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Abstract—Epilepsy is the most common form of neurological disease. The 
electroencephalogram (EEG) is the primary tool in the observation of epilepsy. 
The detection and prediction of seizures in EEG signals require multi-domain 
analysis, one of which is the time domain combined with other approaches for 
feature extraction. In this study, a method for detecting seizures in epileptic 
EEG is proposed using analysis of the distribution of the signal spectrum in the 
time range t. The EEG signal, which includes normal, inter-ictal, and ictal, is 
transformed into the time-frequency domain using the Short-Time Fourier Trans-
form (STFT). To find the highest detection accuracy, simulations were carried 
out on varying window length, overlap, and FFT points. The frequency distri-
bution and first-order statistics were then calculated as feature vectors for the 
classification process. A support vector machine was employed to evaluate the 
proposed method. The simulation results showed the highest accuracy of 92.3% 
using 25-20-512 STFT and quadratic SVM. The proposed method in this study 
is expected to be a basis for detecting and predicting seizures in long-term EEG 
recordings or real-time EEG monitoring of epilepsy patients.
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1	 Introduction

Electroencephalogram (EEG) signal recording is one of the main tools in diagnosing 
epilepsy [1]. Observation of the EEG signal in cases of epilepsy is an essential part 
of detecting, analyzing, and determining treatment [2]. The localization of the epilep-
togenic zone can also be analyzed using EEG [3]. The main task is to determine the 
seizure and non-seizure EEG signals, whereas the non-seizure signals include normal, 
pre-ictal, and inter-ictal. This type of EEG signal has a distinctive shape and rhythm that 
allows it to be visually observed. [4]. However, it can be very confusing for long-term 
EEG recordings, especially if the observation is multi-channel. Therefore, a system that 
is able to detect and evaluate the onset of seizures automatically is required [5].

Numerous algorithms and methods for epileptic EEG classification and detection 
were proposed and reported in related studies in the past few decades. Time-domain 
analysis, frequency domain analysis, and signal complexity analysis have been used 
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for feature extraction and combine with machine learning in the classification stage. 
A time-domain approach to EEG epileptic classification was reported in [6]–[8]. In 
those studies, first-order statistical calculations were used for feature extraction. The 
simulation results provide excellent classification accuracy.

On the other hand, feature extraction based on frequency analysis was reported in 
[9]–[12]. Seizure or ictal EEG has dominant spectral power at low frequencies com-
pared to normal EEG. However, observations in the frequency domain are susceptible 
to noise, both low and high frequencies, which commonly contaminate EEG signals.

Recently, feature extraction using signal complexity analysis or signal dynamics 
has been widely applied to EEG signals [13]. The disruption of electrical activity in 
the brain causes changes in the degree of complexity of the EEG signal. Decreased 
signal complexity is often associated with impaired brain function. Estimation of sig-
nal complexity using entropy and fractal is becoming a popular method for feature 
extraction. An entropy-based feature extraction method in detecting EEG seizures has 
been reported in [14]–[17].

Meanwhile, fractal calculations for epileptic EEG detection were simulated in 
[18]–[20]. According to these studies, the complexity features combined with various 
classifiers were able to generate high accuracy. Multi-domain analysis such as power 
spectral combinations with complexity was also reported in [5], [21].

Instead of these studies being successful in EEG epileptic classification, research 
has led to detecting and predicting seizures on long-term EEG recording [19], [22]. 
Therefore, a time-based analysis method combined with other feature extraction meth-
ods is required. Thus, the features calculated in the time series t can be observed. In 
this paper, a seizure detection in EEG signal simulated using Short-Time Fourier Trans-
form is proposed. With this proposed method, the power spectral distribution infor-
mation is obtained over the observed time. The first-order statistics are calculated as a 
feature vector which is further classified using a support vector machine. This proposed 
system is expected to be applied to detect and predict ictal EEG in the EEG recording 
of epilepsy patients.

As a guide, this paper is organized as follows: section I discuss the issue regarding 
Epileptic EEG, and section II explains the EEG dataset and the methods used in this 
study. The results and discussion of simulations that have been carried out are presented 
in section III. Section IV contains an overview and conclusion of the research followed 
by implications and future work.

2	 Material and methods

Figure 1 shows a proposed system for the classification of seizure EEG signals 
using STFT and statistical calculations. This process includes preprocessing, window-
ing, transformation, feature extraction, and validation. The details of each process are 
described in the following subsections.
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Fig. 1. Proposed system

2.1	 EEG dataset

The EEG signal data used in this study were obtained from the University of Bonn 
[23]. The EEG signal from the dataset has a sampling frequency of 173.61 Hz with a 
spectral bandwidth of 0.5–85 Hz. This study only simulated three data sets from the five 
available data classes, including O = normal, N = interictal, and S = seizure. Each data 
class consisted of 100 data where for the normal class recorded on the face of the scalp, 
class N consisted of 100 EEG signals from the epileptic patients in the seizure-free 
intervals (intracranial electrodes). Meanwhile, EEG signals acquired from epileptic 
patients are called the S dataset and recorded during seizure activity. Examples of each 
dataset are presented in Figure 2.
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(a)

(b)

(c)

Fig. 2. (a) Normal EEG/O, (b) inter-ictal EEG/N (c) Ictal/Seizure/S
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2.2	 Preprocessing the signal

In the initial stage, the EEG signal was preprocessed in amplitude normalization and 
mean-removal, following Equations (1) and (2).
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where X(n) = EEG signal sample -n
N = total number of samples

This process yielded a signal with an average of 0 and a range of −1 to 1.

2.3	 Short-time fourier transform

Short-time Fourier Transform (STFT) or spectrogram transforms signals from the 
time domain to the time-frequency domain. In this algorithm, the signal was segmented 
at a particular time interval. The segmented signal was transformed using FFT into 
the frequency domain. Equation (3) represents the mathematical expression of STFT, 
where x(k) is time-series signal, g(k) shows the window function used in STFT and 
e j nk L− 2π /  is the FFT process.

	 X m n x k g k m eSTFT k
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− −∑ 0

1 2π 	 (3)

The STFT illustration is shown in Figure 3. STFT sampled the signal in the specified 
window and performed FFT on each signal sample. Furthermore, the results of this 
process were arranged into a signal representation in the time-frequency domain. XSTFT/
max(XSTFT) was then calculated to get the characteristics of the signal.

Fig. 3. STFT process
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2.4	 First order statistic

The output of the previous process was a 1 × N matrix with N being N points FFT. 
Since N was still quite large, it was reduced by calculating first-order statistics, which 
were then used as feature vectors [24]. These characteristics were mean, variance, 
skewness, kurtosis, and entropy. Thus, regardless of the length of the signal, the five 
features would be generated. The mathematical equations of the five statistical charac-
teristics are as shown in Equations (4)–(8).
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Where Yi  is the data point, N is the number of data, and pdf y( )  is the probability 
of the value of y in the EEG signal.

2.5	 Support vector machine

In this study, the Support Vector Machine (SVM) was used to classify the signal based 
on statistical parameters as input. SVM works using a hyperplane to separate data between 
classes. The data point or feature closest to the hyperplane is called a support vector. The 
delta between the hyperplane and the super vector is called the margin. In SVM, the most 
important thing is to find the maximum margin between the hyperplane and super vector. 
The choice of hyperplane is highly dependent on obtaining the maximum margin [25].

As a reminder, the EEG epileptic signals are classified into three classes: normal, 
interictal, and ictal. These were the primary ways of using a linear hyperplane. In some 
cases, it is necessary to modify the hyperplane using kernel functions to get the highest 
classification accuracy [26]. So, in this study, a variety of kernel functions were used 
to get the best performance. Linear Kernel was used as a kernel algorithm because 
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of its most straightforward functionality and was often equalized to its non-kernel 
counterpart. This was given by the product in ( , )x xi j  plus the optional constant c T as 
shown in Equation (9) [12].

	 k x x x x ci j i
T

j( , ) = + 	 (9)

Then, the quadratic kernel can be expressed in Equation (10).
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Meanwhile, the cubic kernel can be expressed in Equation (11).

	 k x x x xi j i
T

j( , ) ( )= + 1 3 	 (11)

3	 Results and discussion

Figure 4 shows an example STFT plot for an EEG seizure signal using a 256 points 
FFT with some windowing parameters. The difference between the three is the detail 
at high frequencies. At a resolution of 25-20-256, the signal is segmented on a window 
length of 25 samples and an overlap of 20, meaning that the window shift is only 5 data 
samples, so that the STFT plot looks very tight. This is a contrast when compared to 
200-100-256. Window length of 200 with an overlap of 100 sample data will make the 
distance between windows 10 sampled data. This makes the STFT 200-100-256 plot 
the lowest resolution compared to the other two sample plots.

The result of the XSTFT/max(XSTFT) calculation is shown in Figure 5. Figure 5 
(a)–(c) shows the plot for 512 points FFT, while Figure 5 (d)–(e) shows the plot for 
256 points FFT. The main difference is that at 256 points FFT, the graph tends to be 
closer to the vertical axis than 512 points FFT. This is related to the mapping of Fs/2 to 
N points in the FFT process in STFT. The XSTFT/max(XSTFT) value is quite significant 
in dimension, so the statistical parameters are calculated and used as a feature of each 
class of EEG signal. This statistical parameter is intended as a data reduction method to 
make the classification process simpler and faster.

(a) (b) (c)

Fig. 4. (a) STFT of normal EEG using 25-20-256 FFT (b) STFT of interictal EEG 
using 25-20-256 FFT (c) STFT of seizure EEG using 25-20-256 FFT
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(a) (b) (c)

(d) (e) (f)

Fig. 5. Frequency relative amplitude of three classes’ data using (a) 500-475-512 
(b) 200-100-512 (c) 25-20-512 (d) 500-475-256 (e) 200-100-256 (f) 25-20-256

Figure 6 shows a boxplot of the five statistical parameters that will be input to the 
SVM. It is generally seen that the seizure EEG signal produces a broader range of all 
five statistical parameters except for entropy. This is because the EEG signal in the 
seizure condition has a higher fluctuation compared to the other two data classes. The 
five parameters tend to overlap, so it is assumed that the generated accuracy will not 
reach 100%. The classification accuracy of the test using 512 points FFT and 256 points 
FFT can be seen in Figure 7 and Figure 8, respectively.

The highest accuracy is 92.3% using 25-20-512 with quadratic SVM. The window-
ing parameter 25-20-N always produces higher accuracy than the other windowing 
parameters. Windowing 25-20-N produces the highest accuracy on all SVM kernels 
used. In this case, N point FFT does not have much effect on achieving the highest 
accuracy. In general, this shows a correlation between STFT resolution and accuracy, 
where the more detailed STFT can generate higher accuracy.

The number of features generated by the proposed method is not affected by the 
length of the input EEG signal data. Regardless of the length of the input data, five 
statistical features will be generated from the feature extraction process. The dimensions 
of each process are shown in Figure 9.

In Figure 9, K is the length of the EEG signal data, N is N points FFT where L is 
the number of signal segments resulting from the windowing process. The max(XSTFT) 
matrix has dimension L × 1 so that it will produce N × 1 for XSTFT/max(XSTFT). Calcula-
tion of statistical features at the end of the process will produce dimensions of 1 × 5. 
This is an advantage of the proposed method because the resulting feature does not 
depend on the signal length. Meanwhile, the accuracy is determined by the STFT 
resolution used, as shown in Figure 7 and Figure 8.
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(a) (b)

(c) (d)

(e)

Fig. 6. First order statistic features of relative amplitude using 25-20-512 
(a) mean (b) variance (c) kurtosis (d) skewness (e) entropy
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Table 1 shows a comparison of several previous studies with three data classes 
employed in this study. In terms of the number of characteristics that are relatively 
not much different, the accuracy of the proposed method is the lowest compared to 
previous studies. But the proposed method still has the potential to be explored further. 
The selection of windowing function and resolution for signal segmentation can still be 
explored further. In this study, the Keiser window with 3 certain resolutions was used, 
trials using different window functions were expected to produce higher accuracy. In 
addition, STFT only uses 256 and 512 FFT points. The use of different FFT points is 
expected to produce different accuracy.
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Fig. 9. Dimension of data for each process
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Table 1. Comparison with previous works

Author Method/No of Features Classifier ACC (%)

Martis et al. [27] spectral features/7 Decision tree 95.33

Chua et al. [28] Bispectrum, entropy/3 SVM
GMM

93.1
92.7

Wijayanto et al. [29] MWPE/5 SVM 94.3

Acharya et al. [30] Entropies, HOS, Higuci FD, Hurst/7 Fuzzy 99.7

Wijayanto et al. [20] EEG subband, Katz FD/5 SVM 94-98.7

This study Spectrogram, V/maxV/5 SVM 92.3

4	 Conclusion

The EEG signal is a non-stationary signal, so that the analysis on the time-frequency 
domain is the right one to use on the EEG signal. In this study, an STFT-based feature 
extraction method was proposed to classify seizure EEG signals. The magnitude of 
the signal was normalized, and the statistical parameters were calculated. Using this 
method, five features were obtained regardless of the length of the input EEG signal 
data. The highest accuracy achieved is 92.3% using quadratic SVM. The accuracy 
obtained is quite competitive with previous research, with the advantage of having 
fewer features. STFT is highly dependent on the selection of the type, window length, 
and N-FFT used. This research shows that STFT with a higher resolution produces 
higher accuracy. Time-frequency domain analysis has the potential to be applied to 
seizure prediction in real-time EEG recording. Furthermore, no studies are exploring 
the selection of windowing and the appropriate STFT resolution for the case of EEG 
signal processing. This will become an interesting research topic in the future.
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