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Abstract—One of sleep-disordered breathing (SDB) form is sleep apnea, 
commonly known as snoring during sleep, based on various complex mecha-
nisms and predisposing factors. Sleep apnea is also related to various medical 
problems. It impacts morbidity and mortality so that it becomes a burden on 
public health services. Its detection needs to be done correctly through electro-
cardiogram signals to detect sleep apnea more quickly and precisely. This study 
was conducted to detect sleep apnea based on electrocardiogram signals using 
multi-scale entropy analysis. Multi-scale entropy (MSE) is used in a finite length 
of time series for measuring the complexity of the signal. MSE can be applied 
to both physical and physiological data sets and. In this paper we used MSE to 
detect Sleep Apnea on electrocardiogram (ECG) signals. MSE was applied two 
classes of ECG data, normal ECG signals, and apnea ECG signals. In this paper, 
classification and verification were carried out using the Support Vector Machine 
(SVM) and N-fold cross-validation (N-fold CV). From the experimental results, 
the highest accuracy was 85.6% using 5-fold CV and MSE scale of 10. The result 
shows that the system model that can detect sleep using the multi-scale entropy 
method.

Keywords—sleep apnea, electrocardiogram, multiscale entropy, support vector 
machine

1 Introduction

Obstructive Sleep Apnea (OSA) is a disease or disorder that occurs during sleep [1]. 
Sleep apnea’s definition is the cessation of air entry during inspiration for 10 seconds or 
more [1]. In OSA, apnea occurs during sleep. At the time of apnea, obstruction occurs 
because the body’s muscles relax so that the airways collapse [2]. Closure of this air-
way will cause the patient to wake up during sleep or experience a sudden transition to 
sleep. OSA is one of the triggering factors for several diseases such as hypertension, 
myocardial ischemia, heart failure, and several other cardiovascular diseases [2].

The diagnosis of OSA is carried out by several methods depending on the signal to 
be observed. Overnight Polysomnography (PSG) became the OSA observation standard.  
The weakness of this PSG are expensive, takes a long time, and is not practical, so 
it is only done on patients with a certain level of severity [3]. OSA can be observed 
through patient movement using video processing [4]. The sound of snoring can also 
be analyzed using speech processing methods to detect the presence of OSA [5]. 
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Respiration signals are often also used to analyze sleep apnea using speech signal anal-
ysis [6]. Algorithms that are often used to detect the presence or absence of the respira-
tory process during sleep include the Voice Activity Detection (VAD) algorithm [5].

Information on indications of sleep apnea can also be identified through 
electrocardiogram (ECG) signal analysis. This can be done because the respiratory 
process influences the ECG signal through changes in lung volume that affect thoracic 
impedance [7]. The relationship between ECG-derived respiration (EDR) and ECG 
signal has been studied in various studies [8]. The respiratory process can the heart 
vector, which caused by a shift or change in the orientation of the heart associated with 
the ECG electrode [9]. The autonomic nervous system associated with the respiratory 
system also influences the ECG signal [10]. Respiration can be measured using an ECG 
signal because of this mechanism.

Several studies have tried to detect OSA using ECG. Characteristics that are often 
used are heart-rate variability parameters such as mean, mean absolute deviation values, 
median, SD, pNN50, SDSD, RMSSD, NN50 variant 1, NN50 variant 2, inter-quartile, 
the variance of RR1, the slope of the first polynomial model of RR1, RR1max-RR2min 
[11, 12]. Other features used for OSA analysis using ECG signals include entropy 
(Shannon entropy, sample entropy, fuzzy entropy, correct conditional entropy), ECG 
signal plots (Poincare plot feature, recurrence plot), statistical features (mean absolute 
deviation, standard deviation, variance, root mean square, harmonic mean, kurtosis, 
energy, skewness) [13, 14]. OSA research using the new entropy was carried out on 
the ECG signal directly. Multiscale entropy (MSE) analysis has not been reported in 
previous studies.

In this study, we proposed MSE method to classify sleep apnea with ECG signals. 
The multiscale process uses a coarse-grained procedure, while entropy measurement 
uses sample entropy [15]. The coarse-grained procedure is used to decompose the ECG 
signal into a number of scales, while the sample entropy is used to characterize the 
complexity of the ECG signal. With the combination of these methods, it is hoped that 
the signal dynamics in multiscale conditions can be used to distinguish ECG signals in 
OSA conditions and without OSA conditions.

2 Materials and method

Fig. 1. Proposed method for OSA ECG classification

The proposed method is presented in Figure 1. The long-term ECG signal recording 
is cut into a minute recordings or 6000 samples. Next, a coarse-grained procedure is 
used to decompose the signal into a series of signals at several different scales. Next, 
the sample entropy (SampEn) is calculated for each of the new signals. The classifi-
cation was carried out using SVM with N-fold cross-validation (N-fold CV) to avoid 
overfitting in classification stage. The details of the above method are explained in the 
following subsection.
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2.1 ECG Sleep apnea dataset

In this study, we used the ECG Sleep apnea dataset available on PhysioNet [16, 17]. 
The data consists of 70 records, divided into a training set of 35 records and a testing 
set of 35 records. The recordings vary in length from 7–10 hours. Each recording con-
sists of a digital ECG signal and an expertly rendered apnea annotation based on the 
associated signal shape and QRS annotation generated by the ECG machine. Some 
recordings are supplemented by other signals such as respiration and oxygen satura-
tion. In this study, we used only the ECG. The ECG signal is cut to every minute and 
entered according to the given annotation. Because the sampling frequency is 100 Hz, 
the signal is cut every 6000 samples. Examples of normal ECG and OSA signals are 
shown in Figure 2. In the ECG image with OS, it can be seen that there is one ECG 
signal that has drastically changed the QRS orientation so that it can be distinguished 
from normal conditions. In this study, only 21 datasets were used.

(a)

(b)

Fig. 2. (a) Normal ECG, one minute recoding. (b) ECG on OSA event from the same subject
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2.2 Multiscale entropy

Physiological signals such as ECG signals have multiple time scales characteristic. 
Costa, et al presented a multiscale entropy (MSE) method for time series complexity 
measurement [18]. This method is divided into two processes, namely a multiscale 
process called the coarse-grained procedure and the entropy calculation process using 
sample entropy. The details of MSE process is presented as follows:

In general, the concept of the coarse-grained procedure is a down sampling and 
smoothing process [19]. Equation coarse-grained procedure as in Equation (1) [20]:

 y x j N
j ii j

j( )
( )

,τ
τ

τ

τ τ
= ≤ ≤

= − +∑1 1
1 1

 (1)

where is a 1-dimensional time series, is a consecutive coarse-grained time series, is 
the scale factor, and N is the original time series length. The scale used in this study is 
1 to 20. Scale factor of 1, it means the original signal. Graphically the coarse-grained 
procedure is as shown in Figure 3. The coarse-grained procedure can be described as a 
signal decomposition process at different scales or levels.

Fig. 3. Coarse grained procedure

Sample Entropy (SampEN) measures the probability that a series of m data will 
match another series and will remain the same when a series of m data is increased to 
m+1 with a tolerance of r [18]. SampEN is able to avoid self-matches, one of the weak-
ness of approximate entropy (ApEN) [21]. SampEN is formulated by Equation (2).

 SampEn m r A r
B rN

m

m( , ) lim ln ( )
( )

= −
→∞

 (2)

where Am(r) and Bm(r) are the probability that two series data will match for a number 
of m+1 and m respectively. Both are calculated within a tolerance of r.
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In Equation (2), by estimating B and A as in Equation (3) and (4).

 B = {[(N – m – 1)(N – m)]/2}Bm(r) (3)

 A = {[(N – m – 1)(N – m)]/2}Am(r) (4)

so that we can rewrite Equation (a) as in Equation (5). We used with series m = 2 and 
tolerance r = 0.15 in this paper.

 SampEn m r N A
B

( , , ) ln= −  (5)

2.3 Support vector machine

Support Vector Machine’s (SVM) specialty is the capability to generalize by only 
using a few parameters [22, 23]. The SVM capability can optimize and make the data 
more dependent. The performance of SVM is proved better and able to compete with 
other machine learning methods such as random forests and artificial neural networks. 
The algorithm developed by Vapnik is focusing on how to maximizing the minimum 
separating hyperplane. In other words, this algorithm detects the shortest distance 
between the data’s decision functions [24].

In this study, linear and non-linear SVM kernels are configured with N-fold 
cross-validation (N-fold CV) by N = 5 and N = 10 to determine the training and 
testing dataset. Firstly, the dataset is split into N datasets; then, one dataset is used as 
testing data and the N-1 datasets are used as training data. This process is repeated until 
all datasets are used once as testing data. Finally, the process performance is calculated 
by accuracy.

3 Results and discussion

Figure 4 shows the effect of the coarse-grained procedure for = 1–5 in a normal ECG 
signal. Visually there is no significant difference except for the number of data samples, 
which decreases according to the scale used. If the initial signal is 6000 samples, then 
for = 1–5 successively, the number of samples will be 3000, 2000, 1500, and 1200. 
This value will be continued until 300 samples at = 20 to calculate sample entropy as 
a feature.

Figure 5 displays the MSE of the ECG signal in Figure 2. It can be seen that, in 
general, the normal ECG signal has a higher value than the ECG signal in OSA, 
except when the scale is >15. The signal complexity of the biological signal charac-
terize the dynamics of the signal and implies the ability to adapt to the environment 
or stimuli. In pathological conditions, signal complexity decreases due to decreased 
ability to change or adapt [15]. In other biological signals, the entropy value usually 
decreases as the scale increases, but in this case, the OSA ECG signal tends to increase. 
This is influenced by the repetitive nature of the ECG signal with sudden changes due 
to OSA.
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Fig. 4. Result of coarse-grain procedure for τ = 1–5

Fig. 5. MS entropy generated from Fig. 2
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Table 1. Classification accuracy using 5 fold CV

Classifier Scale 1–5 Scale 1–10 Scale 1–15 Scale 1–20

Linear SVM 79.2% 79.2% 78.8% 80.2%

Quadratic SVM 58.7% 80.6% 81.8% 81.8%

Fine Gaussian SVM 84.2% 85.6% 85.0% 84.6%

Medium Gaussian SVM 79.2% 80.5% 83.9% 83.5%

Cubic SVM 45.9% 52.8% 67.4% 81.7%

Table 2. Classification accuracy using 10 fold CV

Classifier Scale 1–5 Scale 1–10 Scale 1–15 Scale 1–20

Linear SVM 79.20% 79.20% 78.90% 80.20%

Quadratic SVM 67.90% 80.90% 81.70% 81.90%

Fine Gaussian SVM 82.40% 85.4% 85.3% 84.60%

Medium Gaussian SVM 79.20% 79.20% 83.10% 83.40%

Cubic SVM 58.50% 64.20% 82.10% 68.10%

Table 1 and Table 2 show classification accuracy using five-fold CV and 10-fold CV. 
The highest accuracy of 85.6% was achieved using a fine Gaussian SVM and a scale 
of 1–10 at five-fold CV. Meanwhile, for 10-fold CV, the highest accuracy of 85.4% 
was achieved under the same conditions. Accuracy tends to increase when the scale is 
increased except for fine Gaussian SVM. The features in Figure 5 show that on a scale 
of 15–20, the difference between normal EC and ECG in OSA begins to decrease. This 
result infers that the calculation of sample entropy in the two data classes is relatively 
not different. The coarse-grained procedure at a higher scale eliminates details from the 
signal due to a down sampling process from the average signal.

Table 3 shows the same study using the same dataset. The characteristics used in 
previous studies are relatively many and varied. Some features measure signal statistics 
[14] and features that capture the heart rate variability of ECG signals [12, 25]. It is dif-
ferent from the proposed method, where only one feature is measured (sample entropy) 
but is carried out at various signal scales. The proposed method is similar to the study 
by Zarei and Asl [13]. The characteristics used are various kinds of entropy which are 
measured in the subband wavelet. The resulting accuracy is higher than the proposed 
method, but the number of features used is more.

Some of the weaknesses in this study are as follows. Cutting data every 1 minute is 
considered too long because OSA can sometimes only be detected on one beat of the 
ECG signal. In some cases, this is not significant enough compared to other normal 
60–80 beat ECGs. Cutting the duration of the ECG signal to a shorter length is likely 
to improve accuracy, although it will increase the difficulty in classification and data 
collection [28].

Using a scale on the coarse-grained procedure to 20 causes the number of sample 
data on a scale of 6–20 to be 1000–300. Sample entropy has inconsistencies when used 
in short data series. Usually, researchers use a limit of 1000 samples to ensure accu-
rate sample entropy calculations [29]. In this case, the accuracy of the sample entropy 
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calculation is not a problem as long as it produces high accuracy. Table 1 and Table 2 
show that the highest accuracy is achieved when using a scale of 1–10 or 1–15.

Table 3. Comparison with previous research

Ref Features Classifier Result

[14] Mean, SD. Kurtosis, RMS, Energy, harmonic 
mean, skewness, correlation coefficient of EMG, 
ECG, and EEG signal

MLP Classifier Acc: 96.87 ± 1.78, 
Se: 97.14 ± 2.24 
Sp; 98.09 ± 2.15

[26] PSO based optimal kernel SVM Acc: 97%.

[12] Mean, SD, RMSSD, pNN50, SDSD, median, 
inter-quartile, mean absolute deviation values, 
Variance of RR1, slope of 1st polynomial model of 
RR1, RR1max-RR2min, NN50 variant 1, NN50 
variant 2

SVM, RBF, MLP Acc: 97.5% using 
SVM

[25] EDR time and frequency domain, HRV time and 
frequency domain Hilbert transform, Detrended 
fluctuation analysis (DFA)

Logistic 
regression

Acc: 87%

[13] DWT, Fuzzy entropy, sample entropy, Correct 
Conditional Entropy, Poincare plot feature, 
recurrence plot, interquartile range, mean absolute 
deviation, variance, Shannon entropy

SVM RBF kernel Acc: 94.63%  
Sens: 94.43%,  
Spec: 94.77%)

[27] Mean, SDSD measures, Standard deviation, Two 
pNN50 measures, RMSSD measures, median of 
RR-intervals, Inter-quartile range, mean absolute 
deviation values, NN50 measure (variant 2), NN50 
measure (variant 1)

C4.5, LVQ, 
Naive Bayes, 
support vector 
machines (SVM), 
Quadratic, KNN, 
Random forest,

Acc: 94.32% 
using SVM

Proposed 
Method

Multiscale entropy SVM Acc: 85.6%
for scale 1–10

The signals used are mixed between one subject and another. For one recording 
data, the ECG signal is taken from one subject for 7–10 hours. For classification, 
this data is combined with data from other subjects, not classified for each subject. 
In different subjects, the ECG signal pattern may be different, thus opening the pos-
sibility of misclassification. Detection of ECG OSA on one subject is considered to 
increase the accuracy of the proposed system. In general, the proposed method is 
quite simple, with a relatively small number of features. The only feature taken is 
the entropy sample measured at various scales; thus, the computations are relatively 
simple. Sample entropy is affected by the number of rows of m and tolerance r. The 
selection of these two parameters will affect the accuracy but will increase the com-
putation time. The measurement of multiscale entropy on the ECG signal can still be 
developed, for example, by using other entropy such as in the study of lung sound or 
other non-biological signal [30, 31]. The use of various kinds of entropy is interesting 
to do in further research.
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4 Conclusion

This paper discusses the use of multiscale entropy (MSE) to classify ECG signals 
in obstructive sleep apnea (OSA) using SVM. MSE is used to measure signal com-
plexity at different scales. It is hoped that this information will be able to distinguish 
normal ECG signals and ECG signals with OSA. The highest accuracy of 85.6% was 
achieved using a 1–10 scale and fine Gaussian kernel SVM. This accuracy is relatively 
lower than similar studies on the same data set. However, the proposed method still 
has potential for further development, such as selecting the suitable sample entropy 
parameter (number of data sample series and tolerances) and selecting the signal scale 
used. Another use of entropy is also interesting to find out which entropy measurement 
produces the highest accuracy. The use of more advanced machine learning methods 
can be considered to improve accuracy.
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