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Abstract—Recently, soft margin smooth support vector 
machine with 1-norm penalty term (SSVM1) is discovered to 
possess better outlier resistance than soft margin smooth 
support vector machine with 2-norm penalty term (SSVM2). 
One of the most important steps in the framework of 
SSVMs is to replace the x+ by a differential function in the 
primal model, and get an approximate solution. This study 
proposes one function constructed by Padé approximant via 
the formal orthogonal polynomials as the smoothing 
technique, and a new 1-norm SSVM, Padé SSVM1, is 
represented. A method for outlier filtering is proposed to 
improve the ability of outlier resistance. The experimental 
results show that Padé SSVM1, even without outlier filtering, 
performs better than the previous SSVM2 and SSVM1 on 
the polluted synthetic datasets. 

Index Terms—Smooth support vector machine, Padé 
approximant, Outlier resistance, 1-norm 

I. INTRODUCTION 

Support vector machines (SVMs) have been proven to 
be one of the promising learning algorithms for 
classification [1]. The standard SVMs have loss + penalty 
terms measured by 1-norm or 2-norm measurements. The 
loss part measures the quality of model fitting and the 
penalty part controls the model complexity. In [2], Li-Jen 
Chien et al. showed that the measurement of the 2-norm 
loss term amplifies the effect of outliers much more than 
the measurement of the 1-norm loss term in training 
process. From this robustness point of view, the authors 
in [2] developed a SSVM1 whose loss term is measured 
by 1-norm and the integral of the sigmoid function was 
selected as the smoothing technique (Sigmoid SSVM1 for 
short). Finally, the experiments in [2] showed that 
Sigmoid SSVM1 can remedy the drawback of 2-norm soft 
margin smooth support vector machine (SSVM2) [3] for 
outlier effect and thus get outlier resistance. 

Although SVMs have the advantage of being robust for 
outlier effect [4], there are still some violent cases that 
will mislead SVM classifiers to lose their generalization 
ability for prediction, even the good sigmoid SSVM1 also 
became powerless at this time. Li-Jen Chien, Y.J. Lee, Z. 
P. Kao, and C. C. Chang [2] proposed a heuristic method 
to filter outliers among Newton-Armijo iteration of the 
training process and make SSVMs be more robust while 
encountering datasets with extreme outliers. 

In this study, we will give a new smoothing technique, 
Padé approximant, which can approximate the plus 
function x+ = max{x; 0} more accurately than the integral 
of the sigmoid function. The SSVM1 smoothed by this 

function is denoted by Padé SSVM1. We will show that 
the outlier resistance of Padé SSVM1 is better than that of 
Sigmoid SSVM1 in most of the cases, even still performs 
well in those violent cases. We will also give another 
strategy for outlier filtering, which turns out to be efficient 
to make SSVM2 and Sigmoid SSVM1 be robust for those 
datasets polluted with extreme outliers. 

II. 1-NORM SOFT SVM (SSVM1) 

Consider the binary problem of classifying m points in 
the n-dimensional real space Rn, represented by an m × n 
matrix A. According to membership of each point Ai ∈ 
Rn×1 in the classes +1 or -1, D is an m × m diagonal matrix 
with ones or minus ones along its diagonal. Similar to the 
framework of SSVM2 [3], the classification problem can 
be reformulated as follows:  
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As a solution of problem (1), the slack variable ξ  is 
given by  

 (1 ( 1 )) ,D Aw bξ += − +  (2) 

Thus, we can replace ξ  in constraint (1) by (2) and 
convert the SVM problem (1) into an equivalent SVM 
which is an unconstrained optimization problem as 
follows:  
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The problem is a strongly convex minimization 
problem without any constraint. Thus, problem (3) has a 
unique solution. Obviously, the objective function in (3) is 
not twice differentiable which precludes the use of a fast 
Newton method, because it always requires the objective 
function′s gradient and Hessian matrix. Y. J. Lee and O. L. 
Mangasarian [3] applied the smoothing technique and 
replaced x+ by the integral of the sigmoid 
function1/ (1 )−+ xe η of neural networks:  
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This ρ  function with a smoothing parameter η  is used 
here to simultaneously smooth and approximate the  
model (3), i.e., we use a differential (twice differentiable 
at least) function ρ  to replace the plus function (・)+ in 
(3) in order to get an approximate solution of the model. 
Finally, we obtain the 1-norm smooth support vector 
machine with respect to the integral of the sigmoid 
function (Sigmoid SSVM1 for short):  
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By taking the advantage of the twice differentiability 
of the objective functions on problem (5), a prescribed 
quadratically convergent Newton-Armijo algorithm [5] 
can be used to solve this problem. Hence, the smoothing 
problem can be solved without a sophisticated 
optimization solver. 

The transformation from (3) to (5) raises a very natural 
question: Are the two models equivalent? In fact, the 
model after smoothing is not equal to the primal problem 
(3) anymore. But in an analogous manner as in [3], it is 
easy to be proved that the solution of (5) converges to the 
unique solution of the primal problem when the 
smoothing parameter η  in the SSVM1 approaches 
infinity. It is just because of the truth: if the value of η  
increases, the ( , )xρ η  will approximate the plus function 
more accurately. Therefore, how to construct an efficient 
smoothing technique to achieve the simultaneous 
smoothing and approximation naturally becomes the 
major goal of this study. 

III. 1-NORM SMOOTH SUPPORT VECTOR MACHINE 

BASED ON PADÉ APPROXIMANT  

In this section, we propose a kind of rational function, 
namely Padé approximant, as the smoothing technique to 
simultaneously smooth and approximate the plus function 
in the framework of SSVM1. 

A. Padé Approximation via the FOP 

Let f(x) be a given power series with coefficients ∈ic C , 

 ( ) 2
0 1 2

n
nf x c c x c x c x= + + + + +L L , (6) 

For above f(x), we give the definition of Padé 
approximation as follows. 

Definition 3.1. Let ( )nq x%  and ( )mp x%  be two 

polynomials of degree m and n respectively, if the 
following relation holds:  

 ( ) ( ) ( ) ( )1- ,m n
n mq x f x p x O x + +=% %  (7) 

where the right-hand side denotes a power series in x with 
lowest order term of degree m+n+1 or higher, then 

( ) ( )/m np x q x% % is called Padé approximant for f (x) and is 

denoted by [m/n] f (x). 
Let c(h): P→C be a linear functional on the polynomial 

space P, which is defined by 

 ( ) ( ) ,   0,1,h i
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where 

 ( ) ( ) ( )0 ,   0,1,i i
ic t c t c i= =@ L , (9) 

with the convention that ci = 0 for i < 0. 
We now give the definition of formal orthogonal 

polynomials (FOPs) associated with c(m-n+1), which is 
defined by [7] with h=m-n+1. 

Definition 3.2. {qk} is called a family of formal 
orthogonal polynomials associated with c(m-n+1)   if, k ≥ 0, 
qk has degree k at most and 

 ( ) ( )( )1 0,   0, , 1m n i
kc t q t i k− + = = −L , (10) 

Now we present a main theorem (its proof is referred 
to [8]) about Padé approximation via the formal 
orthogonal polynomials (PAVOP) as follows. 

Theorem 3.3.  Let qn be a polynomial which belongs to 
the family of formal orthogonal polynomials associated 
with f(x),  
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Then, it holds 
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That is,  

 ( ) ( ) ( ) ( )1m n
n mq x f x p x O x + +− =% % . (17) 

B. Padé Approximant for x+ 
We now consider using a Padé approximant to 

simultaneously smooth and approximate the plus function 
x+. 

It is well known that the plus function is not smooth, 
but continuous, so we can expand the plus function to a 
power series:  
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Then a Padé approximant for the above power series is 
computed by Thereom 3.3:  

 
2 2 4 4

2 2 4 4

1 1 10 5

2 5 11 2

+ + +
+ +

g
x x x

x x

η η
η η η

. (19) 

Now we first give the smooth function whose main 
component is just the Padé approximant (19):  
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and then a Padé SSVM1 model is constructed:  
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where 1 denotes a column vector of ones for arbitrary 
dimension, and function P has an effect on all 
components of a matrix or a vector in (21), i.e., P(1-
D(Aw+1b),η)∈Rm,(P(1-D(Aw+1b),η))i=P(1-Di(Aiw+b), 
η), and η whose value is not a main factor for the final 
SSVM1 is called smoothing parameter. We will now 
show a simple theorem that bounds the difference 
between the plus function x+ and its smooth approximant 
P(x, η). 

Theorem 3.4. Let x ∈ R, P(x, η) are defined as (20), x+ 
is the plus function: 

(i) P(x, η) is quadratic smoothness, at the point x = ±1/η, 
x=0, satisfies: 
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 (ii)  

 ( , ) ;+>P x xη  (23) 

(iii)  for arbitrary x, η 

 ( , )- 0.100 / .+ ≤P x xη η  (24) 
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Figure 1.  The approximation of two smooth functions to x+, with η= 10. 

The Newton-Armijo algorithm with respect to SSVM1 
is omitted here because it is running the same procedure 
as that in 2-norm problem. 

IV. NUMERICAL RESULTS AND A METHOD FOR 

OUTLIER FILTERING 

As stated in [9], Sigmoid SSVM1 possesses good 
outlier resistance, which can be observed in a numerical 
tests. The first result is represented in Fig. 2 and the 
corresponding comparison of correctness is in Table I.  

As has been already pointed out by Li-Jen Chien, there 
are some violent cases that are still easy to mislead either 
Sigmoid SSVM1 or Sigmoid SSVM2 to lose their 
generalization ability. A violent case is presented in Fig. 
3, similar with Fig. 1 in [2], in which the positive and 
negative are normal distribution with mean 2 and -2 
respectively and deviation 1. The outlier difference is 75 
from the mean and the outlier ratio is 0.025 in positive 
and negative totally. In this case, no matter Sigmoid 
SSVM2 or Sigmoid SSVM1, both of them lost efficacy. 
Why all of the SVMs (Sigmoid SSVM1, Sigmoid SSVM2, 
including LIBSVM [10]) lose their generalization ability 
in this case is that they pay too much effort to minimize 
the loss term and sacrifice for minimizing the penalty 
term because of these extreme outliers [2]. Fortunately, 
Padé SSVM1 is still robust, and attains the generalization 
in this violent case. 
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Figure 2.  The synthetic dataset: a normal distribution, mean = 2 and -2, 

the standard deviation = 1. The outlier ratio is 0.025 in the positive 
examples, and outliers are on the lower-left corners in the panorama. 

For the outliers, the outlier difference from the mean of positive groups 
is set to be 75 times the standard deviation. 

TABLE I.   
CORRECTNESS OF THREE SSVMS IN ABOVE EXPERIMENT 

Method 
10-fold training 
correctness, % 

10-fold testing 
correctness, % 

Sigmoid SSVM2 51.7140 48.4000 

Sigmoid SSVM1 80.4627 78.8000 

Padé SSVM1 97.5184 95.2000 
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Figure 3.  The positive and negative is the same normal distribution as 
in Fig. 2. The outlier ratio is 0.025 in positive and negative examples, 

and outliers are on the upper-right and lower-left corners in the left 
figure). For the outliers, the outlier difference from the mean of their 

groups is set to be 75 times the standard deviation. 

TABLE II.   
CORRECTNESS OF THREE SSVMS IN ABOVE EXPERIMENT 

Method 
10-fold training 
correctness, % 

10-fold testing 
correctness, % 

Sigmoid SSVM2 52.6526 55.6000 

Sigmoid SSVM1 53.7684 52.8000 

Padé SSVM1 97.2632 97.2000 

 
 

To eliminate the influence of outliers in such violent 
case, Li-Jen Chien, Y.J. Lee, Z. P. Kao, and C. C. Chang 
[2] prescribed a heuristic method to filter out the extreme 
outliers. In this study, we give another slightly different 
strategy to filter out the extreme outliers. We would first 
run the process of SSVM1, and then ignore some large ξi’s. 
But how to determine the value of ξi is large enough? We 
set outlier ratio as our threshold. In our method, the 
samples whose ξi’s are over 90 percentage are ignored 

until the threshold reaches the outlier ratio, and finally we 
use the rest samples to reconstruct a new SSVM1 as the 
final classifier. We denote this outlier filtering method by 
SSVM1−o. 

Fig. 4 are in the same setting as Fig. 3. It is very 
obvious that SSVM1−o and SSVM2−o successfully classify 
the most of examples. But among them, Padé SSVM1−o 
performs the best. 
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Figure 4.  The same violent case classified by SSVM2−o, Sigmoid 

SSVM1−o and Padé SSVM1−o 

V. CONCLUSIONS 

We have proposed Padé approximant as a new 
smoothing technique for SSVM1. The new SSVM1 
constructed by this Padé approximant, i.e., Padé SSVM1, 
has been proved by the theoretical analyses and the 
numerical results to possess the best outlier resistance 
compared with previous SSVMs. To strengthen the 
robustness of SSVMs in some violent cases, a simple 
method for outlier filtering is proposed. This method for 
outlier filtering also improves robustness a lot for 
Sigmoid SSVM1 and Sigmoid SSVM2. 
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