we observe in Tables 1 and 2 that in both datasets used in this re-

search, the average CA, SEN, and SPE in both the training and testing sets of IAPLR 

are much better than that of Lasso and ALasso. For instance, in colon data with 10% 

missing values, the CA of IAPLR in the training set is (96%), which is better than 

(93.91%) for Lasso and (93.82%) ALasso. Additionally, in Bip data with 30% miss-

ing values, the SEN of IAPLR is 87.93%, which is better than that of Lasso and 

ALasso, 81.39%, and 83.86%, respectively. The same conclusion can be made from 

the testing sets in the colon and Bip datasets with different rates of missing values. 

To further highlight the performance of the IAPLR, it is required to conduct statis-

tical tests in order to investigate whether the differences in classification accuracy 

obtained in Tables 1 and 2 are statistically significant or not. In this study, the paired 

t-test was utilized to analyze the data. Tables 3 and 4 present the findings. The relative 

improvement in the mean of average accuracy that the proposed method provides in 

comparison to the other methods is represented by the column "improvement". In 

addition, Tables 3 and 4 demonstrate that there is a statistically significant difference 

between our proposed method, IAPLR, and each competing approach at the 5% level 

of significance. 

Table 1.  The averaged criteria over 100 times for the training and testing colon dataset 

Missing % Methods Genes 
Training set Testing set 

% CA % SEN % SPE % CA % SEN % SPE 

No missing Lasso 14 94.14 92.20 94.64 79.53 83.43 86.92 

 ALasso 14 94.83 93.22 95.22 83.40 85.41 86.91 

 Proposed 12 96.12 95.85 96.83 87.91 89.42 88.33 

10% Lasso 14 93.82 90.63 94.00 81.14 82.34 86.74 

 ALasso 15 93.91 90.72 95.00 84.11 84.41 86.91 

 Proposed 13 96.00 95.00 96.00 88.53 90.82 88.43 

20% Lasso 16 89.80 87.50 89.91 81.34 80.12 75.44 

 ALasso 15 91.90 87.71 90.03 80.53 78.02 75.42 

 Proposed 13 93.61 88.83 92.42 85.44 82.74  81.42 

30% Lasso 17 83.71 80.00 83.52 78.50 77.73 79.32 

 ALasso 15 86.64 84.40 89.24 80.62 79.24 84.82 

 Proposed 15 90.00 89.00 91.00 88.34 83.23 86.43 
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Table 2.  The averaged criteria over 100 times for the training and testing Bip dataset 

Missing % Methods Genes 
Training set Testing set 

% CA % SEN % SPE % CA % SEN % SPE 

No missing 

Lasso 18 90.69 91.70 92.97 79.53 83.53 86.12 

ALasso 16 92.62 94.31 94.51 83.40 85.65 86.11 

Proposed 15 94.70 95.55 95.98 88.91 89.30 88.15 

10% 

Lasso 18 90.19 90.14 91.36 77.97 81.77 84.58 

ALasso 15 91.42 93.31 94.00 82.46 84.72 85.41 

Proposed 15 93.60 94.55 94.88 88.45 88.69 90.80 

20% 

Lasso 19 85.39 86.38 87.82 77.07 79.64 80.55 

ALasso 16 87.28 88.48 90.94 81.14 83.46 86.64 

Proposed 14 90.64 90.87 91.28 85.78 86.57 89.64 

30% 

Lasso 20 80.63 81.39 81.84 76.58 78.36 78.63 

ALasso 18 84.39 83.86 82.18 80.78 79.23 80.40 

Proposed 16 88.93 87.80 87.55 83.72 83.97 82.87 

Table 3.  Significant test results of paired t-test for the training and testing colon dataset 

Missing % Methods 
Training set: Average accuracy Testing set: Average accuracy 

Improvement p-value Improvement p-value 

No missing 
Lasso 2.10% 0.0021 (*) 10.54% 0.0000 (*) 

ALasso 1.36% 0.0053 (*) 5.41% 0.0001 (*) 

10% 
Lasso 2.32% 0.0014 (*) 9.11% 0.0000 (*) 

ALasso 2.23% 0.0022 (*) 5.26% 0.0001 (*) 

20% 
Lasso 4.24% 0.0005 (*) 5.04% 0.0001 (*) 

ALasso 1.86% 0.0020 (*) 6.10% 0.0001 (*) 

30% 
Lasso 7.51% 0.0002 (*) 12.54% 0.0000 (*) 

ALasso 3.89% 0.0006 (*) 9.58% 0.0001 (*) 

(*) significant at 0.05    

Overall, these results indicate that the IAPLR has been effectively applied to im-

prove gene selection, classification, and dealing with missing values in high-

dimensional data. It achieved higher CA, SEN, and SPE in both the training and test-

ing datasets. Hence, IAPLR is nominated as a potential gene selection approach since 

it can simultaneously satisfy all three of these criteria. Furthermore, when compared 

to competitor approaches, the proposed penalized technique is the most effective 

classification technique. This illustrates that the weights of the genes are taken into 

account by the IAPLR method. 
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Table 4.  Significant test results of paired t-test for the training and testing Bip dataset 

Missing % Methods 
Training set: Average accuracy Testing set: Average accuracy 

Improvement p-value Improvement p-value 

No missing 
Lasso 4.42% 0.0023(*) 11.79% 0.0000 (*) 

ALasso 2.25% 0.0061(*) 6.61% 0.0001 (*) 

10% 
Lasso 3.78% 0.0023(*) 13.44% 0.0000 (*) 

ALasso 2.38% 0.0057(*) 7.26% 0.0001 (*) 

20% 
Lasso 6.14% 0.0001(*) 11.30% 0.0000 (*) 

ALasso 3.85% 0.0021(*) 5.72% 0.0001 (*) 

30% 
Lasso 10.29% 0.0000(*) 9.32% 0.0000 (*) 

ALasso 5.38% 0.0001(*) 3.64% 0.0006 (*) 

(*) significant at 0.05    

4 Conclusion 

In data analytics, the imputation of missing data is extremely important. Unfortu-

nately, it is difficult to find a missing data imputation method that works for all types 

of datasets. Although there has been significant progress in the methods and tools for 

variable selection, missing data often occurs in extensive, complicated research and 

which can make data analysis challenging. In this study, it is mainly focused on im-

proving the performance of penalized logistic regression models and handling missing 

values in high-dimensional data through the IAPLR method. The IAPLR, Lasso, and 

ALasso were applied to two datasets (colon and dip) in the presence of the different 

rates of missing values. The findings of comparative experiment demonstrated that 

the efficiency of IAPLR in the presence of missing data is better than the efficiency of 

the other two techniques in terms of CA, SEN, and SPE. The findings also showed 

that the IAPLR method for classification and gene selection is a statistically signifi-

cant one. 
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