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Abstract—The goal of optimal allocation is to increase stored 
data availability subject to minimizing the storage budget. 
Symmetric allocation based on the network coding has been 
proved to be optimal for distributed storage systems if node 
availability is not considered. However, because of network 
conditions and the inherent properties of nodes, each node 
will have a different availability. This paper focuses on the 
problem of optimizing distributed data storage when 
considering node availability. Using a probability model for 
storage systems, we redefine symmetric allocation in terms 
of probability-symmetric allocation and propose a 
probability-symmetric allocation model and strategy based 
on network coding. These are shown to be optimal in 
general. Compared with the symmetric allocation scheme 
proposed by Leong et al., the proposed probability-
symmetric allocation scheme not only improves data 
availability in distributed storage systems but also is more 
practical. 

Index Terms—Distributed storage allocation; Network 
coding; Probability-symmetric 

I. INTRODUCTION 

For sensor networks and networked data centers, 
distributed data storage security and efficiency are the 
focus of much current research. Traditional data backup 
methods will cost more, and traditional data-
synchronization methods are not reliable enough for 
distributed network storage systems. Network coding [1] 
offers distributed data storage with high reliability and at 
low cost. For the distributed data storage described in [2], 
which is based on network coding, the original data is 
expanded into a plurality of encoded data blocks, with the 
coded data blocks allocated to different data storage 
nodes. To access the original data, data is received from 
data storage nodes containing encoded data blocks, and 
restored by calculation [3]. An allocation strategy for the 
coded data blocks is the key problem in distributed data 
storage based on network coding. 

To solve the allocation problem for coded data blocks, 
Leong and Dimakis [4] proposed a uniform code-block 
allocation model, for which the encoding of the data block 
amounts assigned to each storage node and the model 
were proved to be optimal. This ensured the availability of 
data with a minimal data-allocation overhead. In a further 
study, Leong et al. set the same failure rate for all data 
storage nodes, namely that the data-receiving node had the 
same probability of accessing a data storage node to 
retrieve a data block. At this time, the uniform allocation 

strategy remains the optimal allocation strategy. This is 
because each storage node itself has a certain failure rate, 
and storage nodes of different types, ages, and failure rates 
make different use of the environment. In considering the 
node availability of Leong, the uniform code-block 
allocation model proposed by Dimakis does not consider 
the availability of storage nodes, and the same node 
failure rate, rather than the optimal mode. 

In reality, inherent properties of the storage-node 
network environment and of the nodes themselves 
determine that the data receivers accessing storage nodes 
will have a certain probability of failure. Examples of 
failure include network communication link failure, a 
node's online storage duration, and hacker attacks. All 
these may prevent the data receiver from accessing data 
storage nodes. At this time, data storage nodes with a 
certain probability of failure are assumed to determine the 
node availability for data receivers. 

This paper focuses on the distributed data storage 
optimization when considering storage node availability. 
Using methods from probability theory, we establish a 
storage-node probability distribution based on a data 
model. Based on a redefined uniform-distribution model 
and the probability distribution, we present a data-storage 
probability distribution strategy and method, and 
demonstrate that the proposed method is optimal. 
Compared with Leong and Dimakis, who proposed a 
uniform distribution model, the model and the method 
proposed in this paper consider the node failure rate, 
thereby improving the availability of data storage and 
modeling the distributed storage system more realistically. 

II. RELATED WORK 

In distributed storage systems, network coding is often 
used to improve data availability and reliability. Current 
academic research discusses how best to utilize data 
redundancy to improve reliability. Approaches to data-
redundancy methods include simple backup, erasure 
coding, and network coding. Compared with simple 
backup, erasure codes can provide higher data reliability 
for the same storage overhead [5]. At the same time, 
network coding can be applied to distributed storage, 
thereby balancing storage space and bandwidth. 
Distributed data storage based on network coding is a 
potential way forward. 

For simple backup, the data source needs only to fully 
replicate the original data stored in the data storage node. 
For distributed storage based on network coding, where 
the data storage nodes require that data blocks receive 
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coded data, the storage space and use of data bandwidth 
are better than for simple backup [3]. Based on maximum 
distance separable (MDS)codes, particularly via the 
MDS(n, K) distributed data storage method, this coding 
can effectively reduce redundant data; balance the storage 
space and network bandwidth; reduce the data 
distribution, storage, and access requirements; and 
improve reliability [6]. 

Distributed storage methods based on network coding 
have received widespread attention in academic circles 
[1][2][3]. However, research into the distribution of code 
blocks is less common. The traditional method [4][7] is to 
assign one code block per storage node. 

In fact, for distributed data storage based on 
availability, knowledge of the network storage-node 
topology can improve the efficiency and usability of the 
block allocation for coded data. Research work in this area 
is still relatively limited, mainly focusing on two aspects: 
(1) data distribution methods based on efficiency; (2) data 
allocation methods based on usability. 

Among data distribution methods based on efficiency, 
the minimum-storage regenerating method, using 
minimum-memory regeneration codes, aims to reduce the 
data storage space and improve the repairing efficiency, 
with data-coding modes of distribution as the target. The 
minimum-bandwidth regenerating method using 
minimum-bandwidth regeneration code considers channel 
bandwidth, using data coding to reduce the link bandwidth 
allocation for the target [8][9]. Tree-type data allocation 
methods have been proposed [10], for which a data 
allocation strategy is presented from the perspective of 
bandwidth, aiming to improve the repair efficiency for 
data. 

For data distribution methods based on availability, 
Leong and Dimakis [4][7] give a definition of uniform 
distribution and propose a storage strategy for distributed 
storage systems with uniform distribution. The strategy is 
based on an ideal model, which does not consider the 
storage space, storage-node failure probability, or the 
number of storage nodes. For this ideal model, the authors 
prove that a uniform distribution is optimal. Data-
receiving nodes can access all data storage nodes for the 
data block to ensure that restoration of the original data is 
completely successful. In considering the efficiency of 
working nodes, Leong [7] proposed a data distribution 
method using probability measures. This method 
considers the probability of failure for all storage nodes to 
be the same. The essence of this method is consistent with 
the methods in the literature [4]. The author proves that 
the method is optimal only if the premise of the same 
node-failure probability is met. 

The advantage of these two methods is that the storage 
allocation method is simple. The main disadvantage is the 
lack of consideration of data-distribution node 
characteristics and the network environment, thereby not 
meeting the needs of practical applications. 

In reality, individual storage node characteristics 
determine whether users can access data storage nodes, 
not all of which have the same failure probability, and the 
present study did not pay attention to the data storage 
nodes. Different probabilities of failure for different 
storage nodes will directly affect the reliability of 
recovering the original data, and a uniform distribution 
strategy will no longer be the optimal allocation strategy. 

System reliability is an important aspect of distributed 
storage systems. We focus on a different storage-node 
data distribution method for allocating coded data from 
general blocks by considering the different failure 
probabilities of storage nodes in the data distribution 
network. 

III. PROBABILITY DISTRIBUTION MODEL BASED ON 

NETWORK CODING 

In distributed storage systems, storage nodes will have 
different failure probabilities. Therefore, we cannot 
assume that the traditional uniform data distribution 
method will be optimal. A more feasible data distribution 
method would assign different numbers of data blocks to 
data storage nodes according to the different node 
availabilities. Based on considerations of storage node 
availability, a probability distribution for network coding 
can be developed from the uniform distribution model.  

A. Establish the hypothesis and model 

The distributed network storage system studied in this 
paper has one data source node and M data storage and 
data-receiving nodes, as shown in Figure 1. 

We use ( , )MDS n k  encoding [2][3], encoding the 
original data into coded data blocks. The original data unit 

is divided into k blocks 1, , kF FL
to become an n-block 

coding-matrix code, 1B , , nBL
. Each block Bi is a linear 

combination of 1, , kF FL
, using the coefficient vector 

1( , , )T
i ika aL

, giving:  
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Data allocation assigns the Bi to different data-storage 
nodes. The code allocation scheme is shown in Figure 1. 

 
Figure1. Data-allocation coding based on MDS(n ,k) 

 
The source data object D is the data to be stored. Via 

the ( , )MDS n k coding method, a coded data block is 
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allocated to each storage node represented as ix
, 

1 i m≤ ≤ . The availability of a storage node is the 
probability of the node being available, which will depend 
on factors such as the manufacturer, the technology, the 
operation time, and the operational environment. This 
information can be obtained by node sampling. The 
availability of each storage node will be different, but over 
a short period, it may be considered fixed. If the 

probability of failure for data storage node   xi   is xiF  , 

the availability probability is
1i xip F= −

. 

B. Uniform distribution of probability model 

For data distribution, this paper proposes to use anode-
availability strategy based on the proposed probability 
distribution model. This model is a generalization of the 
traditional uniform distribution, whereby the distributed 
storage system considers the node failure rate. The 
allocation model is as follows:  

{ } 1
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1

{ , , }

{ ( ), , ( )}
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i i
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X x
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= =  　　　　　 

( ) ( ), , [0,1],i j i j i jf p f p p p p p> ∀ ∈ > 　　  

Here, we use 1{ }m
i iX x == to represent the data 

distribution, the distribution function ( )if p is assigned 

to the ith encoded data node, ( )if p is defined over the 

interval [0, 1] as a one-way increasing function, changing 

the availability of node ip . T is the storage space required 

for the data storage nodes. 
With the use of the data distribution model proposed in 

this paper, allocation of data blocks to high-availability 
nodes occurs more often, enabling a data receiver access 
to blocks with higher reliability, and with a higher 
probability of recovering the original data object. 

C. Data recovery method 

For the data-receiving node to successfully recover the 
original data, access to the data storage node acquiring 
the data should not be less than for the original data. If 
the original data is of unit size, the data-receiving node 
should access a data quantity of not less than 1. 

If the data-receiving node is to successfully restore the 
original data, we need to access a subset r of data-storage 

nodes, using r to represent the R subset of the number of 

elements, in terms of storage-node numbers. If Sis 
defined as the successful recovery of data events, then: 

1

( ) ( ) 1
m

i
r i r

P S P r I x
= ∈

 = ⋅ ≥  
  . 

Among these, 

\

( ) (1 )i j
i r j M r

P r p p
∈ ∈

= −∏ ∏  

is true if [ ] 1I G = , and G  is false if [ ] 0I G = . 

Here, the distributed storage system of m data storage 
nodes is composed of a plurality of r subsets, where M\r 
represents an r subset of the M set. This set is defined as 

the r subset of all successful repairs rS , where rS is the 

number of elements in the collection of successful repairs 
that is composed of m data nodes, and r is the number of 
subsets. 

IV. ANALYSIS AND EVALUATION 

This section uses storage-node availability to analyze 
the probability distribution model, probabilities for a 
data-receiving node to achieve successful recovery, and 
data availability. At the same time, this article considers 
the presence of node failures, data availability, uniform 
distribution, and probability distribution evaluation. 

A. Data availability 

For distributed memory systems in the presence of 
node availability, data storage nodes exhibit failure rates, 
implying that the data-receiving node successfully 
recovering the probability of the original data objects is 
not the only value. For distributed data storage, the 
reliability of the system as a distributed system is the 
most important goal. 

For a distributed storage system using the probability 
distribution model, the amount of data stored in the m 
data storage nodes is different, in accordance with the 
node availability. If this changes, therefore, the number of 
subsets of elements in a successful recovery will be 

uncertain, i.e., [1, ]r m∈ , provided the subset of the 

nodes can supply the quantity of data 1i
i r

x
∈

≥ . In 

distributed storage systems, the data availability for each 
subset in a successful recovery and the data availability of 
each r subset of nodes are available. 
 

Theorem 1: with the possibility of storage-node 
failures in a distributed storage system, the data 
availability (or probability of data recovery) is: 

1

min( ,1) ( )
m

r

r T
P r

m=
 . 

Proof: for the data-receiving node to successfully 
restore the original data, the data size must meet the 
condition:  

( ) 1i i
i r i r

x f p
∈ ∈

= ≥  . 

Let rS denote a successful subset of the set of 

all r . rS
 
is the number of successful elements in the 

collection. S is defined as the successful recovery of data 

events, and iA  denotes access to exactly i nodes. Then: 
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Each subset of r can be represented by the equation: 
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Each element in Sr represents successful recovery of a 
subset of Sr, leading to the following equation:  
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For these equation, 1 1 m m ra x a x S+ + ≥L because 

each storage node belongs to a different subset of R, 
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Therefore, the reliability of node availability in the 
distributed storage system is: 

1

( ) min ,1 ( )
m

r

r T
P S P r

m=

 
=  

 
 . 

The system reliability in distributed storage systems, 
namely the probability of recovery success for the data-

receiving node, is determined by a random variable ip ,    

i = 1,..., m . 

B. Probability distribution model and distribution 
model comparison 

For a distributed storage system, the data distribution 
strategy is the main factor affecting the performance of 
the system. Dimakis has proposed a uniform allocation 
strategy, which is the optimal allocation strategy for an 
ideal model. Using the distributed storage system's 

storage-node availability, the probability distribution 
model proposed in this paper considers the storage-node 
failure rate, and the distribution function for the 
allocation to storage nodes does not involve equal 
amounts of data. If all storage nodes are available, our 
model is equivalent to the uniform distribution model in 
[4]. If all storage-node availabilities are equal, our model 
is equivalent to that in [7]. However, our uniform 
probability model has more universal application than the 
uniform distribution model. 

Theorem 2: by considering node availability in 
distributed-storage systems, the uniform probability 
model is superior to [4] and [7] in the literature. To prove 
Theorem 2, we first need a lemma. 

Lemma 1: the minimum number of nodes in the 
probability distribution model for successful recovery is 
less than that for the uniform distribution defined in [4] 
and [7]. 

Proof: we use a reductio-ad-absurdum proof.  
The minimum number of nodes to evenly distribute the 

successful recovery of the assumed probability across the 
data-storage nodes, using r1 in the appropriate 
distribution function, is:

1 2 1( ) ( ) ( )rf p f p f p> > >L . 

For the minimum number of nodes to evenly distribute 
the successful recovery using r2, the data-storage node 

weight is 
T

m
, where r1>r2. The number of successful 

recovery nodes with the least at the receiving node, 
having data access equal to 1, is: 

1

1 2

1 2 1 2
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1
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( ) 0
r

i
i r r

f p
= − +

> , this 

cannot be equal to zero, thereby contradicting the 

assumption. We therefore have 1 2r r<  as the minimum 

number of nodes. The uniform distribution model 
successfully restored the data with a probability less than 
successful recovery using a uniform distribution. 

We now prove Theorem 2. 
Proof: in the uniform distribution model, all data 

storage nodes store the same amount of data. Without 
considering empty nodes, the amount of data stored in all 

storage nodes is 
T

m
.In an ideal situation, successful 

restoration requires at least 1/
T m

m T
   =      

nodes. At 

this time, 1
r T

m
> in existing distributed storage 
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systems. Node availability in the uniform distribution 

model of data availability is ( )
m

m
r

T

P r
 =  

 . 

The minimum number of nodes in the probability 
distribution model for successful restoration is t , 

where
m

t
T
 <   

. The difference between this availability 

of data and data availability for the uniform distribution 
model is: 
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When 1
r T

m
> ,

1

( ) 0

m

T

r t

P r

 −  

=

> . 

For the probability distribution, data availability is 
greater than for the uniform distribution. 

When 1
r T

m
< , the uniform distribution model fails to 

restore the original data. To sum up, the probability 
distribution model of data availability is more effective 
than the uniform distribution of data availability. If there 
is node availability information for the distributed storage 
system, the probability distribution strategy is better than 
the uniform allocation strategy. 

V. CONCLUSIONS 

Optimization of distributed data storage has the goal of 
ensuring safe data recovery from storage to improve the 
reliability of data storage systems. Without considering 
storage-node availability, a uniform distribution based on 
network coding has been shown to be optimal. However, 
different storage nodes can have different availability, 
caused by node failure and other factors. Based on 
probabilities for storage-node availability instead of a 
uniform distribution model, we propose a probability 
distribution strategy and method and demonstrate that the 
proposed method is optimal. In contrast to Leong et al., 
Dimakis proposed a uniform distribution model, following 
which the model and method proposed in this paper 
consider the availability of nodes, thereby improving the 
effectiveness of the data storage system and being more 
realistic in practice. 
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