
Paper—Selection of A Suitable Algorithm for the Implementation of Rate-Limiter Based on Bucket4j

Selection of A Suitable Algorithm for the Implementation

of Rate-Limiter Based on Bucket4j

https://doi.org/10.3991/ijoe.v18i04.25641

Maxim Bartkov1(), Dmitry Borovikov2
1 RooX Solutions Java Team Lead, Khakov, Ukraine

2 Oceanic and Space Sciences and Scientific Computing, University of Michigan, New York,

USA

accessibility@umich.edu

Abstract—In shared network services, rate limiting is essential as it controls

the requests of the users or requesters in a specific amount of time. Due to rate

limiting, the service or API stays protected from overuse, malicious attack, DDoS

attack, data traffic spikes, etc. Bucket4j is a java library that has been demon-

strated to be effective in rate limiting. While Bucket4j is mainly based on token

bucket algorithm, rate limiting processes can be based on various effective algo-

rithms. Selecting the most suitable algorithm for rate limiting is an essential prob-

lem. To address it, we have done a detailed analysis of rate-limiting algorithms

based on various factors. The factors we have considered are easy implementa-

tion, proper handling of data traffic, data starvation, memory usage, etc. We have

found out that for different set of requirements, different algorithms are prefera-

ble.

Keywords—rate-limiting, Bucket4j, token-bucket algorithm, leaky-bucket al-

gorithm, fixed window algorithm, sliding window algorithm

1 Introduction

Controlling traffic is a very important problem in shared network services and APIs.

Large traffic can be intended or unintended by users, but it’s essential to keep services

stable and available. A rate limiter solves this problem by limiting access to services,

APIs, etc. In an API, a rate limiter restricts the number of requests a client or a user can

make within a specific time. Thus the service stays protected from malicious and unin-

tentional overuses [1]. Rate limiters use various techniques such as bandwidth control

modules, to restrict attack traffics at source ends [2]. Also this technology controls the

traffic rate for HTTP. A network has a limit considering its energy consumption, and a

key target is to reduce it [3]. Rate limiters can control energy consumption. Allocating

an optimal maximum rate is necessary, and for instance, it can be done for packet com-

munications in wireless networks [4]. GitHub restricts authenticated API requests to

5000 per hour and 60 unauthenticated requests per hour. In IoT applications, there has

been a wide range of research on reducing data rates [5] which indicates the importance

52 http://www.i-joe.org

https://doi.org/10.3991/ijoe.v18i04.25641
https://doi.org/10.3991/ijoe.v18i04.25641

Paper—Selection of A Suitable Algorithm for the Implementation of Rate-Limiter Based on Bucket4j

of rate limiting. Bucket4j is a library in java for rate limiting. This library mainly fol-

lows the token bucket algorithm. It’s a thread-safe library and is effective for both clus-

tered environments and standalone JVM applications. Distributed or in-memory cach-

ing via JSR107 or JCache specification is also available in Bucket4j. In a clustered

environment, controlling data traffic, energy efficiency, energy consumption, etc., are

the main challenges [6]. Bucket4j provides a solution in these cases. Rate limiters are

based on various rate-limiting algorithms. Different rate limiters follow different algo-

rithms based on their purposes. There are various requirements to meet in rate limiting

processes. Based on different requirements, it’s important to select a suitable algorithm

for the rate limiter. As an example, in wireless sensor networks, by using algorithms

like the PSO-BP algorithm, it’s simpler to solve problems, such as high energy con-

sumption, low efficiency, etc. [7]. In the present paper, we analyze several rate limiting

algorithms. We indicate strengths and weaknesses of algorithms as a guideline for se-

lecting a suitable algorithm based on a developer’s requirements and/or limitations.

The next sections provide a detailed discussion and analysis of rate limiting and its

algorithms. Section 2 discusses the background of rate limiters and rate limiting algo-

rithms. Section 3 provides a list of related works and applications of rate limiters and

algorithms. Section 4 discusses the factors based on which suitable algorithms can be

selected for rate limiting. Section 5 provides the overall analysis. Lastly, section 6 con-

cludes the analysis.

2 Background

Implementation of rate limiting is based on various algorithms. The most widely

used algorithms are the token bucket algorithm, leaky bucket algorithm, fixed window

algorithm, sliding window algorithm, etc. Each of these algorithms is best suited for

specific factors and conditions.

2.1 Token bucket algorithm

Token bucket algorithm provides solutions for traffic shaping in packet-switched

networks [8]. In token bucket algorithm, when there’s a request for an API endpoint

access, the bucket will give a token depending on availability to the requester. If tokens

are available and the service accepts the request, then the system removes a token from

the bucket. If tokens aren’t available, the system rejects the request. As tokens are de-

creasing with each acceptance of the request, the system replenishes the tokens at a

fixed rate. Thus the system maintains the bucket’s capacity.

Figure 1 shows the process flow of the token bucket algorithm. Upon receiving a

request from a user, the system checks if the bucket holds enough tokens for the incom-

ing data packets. The size of data packets, S, to be equal to or less than the size of

available tokens, T. So, if S≤T, the system accepts the request, and the packet conforms.

Also, the number of available tokens decreases. If S>T, the system rejects the request,

and the packet becomes nonconforming.

iJOE ‒ Vol. 18, No. 04, 2022 53

Paper—Selection of A Suitable Algorithm for the Implementation of Rate-Limiter Based on Bucket4j

Fig. 1. Process flow of token bucket algorithm

Advantages

1. Token bucket algorithm is very effective in controlling traffic bursts. Requests aren’t

dropped or leaked as the bucket doesn’t allow requests or data packets without the

availability of tokens.

2. When request is accepted, there’s a guarantee that it will be processed.

Disadvantages

1. Due to handling data traffic by using tokens, its implementation is not so simple as

compared to some other methods.

2.2 Leaky bucket algorithm

The leaky bucket algorithm is simple to implement. Here, the system holds the re-

quests using a queue or a bucket. Upon receiving a new request, the system sends it to

the queue as long as the queue has a vacancy. Otherwise the request is leaked or dropped

and the system notifies requesting user. The system processes the requests at fixed time

intervals. It executes the requests in the first-come-first-serve manner. The conven-

tional leaky bucket algorithm mainly needs 2 parameters: bucket size and leaky rate

[9].

Figure 2 shows the operation of leaky bucket algorithm. Suppose, for a system, the

bucket has a capacity of 3 requests per minute. As shown in Figure 2, the system accepts

the first 3 requests but rejects the next 2 requests as the capacity of 3 requests per minute

is exceeded.

54 http://www.i-joe.org

Paper—Selection of A Suitable Algorithm for the Implementation of Rate-Limiter Based on Bucket4j

Fig. 2. Working principle of leaky bucket algorithm

Advantages

1. (VVV) Simplicity of implementation.

2. It keeps the bursts of requests smooth by executing them at a constant rate.

3. It’s memory efficient as the queue size is constant.

Disadvantages

1. New requests may starve as the queue may fill up with the traffic of old requests.

2. There’s uncertainty whether accepted requests will be processed in a certain amount

of time.

2.3 Fixed window algorithm

Fixed window algorithm divides processing timeline into fixed windows. The win-

dows have a fixed time length, such as 1 hour, 1 minute, etc. A counter variable counts

the number of requests in the window. If the counter exceeds the predefined limit, all

incoming requests before the end of the window are dropped. After every window, the

system resets the counter [10]. Figure 3 shows how the fixed window algorithm works.

Suppose a service has a limit of 20 requests per hour. As seen in the figure, a new

request arrives at 1:55 PM as the window (1:00 PM to 2:00 PM) has 15 requests. Since

the limit is 20, the request is accepted. Again at 2:58 PM, another request arrives, but

that window (2:00 PM to 3:00 PM) has already reached the limit of 20 requests. There-

fore, the request gets rejected.

Fig. 3. Working principle of fixed window algorithm

iJOE ‒ Vol. 18, No. 04, 2022 55

Paper—Selection of A Suitable Algorithm for the Implementation of Rate-Limiter Based on Bucket4j

Advantages

1. Simplicity of implementation.

2. Low memory load: the system only needs to store the request count.

3. More new requests are executed as the system resets the counter at the end of each

window.

Disadvantages

1. On both sides of a boundary of two windows, a single traffic burst can result in more

requests than the limit of requests per hour. Suppose, at 1:59 PM, there are 12 new

requests, and at 2:02 PM, there are 11 new requests. So, there are 23 new requests

in a few minutes, which is more than the request limit, which is 20 per hour. But as

all of these requests aren’t in the same window, these requests get accepted.

2. During peak hours, consumers may exploit counter variable reset thus causing a

problem in the server.

2.4 Sliding window algorithm

The sliding window algorithm has similarities with the fixed window algorithm. But

this algorithm provides solutions to some of the limitations of the fixed window algo-

rithm. Here, the counter doesn’t get reset after each window, but it uses the previous

window’s information and estimates the current window’s number of allowable re-

quests. So, in the sliding window algorithm, the windows can smooth traffic bursts

much better than the fixed windows.

As shown in Figure 4, 80 requests were accepted in the first window (1:00 PM to

2:00 PM), and 50 requests have been accepted in the first 30 minutes of the second

window (2:00 PM to 3:00 PM). Then, there’s a request at 2:30 PM. Now, the counter

will make the decision whether to accept an incoming request based on the information

from the previous window and the current window. The request acceptance is 100 re-

quests per hour. From 2:30 PM, the counter goes behind 1 hour and considers a 1-hour

window from 1:30 PM to 2:30 PM.

Fig. 4. Working principle of sliding window algorithm

Requests accepted in the last 30 minutes of the first window = 80 * (30/60) = 40.

56 http://www.i-joe.org

Paper—Selection of A Suitable Algorithm for the Implementation of Rate-Limiter Based on Bucket4j

Requests accepted in the first 30 minutes of the second window = 50.

Total requests accepted in the 1-hour window from 1:30 PM to 2:30 PM = 40+50 =

90.

As total requests accepted = 90 < 100, so the request at 1:30 PM will be accepted.

Advantages

1. It handles the request spikes better than the fixed window algorithm.

2. Its request handling process is very accurate. The number of wrongly allowed re-

quests is very low.

Disadvantages

1. Memory footprint is high as the system has to maintain all the request timestamps

for an entire window.

2. Time complexity is high as the system has to remove older timestamps [11].

2.5 Rate limiting using Bucket4j

Rate limiting processes involve tracking API addresses, using API access tokens or

keys, etc. When a client reaches the limit, the rate limiter queues the request, or rejects

the request, or allows the request with an extra charge. Bucket4j library in java works

very effectively in rate limiting processes.

Bucket4j works by following the token bucket algorithm. It starts with a Maven con-

figuration. Also, it offers various features in rate limiting. It’s a thread-safe library. It’s

mainly a cluster environment or independent JVM application [12].

Features of Bucket4j. The implementation of Bucket4j is lock-free and effective

[13]. It ensures completely non-compromise precision. It performs the calculations in

integer arithmetic rather than with doubles or floats. Thus end-users stay protected from

adverse effects of rounding errors.

Bucket4j needs only 2 lines of code to move from JVM to cluster. It can limit some-

thing in JVMs’ cluster. Any GRID solution compatible with JSR 107 or JCache API is

available in Bucket4j.

Multiple bandwidth specification per bucket is another feature of Bucket4j. It sup-

ports both synchronous API and asynchronous API. Buckets can also work as a sched-

uler with Bucket4j.

Terminologies of Bucket4j. There are some terminologies related to Bucket4j. The

‘Bucket’ interface denotes the bucket with the highest capacity of tokens. For using

tokens, there are methods, such as ‘try Consume’, ‘try Consume And Return Remain-

ing’. When the system uses the token by letting the request conform to the limits, these

methods or commands return the consumption result as ‘true’. A bucket’s key building

block is the ‘Bandwidth’ class. It defines the bucket’s limits. Bandwidth is necessary

to configure the bucket’s capacity and refill rate. The ‘Refill’ class helps to define the

fixed filling rate of tokens onto the bucket. ‘Consumption Probe’ is another class con-

taining the consumption result, the bucket’s status, such as remaining tokens, remaining

time until the availability of the requested tokens into the bucket again, etc.

iJOE ‒ Vol. 18, No. 04, 2022 57

Paper—Selection of A Suitable Algorithm for the Implementation of Rate-Limiter Based on Bucket4j

Basic operations of Bucket4j. Rate limiting has some basic patterns. When the rate

limit is 15 requests per minute, the bucket’s capacity will be 15, and the token refill rate

will be 15 per minute. Figure 5 shows the code of setting the refilling of tokens. The

command ‘Refill. intervally’ refills tokens into the bucket at the time of window’s be-

ginning. As for this example, 15 tokens are injected at the start of the window.

Fig. 5. Code for refilling rate of tokens

To avoid spikes that can exhaust the tokens, Bucket4j is effective. It can set many

limits on the bucket. Suppose, in the first 7 seconds, a spike can exhaust all the tokens.

Figure 6 shows the code that allows 7 requests in a time window of 25 seconds.

Fig. 6. Code of Bucket4j to avoid spikes

3 Related works and applications

Bucket4j has a wide range of applications as a rate-limiting tool. By using Bucket4j,

it’s possible to rate limit Spring MVC endpoints. Bucket4j has also been successfully

used together with In Memory Data Grid Hazlecast [14]. Many applications implement

rate limiting using different rate limiting algorithms. Researchers have modified the

token bucket algorithm into a bi-direction adjustable algorithm to control data traffic in

network systems in the enterprise and residential sector. They have ensured a guarantee

of multi-class bandwidth and sharing [15]. In the Tor project, improving the Tor net-

work’s performance has been a challenge. The token bucket algorithm has been suc-

cessful in ensuring that packets aren’t lost, when users send data packets in the form of

requests, and the bandwidth limit set by the system is respected [16]. The algorithm

works more effectively with optimal values for refill intervals of tokens for the Tor

58 http://www.i-joe.org

Paper—Selection of A Suitable Algorithm for the Implementation of Rate-Limiter Based on Bucket4j

network’s different scenarios. By using the multi-rate token bucket concept, it is possi-

ble to explain mathematical models of managing traffic flows in networks. It’s also

possible to explain the adaptive formation of network traffic flow tuning of control

systems with the shaper’s structure and control parameters with indirect feedback. Mul-

tiple token bucket shapers have shaped traffic streams in the network [17]. The leaky

bucket algorithm is also effective in controlling network traffic. Due to congestion,

major threats occur in the communication process between nodes in wireless sensor

networks. It results in overflowing of the buffer, delaying packets, low energy effi-

ciency, minimization of the throughput, etc. Implementation of the leaky bucket algo-

rithm has made it possible to detect and avoid congestion effectively [18]. The leaky

bucket algorithm controls the bucket size, the number of allowable packets, the flow

rate to avoid congestion. Researchers have used the sliding window concept in the pro-

cess of detecting network intrusion in cloud computing platforms [19]. There are major

threats while conducting complete real-time active monitoring, defense, and detection.

In these processes, the sliding window concept is effective in achieving desired results.

4 Selecting suitable algorithms for rate limiting with Bucket4j

It’s a great challenge for tech giants to provide access to their shared services using

API properly. There have been several methods for controlling the number of requests

from users. Having discussed some of the methods in rate limiting in previous sections,

in this section we discuss the factors based on which engineers can select the most

suitable rate limiting algorithm. There are many factors to be considered when choosing

a rate limiting algorithm. The factors include: easy implementation, handling traffic

bursts, memory usage, dropping or leakage of requests, energy consumption, effi-

ciency, etc. Different service providers have different priorities, and thus may prefer

different rate limiting algorithms.

4.1 Easy implementation

When service providers look for a simple rate limiting mechanism, leaky bucket and

fixed window algorithms are suitable to implement. These two algorithms are the sim-

plest for implementing rate limiting. In the case of the leaky bucket algorithm, when-

ever a request arrives, the system appends it to the queue. Regardless of what happens

next, it’s a simpler way to handle data traffic. The fixed window is also an as y to

implement method. As long as the counter doesn’t reach the limit of requests, the fixed

window will keep processing the requests. Though these two algorithms have other

limitations, they are preferable regarding ease of use.

4.2 Handling traffic bursts

In a shared network service, there are continuous requests from the users. It’s very

important to specify how the service providers handle the traffic of requests. There’s a

wide range of applications and methods for controlling traffic bursts. Bucket4j has its

iJOE ‒ Vol. 18, No. 04, 2022 59

Paper—Selection of A Suitable Algorithm for the Implementation of Rate-Limiter Based on Bucket4j

applications of refilling process and controlling traffic bursts, as discussed earlier. To-

ken bucket algorithm has been a very effective tool for controlling traffic bursts. When

there are requests from users, the data packets enter the bucket only when there are

enough tokens for the packets. The tokens provide a guarantee for processing the pack-

ets if allowed into the bucket. So, there’s no possibility of dropping or leakage of pack-

ets from the bucket, unlike the leaky bucket algorithm and fixed window algorithm.

Bucket4j also works based on the token bucket algorithm; hence it performs so effec-

tively in rate limiting. While implementing the token bucket algorithm in handling traf-

fic bursts, we can consider the case as shown in Table 1. Two users’ token bucket is a

process to handle traffic bursts in the network. Suppose the working speed of a network

output interface is 5 Mb/s. At some time, there are 2 requests where user 1 is in high

priority class with 3Mb/s of minimum guaranteed bandwidth and user 2 is in low pri-

ority class with 2Mb/s of minimum guaranteed bandwidth. In the case 1, traffic arrived

from both users is more than the minimum guaranteed bandwidth. So, each of the users

only get respective minimum guaranteed bandwidth. In the case 2, user 1 gets more

than minimum guaranteed bandwidth as user 2 needed smaller bandwidth. In the case

4, the total bandwidth used by both users was less than the speed of the network. In this

way, the traffic of data packets can be handled.

Table 1. Traffic management of shared networks

Case No. Arrived Traffic Passed Traffic

 User 1 User 2 User 1 User 2

1 4 Mb/s 3 Mb/s 3 Mb/s 2 Mb/s

2 5 Mb/s 1 Mb/s 4 Mb/s 1 Mb/s

3 3 Mb/s 3 Mb/s 3 Mb/s 2 Mb/s

4 3 Mb/s 1 Mb/s 3 Mb/s 1 Mb/s

5 2 Mb/s 3 Mb/s 2 Mb/s 3 Mb/s

The sliding window algorithm is also effective in handling traffic bursts. As seen in

the case of the fixed window algorithm, there can be data traffic bursts in the timeline

of a window if there are a huge number of requests on both sides of the boundary of

two windows. When such an incident occurs, the number of requests exceeds the limit

[21]. The sliding window algorithm avoids such incidents as it keeps the records of the

previous window [20]. So, when a request arrives, the system checks the timeline of

the sliding window and makes the decision based on this information.

4.3 Memory usage

Efficient memory usage is another important factor while conducting rate limiting.

When data traffic is large, it’s also important to ensure efficient memory usage. The

fixed window algorithm requires less memory as it doesn’t need to handle additional

tasks like sliding window does, which has to keep the records of the previous window.

Similarly, the leaky bucket algorithm also requires less memory as it’s mainly based on

handling the queue of requests and processing the requests in first-come-first-serve

60 http://www.i-joe.org

Paper—Selection of A Suitable Algorithm for the Implementation of Rate-Limiter Based on Bucket4j

manner. So, despite having other limitations, leaky bucket and fixed window algo-

rithms are preferred, when available memory is limited.

4.4 Dropping and leakage of requests

An unexpected incident in a shared network service is dropping or leakage of re-

quests. In leaky bucket and fixed window algorithms, the possibility of requests being

dropped is higher. As seen in the leaky bucket mechanism, if bucket capacity is ex-

ceeded, requests in the queue get rejected. Such incidents can be avoided using the

token bucket and sliding window algorithm. The token bucket mechanism will accept

requests data packets into the bucket based on available tokens. So, the system will

surely process the data packets from the bucket. So, to avoid dropping or leakage of

requests, the token bucket algorithm and sliding window algorithm are more effective.

5 Discussions

Based on the factors discussed in the previous section, selecting a suitable rate lim-

iting algorithm depends on the priority of the service providers. Some service providers

prefer easy and economic implementation, and some prefer proper traffic burst handling

and high efficiency. We performed analysis of rate limiting algorithms like the token

bucket algorithm, leaky bucket algorithm, fixed window algorithm, sliding window al-

gorithm to identify, which are preferred under different conditions. For easy implemen-

tation and economic applications, the leaky bucket algorithm and the fixed window

algorithm have been found to be efficient. At the same time, these two algorithms may

not be the optimal choice, when high efficiency is required. Token bucket algorithm

and sliding window algorithm have been effective in handling traffic bursts in net-

works. These two algorithms have also performed with high efficiency.

Each of the algorithms offers some advantages as well as some limitations. However,

it’s possible to modify the algorithm; thus, the limitations of the algorithms can be re-

duced to some extent. So, to improve rate limiting, apart from just selecting the most

suitable algorithm, modifying the algorithms may be necessary to overcome some lim-

itations.

6 Conclusion

Rate limiting is an essential task and also a defensive measure for shared network

services. Proper rate limiting protects the network from excessive use along with han-

dling the traffic burst efficiently. Researchers are continuously working with rate lim-

iting algorithms to increase the efficiency of rate limiting. The existing algorithms have

made it easy for us to handle data traffic bursts in networks efficiently. Also, it has been

possible to ensure the simple and easy implementation of rate limiters. While conduct-

ing rate limiting, properly considering the discussed factors can make rate limiting more

efficient.

iJOE ‒ Vol. 18, No. 04, 2022 61

Paper—Selection of A Suitable Algorithm for the Implementation of Rate-Limiter Based on Bucket4j

7 References

[1] P. Srivastava, “Rate Limiting a Spring API Using Bucket4j,” Baeldung, 09-Sep-2020.

[Online]. Available: https://www.baeldung.com/spring-bucket4j [Accessed: 21-Jul-2021].

[2] R. Y. Patil and L. Ragha, “A dynamic rate limiting mechanism for flooding based distributed

denial of service attack,” in Fourth International Conference on Advances in Recent Tech-

nologies in Communication and Computing (ARTCom2012), 2012. https://doi.org/10.1049/

cp.2012.2512

[3] S. Ling and Q. D. Yang, “Secure and low energy consumption range query in tiered sensor

networks,” Int. J. Online Eng., vol. 12, no. 07, p. 4, 2016. https://doi.org/10.3991/ijoe.v12i07

.5510

[4] S. Ling and Q. D. Yang, “Secure and low energy consumption range query in tiered sensor

networks,” Int. J. Online Eng., vol. 12, no. 07, p. 4, 2016. https://doi.org/10.3991/ijoe.v12i07

.5510

[5] D. Gao, J. Zhang, F. Zhang, and H. Lin, “Distributed optimal maximum rate allocation based

on data aggregation in Rechargeable Wireless Sensor Networks,” Int. J. Online Eng., vol.

14, no. 03, p. 172, 2018. https://doi.org/10.3991/ijoe.v14i03.8339

[6] O. H. Yahya, H. Alrikabi, and I. A. Aljazaery, “Reducing the data rate in internet of Things

applications by using Wireless Sensor Network,” Int. J. Onl. Eng., vol. 16, no. 03, p. 107,

2020. https://doi.org/10.3991/ijoe.v16i03.13021

[7] X. Yang, “Data clustering method in wireless sensor networks based on residual energy

perception,” Int. J. Online Eng., vol. 14, no. 06, p. 85, 2018. https://doi.org/10.3991/ijoe.v14

i06.8700

[8] S. Sahana and R. Amutha, “Data aggregation in wireless sensor networks,” in International

Conference on Information Communication and Embedded Systems (ICICES2014), 2014,

pp. 1–6. https://doi.org/10.1109/ICICES.2014.7034189

[9] F. Gao and H. Qian, “Efficient, real-world token bucket configuration for residential gate-

ways,” IEEE ACM Trans. Netw., vol. 24, no. 1, pp. 462–475, 2016. https://doi.org/10.1109/

TNET.2014.2366496

[10] S. Pinaikul and W. Benjapolakul, “Credit token leaky bucket algorithm with fuzzy logic in

ATM networks,” in Proceedings. Ninth IEEE International Conference on Networks, ICON

2001, 2005, pp. 296–301.

[11] “Design a scalable API rate limiting algorithm - system design,” Nlogn.in, 01-May-2020.

[Online]. Available: https://nlogn.in/design-a-scalable-rate-limiting-algorithm-system-de-

sign/ [Accessed: 21-Jul-2021].

[12] A, “Rate Limiting Algorithm,” Wordpress.com, 19-Oct-2019. [Online]. Available: https://

preparingforcodinginterview.wordpress.com/2019/10/19/rate-limiting-algorithm-algo/ [Ac-

cessed: 21-Jul-2021].

[13] “Using bucket4j to limit the access rate of spring API - baeldung - Java知识 ,” Java-

mana.com. [Online]. Available: https://javamana.com/2021/04/20210407215435749h.html

[Accessed: 21-Jul-2021].

[14] V. Bukhtoyarov, bucket4j: Java rate limiting library based on token/leaky-bucket algorithm.

[15] A. Mohamed, spring-boot-bucket4j-hazelcast-demo.

[16] D. He, W. Zhou, and X. Zhang, “A bi-direction adjustable token bucket mechanism for

multi-class bandwidth guarantee and sharing,” in 2009 IEEE International Conference on

Network Infrastructure and Digital Content, 2009. https://doi.org/10.1109/ICNIDC.2009.

5360808

62 http://www.i-joe.org

https://www.baeldung.com/spring-bucket4j
https://doi.org/10.1049/cp.2012.2512
https://doi.org/10.1049/cp.2012.2512
https://doi.org/10.3991/ijoe.v12i07.5510
https://doi.org/10.3991/ijoe.v12i07.5510
https://doi.org/10.3991/ijoe.v12i07.5510
https://doi.org/10.3991/ijoe.v12i07.5510
https://doi.org/10.3991/ijoe.v14i03.8339
https://doi.org/10.3991/ijoe.v16i03.13021
https://doi.org/10.3991/ijoe.v14i06.8700
https://doi.org/10.3991/ijoe.v14i06.8700
https://doi.org/10.1109/ICICES.2014.7034189
https://doi.org/10.1109/TNET.2014.2366496
https://doi.org/10.1109/TNET.2014.2366496
https://nlogn.in/design-a-scalable-rate-limiting-algorithm-system-design/
https://nlogn.in/design-a-scalable-rate-limiting-algorithm-system-design/
https://preparingforcodinginterview.wordpress.com/2019/10/19/rate-limiting-algorithm-algo/
https://preparingforcodinginterview.wordpress.com/2019/10/19/rate-limiting-algorithm-algo/
https://javamana.com/2021/04/20210407215435749h.html
https://doi.org/10.1109/ICNIDC.2009.5360808
https://doi.org/10.1109/ICNIDC.2009.5360808

Paper—Selection of A Suitable Algorithm for the Implementation of Rate-Limiter Based on Bucket4j

[17] Kiran, A. Rathore, Vignesh, P. D. Shenoy, Venugopal, and V. T. Prabhu, “Optimal Token

Bucket Refilling for Tor network,” in 2018 IEEE International Conference on Electronics,

Computing and Communication Technologies (CONECCT), 2018.

[18] Y. Toroshanko, Y. Selepyna, N. Yakymchuk, and V. Cherevyk, “Control of traffic streams

with the multi-rate token bucket,” in 2019 3rd International Conference on Advanced Infor-

mation and Communications Technologies (AICT), 2019, pp. 352–355. https://doi.org/10.

1109/AIACT.2019.8847860

[19] Srinivas, Gowtham, S. Amith, Chaitanya, Archana, and G. Raja, “Leaky Bucket based con-

gestion control in Wireless Sensor Networks,” in 2018 Tenth International Conference on

Advanced Computing (ICoAC), 2018, pp. 172–174.

[20] H. X. Ni, “Based sliding window cloud computing platform of network intrusion detection

algorithm,” in 2014 IEEE International Conference on Computer and Information Technol-

ogy, 2014, pp. 927–930.

[21] “An alternative approach to rate limiting,” Figma.com. [Online]. Available: https://www.

figma.com/blog/an-alternative-approach-to-rate-limiting/ [Accessed: 21-Jul-2021].

8 Authors

Bartkov Maxim Vitalievich, RooX Solutions Java Team Lead prospect Petra

Grigorenko 16, Khakov, Ukraine, 6100 (email: accessibility@umich.edu, ORCID:

https://orcid.org/0000-0003-3527-3642).

Borovikov Dmitry, Ph.D. in Atmospheric, Oceanic and Space Sciences and Scien-

tific Computing, University of Michigan Instabase, Inc. 1480 York ave apt 6F, New

York, NY 10075 (email: accessibility@umich.edu, ORCID: https://orcid.org/0000-

0002-0151-7437).

Article submitted 2021-07-21. Resubmitted 2021-10-08. Final acceptance 2021-10-09. Final version pub-

lished as submitted by the authors.

iJOE ‒ Vol. 18, No. 04, 2022 63

https://doi.org/10.1109/AIACT.2019.8847860
https://doi.org/10.1109/AIACT.2019.8847860
https://www.figma.com/blog/an-alternative-approach-to-rate-limiting/
https://www.figma.com/blog/an-alternative-approach-to-rate-limiting/
https://orcid.org/0000-0003-3527-3642
mailto:accessibility@umich.edu
https://orcid.org/0000-0002-0151-7437
https://orcid.org/0000-0002-0151-7437

