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Abstract—In this paper, the control problem of synchroniz-
ing two identical chaotic gyros systems in the presence of 
system uncertainties is addressed by using adaptive fuzzy 
sliding mode control, while the structure of the gyros and 
the bounds of the system uncertainties are entirely unknown. 
The controller can guarantee a fast convergence of the syn-
chronization errors and all of the signals in the closed-loop 
system remain bounded. Finally simulation results are pro-
vided to illustrate the effectiveness of the proposed control
method.  

Index Terms—Adaptive Fuzzy Control, Chaotic Gyros, Syn-
chronization 

I. INTRODUCTION 
Gyros are an interesting kind of nonlinear systems that 

have attracted many researchers during the last two dec-
ades due to their potential applications in the aeronautical, 
navigational and space engineering domains. Recently, 
much research has identified various types of gyro sys-
tems with linear or nonlinear damping characteristics. 
These systems have a diverse range of dynamic behavior 
including both chaotic motions and sub-harmonic. [1-3]. 

During the past decade, adaptive fuzzy control systems 
designs have been extensively studied [4-6]. The main 
idea of adaptive fuzzy control is as follows. Based on the 
universal approximation theorem [7], a fuzzy model to 
describe the input and output behavior of the controlled 
system is firstly constructed. Then a controller is designed 
based on the fuzzy model and adaptive laws are derived to 
update the parameters of the fuzzy systems. And many 
approaches for achieving chaos synchronization using 
fuzzy systems have been proposed [8].  

This paper will develop a fuzzy sliding mode control 
scheme to achieve the synchronization of two chaotic gyro 
systems with different initial conditions, system uncertain-
ties and external disturbances.   

II. PROBLEM DESCRIPTION 
The symmetric gyroscope mounted on a vibrating base 

can be seen in Fig.1. 
The dynamics of the gyro system with linear-plus-cubic 

damping of the angel !  can be described as [8]:    
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Figure 1.  A schematic diagram of a symmetric gyroscope. 
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!x1 = x2 ,

!x2 = g(x1)! c1x2 ! c2x2
3 + (! + f sin!t)sin x1.

  (2) 

This gyro system (1) or (2) exhibits chaotic dynamics 
when 1 335, 10, 1, 0.5, 0.05f c c! "= = = = =  and 2.! =  The 
chaotic behavior is shown in Fig.2-Fig.4. with the initial 
values 1 20, 0.x x= =   
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Figure 2.  The response of 1x . 

 
Figure 3.  The response of 2x . 

 
Figure 4.  Chaotic attractor of gyro system. 

The fuzzy logic system that employs singleton fuzzifi-
cation, sum-product inference and center-off-sets defuzzi-
fication can be modeled by [7] 
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where ( )x!   is the output of the fuzzy system, x   is 
the input vector, ( )j

i
iF
xµ is 'ix s  membership of thj  rule 

and j!  is the centroid of the thj  consequent set. Eq. (2) 
can be rewritten as: 

 ( ) ( )Tx x! " #=   (4) 

with 1[ , , ]TN! ! != ! , 1 2( ) [ ( ), ( ), , ( )]TNx p x p x p x! = ! , 
and the fuzzy basis function can be expressed as: 
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III. SYNCHRONIZATION PROBLEM FORMULATION 
Consider two chaotic gyro systems of the form (2) and: 

 

!y1 = y2 ,
!y2 = g(y1)! c1y2 ! c2y2

3 +! sin y1
+ f sin!t sin x1 +!f (y1, y2 )+u.

  (5) 

as the master and slave chaotic systems, respectively.  
u R!  is the control input, and 1 2( , )f y y!  represents sys-
tem uncertainties and external disturbances. In this paper, 
we assume that 1 2( , )f y y!  is bounded, i.e., there exists 
some constant 0a >  satisfies 1 2( , )f y y a! " , but the 
value of a  is entirely unknown.  

The objective of this paper is to design an appropriate 
control inpeut such that for any initial conditions of the 
two chaotic systems (2) and (5),  the states of the slave 
system converges to that of the master, i.e.  

 lim ( ) ( ) 0
t

y t x t
!"

# =   (6) 

where 1 2( ) [ , ]Ty t y y=  and 1 2( ) [ , ]Tx t x x= . 
Main Results  
To begin with, let us define the synchronization errors 

between master and slave systems as:   
 1 2[ , ] ,Te y x e e= ! =   (7) 
and the filtered synchronization error as  

 1 1 2 ,
ds e e e
dt

! !" #= + = +$ %& '
  (8) 

where 0! >  is a control design constant, and the poly-
nomial 1 2 1( ) ( 1)n n nH s n s s! !" " "= + " + +!  is Hurwitz.  

Then, the synchronization error dynamic can be ex-
pressed as  

 

!e1 = e2 ,

!e2 = !c1e2 + g(y1)! g(x1)+ c2 (x2
3 ! y2

3)

+ ! + f sin!t( ) sin y1 ! sin x1( )
+!f (y1, y2 )+u.

  (9) 

Since 1 2( , )f y y!  is unknown, then it can be approxi-
mated, through the fuzzy logic system (7), by  

 1 2( , ) ( , ) ,Tf y y x y! " #$ = +   (10) 
where !  is the approximation error of the fuzzy logic 

systems. As the same analysis in [4,5], there has a positive 
constant 0! >  such that ! "< . Then we can obtain the 
following inequality easily: 
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where l  is a positive constant.  
Then, the control input u  can be designed as 
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where 0k >  is design parameter, and its value will be 
define later. !̂  is the estimation of the unknown fuzzy 
system parameter 2

! "= . The adaption law can be de-
signed as  

 !̂! = r
2l2
s2!T! !m!̂ ,   (13) 

with 0m >  is constant.  
From above discussions, now we will give the follow-

ing results: 
Theorem 1. Consider the master chaotic system (2) and 

the slave chaotic system (5). The control law is defined as 
(12), the parameter of the fuzzy logic system updated by 
the adaption law (13), then we can achieve the synchroni-
zation between (2) and (5) with all signals in the closed-
loop system remain bounded.  

Proof. From (8), we have its derivative with respect to 
time is 

 

!s = !c1e2 + g(y1)! g(x1)+ c2 (x2
3 ! y2

3)

+ ! + f sin!t( ) sin y1 ! sin x1( )
+!f (y1, y2 )+u+!e2.

  (14) 

Substituting (12) into (14) gives 

 !s = !f (y1, y2 )!
1
2l2
s2!̂"T! ! ks.   (15) 

Then we have  
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where !! = !̂ !!  is the estimation error of the fuzzy pa-
rameter. 

Let us define the Lypunov function candidate as 

 V =
1
2
s2 + 1

2r
!! 2.   (16) 

Then we can obtain  

 !V ! "k + 1
2( )s2 ! m2r !!

2 +
1
2
l2 + 1

2
! 2 +
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2
! 2   (17) 

If we can choose 1
2

k > , and let 

1
0 2min{2( ), }a k m= ! , 2 2 2

0
1 1 1 ,
2 2 2

b l ! "= + +  then (17) 

can be rewritten as: 

 !V ! a0V +b0 ,   (18) 

After some straightforward manipulators, we can obtain 

 0 0( )0 0
0 0

0 0

( ) ( ) , .a t tb b
V t V t e t t

a a
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$ ! + % &' (
) *

  (19) 

As a result, all signals in the closed-loop system will 
remain bounded, and the synchronization error will con-
verge to an adjustable region of the origin. This ends the 
proof of Theorem 1. 

IV. SIMULATION STUDIES 
The fuzzy logic system uses ,x y  as the inputs. For 

each variable of x  and y , we define five Gaussian mem-
bership functions uniformly distributed on the interval 
[ 10,10]! . The Gaussian membership functions can be 
seen in Fig.5. 

The initial values of the two chaotic system are chosen 
as (0) [1.6,0]Tx =  and (0) [ 3,3]Ty = ! . And the control 
design parameters are chosen as 3, 100.r! = =   

The simulation results are shown in Fig.6-Fig.9. From 
the results we can conclude that good synchronization 
performance has been achieved, and the synchronization 
errors have fast convergence. Fig.9 shows the smoothness 
of the control inputs.  

 
Figure 5.  Gaussian membership functions.
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Figure 6.  Response of 1x  and 1y . 

 
Figure 7.  Response of 2x  and 2y . 

 
Figure 8.  Response of synchronization errors. 

 
Figure 9.  Response of the control input. 

V. CONCLUSIONS 
In this paper, the synchronization between two identical 

chaotic gyros systems is addressed by means of adaptive 
fuzzy sliding mode control method.  Compared with other 
methods proposed in the literature for the synchronization 
of chaotic systems, the main contribution of this paper 
consists in that no prior knowledge of the structure of the 
gyros and the bounds of the system uncertainties is re-
quired in the controller design. Furthermore, the proposed 
method does not require information about the parameters 
of the system, and this can make it easy to use in practical 
applications. 
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