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Abstract—This paper proposes an interactive Remote
Laboratory (RL) on basic computer architecture. The
students through this RL are able to understand the
architecture, the organization and the operation of two 8-bit
Central Processing Units (CPUs). The simple architectures
of these CPUs which are also presented in this paper are
ideal for introductory courses on computer architecture.
The hardware implementations of two micro-computers
based on the above CPUs were achieved using the Field
Programmable Gate Array (FPGA) based Altera DE2
board. The implemented systems around these two micro-
computers allow both local and remote control of the
corresponding CPUs. The students using the proposed RL,
select the desired micro-computer which is automatically
downloaded to the FPGA. They are also able to program the
selected micro-computer in assembly language and to
observe the step by step execution of the downloaded code.
This procedure is achieved using the virtual push buttons
and toggle switches of the RL Graphical User Interface
(GUI) which is accessible by a common web browser. The
values of the registers, internal buses and the DE2 LEDs are
also displayed in the GUI during the execution of the
students’ code. Through this process, the students become
familiar with the assembly programming language and they
also understand in depth the internal micro-operations of
the implemented CPUs.

Index Terms— Computer architecture, Field programmable
gate array (FPGA), Remote laboratory (RL).

L INTRODUCTION

Computer architecture courses are very popular in
computer science and computer engineering among the
universities all over the world. In most cases, the offered
courses cover basic and advanced theoretical topics using
lectures and simulators [1, 2].

The available simulators provide students with the
ability to interact with the CPU (Central Processing Unit)
and to observe the values of internal components such as
registers and buses. Advanced simulators integrate
compilers and assemblers in order to allow students to
write and test their programs. In many cases the
simulators have user-friendly GUIs (Graphical User
Interfaces) which display the memory contents and the
CPU states during the program execution. These
simulators are important educational tools because they
support the observation and the understanding of the CPU
micro-operations [3-6].

For the first steps of students in the area of computer
architecture and organization, simple architectures and
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their simulators have been proposed. Among others, the
Very Simple (VS) CPU, the Relatively Simple (RS) CPU
and the Machine Architecture that is Really Intuitive and
Easy (MARIE), have been discussed in [7, 8]. Their
architectures are very simple and they are ideal for the
familiarization of students with low theoretical
background, in basic topics on computer architecture.

The basic disadvantage of the above educational
approach is the lack of hardware experience which is
offered by the hands-on laboratories. Therefore, the
students are not able to verify their theoretical knowledge
by performing experiments on real systems and to
improve their practical skills which are very important for
their professional careers. In order to fulfill these obstacles
many universities are offering hardware oriented courses
in computer architecture and organization. Their hands-on
laboratories are recently equipped with development
boards based on Field Programmable Gate Arrays
(FPGAs). The selection of these development boards
allows the implementation of digital logic circuits and
simple or advanced CPU architectures in real hardware,
using Hardware Description Languages (HDLs) [9-14].

The educational approaches which are based on hands-
on laboratory courses are the most suitable for the
engineering education. However the hands-on laboratories
are available to students only specific hours and require
the physical presence of one or more instructors. An
approach which was proposed by many universities in
order to overcome the disadvantages of the hands-on
laboratories is the Remote Laboratories (RLs) one [15].
The RLs allow students to perform their experiments by
accessing the laboratory equipment through internet
without time and place restrictions. They also reduce the
cost of the corresponding hands-on laboratories because
they enable the sharing of hardware between institutions.
Nowadays, RLs are developed in many cognitive fields of
science and engineering. In the literature have been
proposed RLs on digital electronics, digital signal
processing etc. [16-20].

The interactive RL on basic computer architecture
which is proposed in this paper allows the students to
perform remote experiments with one of the two available
8-bit micro-computers. The corresponding hardware
implementation is automatically downloaded to the FPGA
of the Altera DE2 board. The students are also able to
program in assembly language the selected micro-
computer and to remote control the DE2 board in order to
verify their program. In addition, they are able to
understand the internal micro-operations of the selected
CPU by observing the values of its internal registers and
buses during the step by step program execution.
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The available micro-computers which are based on the
RS and the Enhanced Relatively Simple (ERS) CPUs
respectively, were implemented in Very High Speed
Integrated Circuit HDL (VHDL) and Verilog using the
Quartus II Integrated Development Environment (IDE) of
Altera. The ERS CPU which is based on the RS CPU
integrates the interfacing of isolated Inputs/Outputs (I/Os)
and an interrupt handling mechanism. The simple
architecture of the above CPUs which are ideal for
introductory courses on computer architecture and the
hardware implementations of the corresponding micro-
computers are also discussed.

This paper is organized as follows: the architecture of
the ERS CPU is presented in Section II while the
hardware implementations of the two micro-computers are
discussed in Section III. Finally, the development and
operation of the proposed RL are presented in Section IV.

II.  THE ARCHITECTURE OF THE ERS CPU

In this section, the architecture of the ERS CPU which
is based on the RS CPU, is described [1, 21]. The ERS
CPU is an 8-bit processor with 64 KBytes address space.
It accesses the memory and the I/O devices through a 16-
bit address and an 8-bit data buses.

The ERS CPU is designed as a multi-cycle processor
and supports an Instruction Set Architecture (ISA) with 36
instructions. For the instruction encoding, a 6-bit opera-
tion code (opcode) is required but the ERS CPU utilizes
an 8-bit opcode which allows its future expansion. The
instruction sets of both the RS and the ERS CPUs are
presented in Table .

The ERS CPU uses the load/store architecture and
never operates directly with memory operands. The data
for an operation must be loaded into registers. Following
the operation, the result is stored back into the memory.

Some instructions such as the LDAC, STAC, JUMP,
JPNZ, LDSP and CALL require as argument a 16-bit
memory address which is represented in Table I with the
symbol “I"”. The memory is organized into bytes and due
to this the above instructions require three bytes of
memory. The first byte is the instruction’s opcode and the
last two bytes indicate the 16-bit memory address.
According to the little endian format which is utilized by
both CPUs, the second byte represents the least significant
byte and the third byte the most significant byte of the
required 16-bit memory address.

The INPT and OTPT instructions handle the isolated
/O devices and require an 8-bit argument which indicates
the number of the corresponding I/O port. The above
instructions require two bytes of memory. The first byte is
the instruction’s opcode and the second byte indicates the
number of the I/O port.

The ISA of the ERS CPU includes six registers which
are controlled directly by the programmer. The ACcumu-
lator (AC) is an 8-bit register and receives the result of
any arithmetic or logical operation. It also provides one of
the operands for the arithmetic and logical instructions
which require two operands. The 8-bit general purpose
registers, R and B, supply the second operand of all two-
operand arithmetic and logical instructions. They are also
used to store data temporarily. The 3-bit FLag Register
(FLR) contains the Zero (Z), Parity (P) and Sign (S) flags
and indicates if the result of an arithmetic or logical
instruction is zero, even or negative respectively.
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TABLE L.
THE INSTRUCTION SETS OF THE RS AND ERS CPUS

Instruction ((I:-;)egs Operation

NOP 00 No Operation

LDAC 01T AC — M[T]

STAC 02T M[T'] — AC

MVAC 03 R— AC

MOVR 04 AC —R

JUMP 05T GOTO[T]

JMPZ 06T IF Z=1 THEN GOTOI[T]

JPNZ 07T IF Z=0 THEN GOTOI[T]

ADD 08 AC — ACH+R

SUB 09 AC — AC-R

INAC 0A AC — AC+1

CLAC 0B AC — 0

AND 0C AC — ACAR 2

OR 0D AC — ACVR =

XOR OE AC — ACHR z

NOT OF AC «— AC’ =)

MVBAC 1A B — AC =

MOVB 1B AC—B (E

ADDB 18 AC — AC+B =

SUBB 19 AC — AC-B E

ANDB 1C AC — ACAB =

ORB 1D AC — ACVB =

XORB 1E AC « AC®B é’

LDSP 80T SP «— [I] _§
SP « SP-2, M[SP] « PC =

CALL 821 THEN COTO [[r] ]

RET 83 PC «— M[SP], SP — SP+2

PUSHAC | 84 SP « SP-1, M[SP] «— AC

POPAC 85 AC «— M[SP], SP « SP+1

PUSHR 86 SP « SP-1, M[SP] « R

POPR 87 R — M[SP], SP « SP+1

INPT 20 Port AC « Input Port

OTPT 21 Port Out Port «— AC

IESET 40 IE 1

IERST 41 IE <0

IPRST 42 IP—0

VIPRST 43 VIP — 0

The Stack Pointer (SP) which is a 16-bit register holds
the memory address of the current top of the stack. The
ERS CPU utilizes the SP and the stack in order to handle a
subroutine call. This process is achieved using the
instructions CALL and RET, the operation of which is
given in Table 1.

The ERS CPU integrates also an interrupt handling
mechanism which supports both Vectored Interrupt
Requests (VIRQs) and non-vectored Interrupt Requests
(IRQs). The address of the Interrupt Service Routine (ISR)
of both interrupt types is generated by the Address
Generation (AG) unit. In the case of the VIRQ, the
address of the ISR is defined by default to 0x0042 Hex. In
the case of the IRQs, the address of the corresponding ISR
is calculated dynamically by the AG unit utilizing the
4-bit interrupt vector. This interrupt vector is unique for
every external device and it is supplied to the AG when an
IRQ is occurred. The micro-operations which are
performed by the CPU in order to serve both VIRQs and
IRQs are presented in Table II. The control of the interrupt
handling mechanism is achieved using the 3-bit Interrupt
Status Register which contains three flags, the Enable
Interrupts (EI), the Interrupt Pending (IP) and the Vector
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TABLE II.
THE MICRO-OPERATIONS OF THE INTERRUPT HANDLING MECHANISM
OF THE ERS CPU
Type Phase Micro-Operations
IRQ 1 AR « SP
IRQ 2 DR «— PC[15..8], SP«+ SP - 1
IRQ 3 M «— DR, AR — AR-1,SP«SP-1
IRQ IRQ 4 DR « PC[7..0]
IRQ 5 M < DR
IRQ 6 DR « int. vector
IRQ 7 PC « 00 & int. vector & 11
VIRQ 1 AR « SP
VIRQ 2 DR < PC[15..8], SP «+— SP -1
VIRQ 3 M «— DR, AR — AR-1,SP«SP-1
VIRQ
VIRQ 4 DR « PC[7..0]
VIRQ 5 M < DR
VIRQ 6 PC «— 0x42 (Hex)

Interrupt Pending (VIP). The programmer enables or
disables the IRQs using the instructions IESET and
IERST, respectively. She/he is also able to clear the
interrupt pending flag of both IRQs and VIRQs through
the instructions IPRST and VIPRST, respectively.

Several registers which are not part of the ISA are fairly
standard and are included in many CPU architectures. The
CPU using these registers is able to perform the necessary
internal operations such as fetch, decode, and execute. In
this sense the ERS CPU contains the following registers:

* The 16-bit Address Register (AR) which supplies an
address to memory or I/O port utilizing the address bus
pins A[15..0] and A[7..0], respectively.

* The 16-bit Program Counter (PC) which contains the
address of the next instruction that will be executed or
the address of the next instruction’s operand.

* The 8-bit Data Register (DR) which temporarily stores
data being transferred to or from the memory or 1/O
port using the data bus pins D[7..0].

* The 8-bit Instruction Register (IR) which stores the
opcode of the currently fetched instruction.

* The 8-bit temporary registers TR and TR2 which store
temporarily data during the instruction execution
phase.

According to the multi-cycle implementation, each
instruction is broken down into multiple steps, each step
designed to take one clock cycle. The first three steps are
identical for all instructions and contain a set of micro-
operations which deploy the fetch and decode phases.
During these phases, the corresponding instruction is
retrieved from the memory, utilizing the AR and the DR
and the PC is increased by one. Subsequently, the opcode
of the retrieved instruction is stored into the IR (decode
phase) and the value of the PC is transferred to the AR in
order to start the execution phase of the instruction. The
execution phase of the retrieved instruction contains a set
of micro-operations which are taking place in one or more
cycle steps. The micro-operations of each one of the 36
instructions are analytically discussed in [21].

The hardware design of this ERS CPU can be broken
down into two main components. The first component is
the datapath and the second one is the control unit.
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Figure 1. The ERS CPU datapath: (1) common elements in both RS
and ERS CPUs, (2) elements included only in ERS CPU.

The block diagram of the ERS CPU datapath which is
presented in Fig.1, contains all the individual modules
(Arithmetic Logic Unit — ALU, registers, multiplexers,
etc.) as well as the interconnections among them. These
modules are able to be used more than once, on different
clock cycles, during the fetch, decode and execute phases
of each instruction. The registers within the processor’s
datapath are connected via a 16-bit internal bus. In
addition, the internal simultaneous transfers of data are
supported using direct connections between the CPU
components.

The control unit acts as a finite state machine and
generates the control signals of the datapath. Due to the
rather limited number of instructions, the design of the
ERS CPU’s control unit either as microprogrammed or as
hardwired is a rather affordable educational project. A
more detailed description of both the ERS CPU
architecture and its VHDL implementation is given in
[21].

11



PAPER
AN INTERACTIVE REMOTE LABORATORY ON BASIC COMPUTER ARCHITECTURE USING ALTERA DE2 BOARD

III. THE MICRO-COMPUTER BASED HARDWARE
IMPLEMENTED SYSTEMS

The hardware implementation of the two micro-
computers which are based on the RS or the ERS CPUs
respectively, is achieved with VHDL and Verilog using
the Quartus IT IDE and the DE2 board of Atlera.

The DE2 board is one of the most widely accepted
development FPGA boards and allows the implementation
of a broad range of digital circuits [12, 13, 19, 21, 22]. It is
based on the Altera Cyclone II EP2C35 FPGA which
includes 33216 logic elements, 105 Random Access
Memory (RAM) blocks of 4 Kbits, 35 embedded
multipliers of 18-bits and 4 Phase-Locked Loops (PLLs).
The DE2 board is also equipped with a series of peripheral
devices such as toggle switches, push buttons, seven-
segment displays, LEDs, a Liquid Crystal Display (LCD),
a serial port, a USB port etc. The block diagram of this
board which also indicates the interconnections between
the FPGA and the peripheral devices is given in Fig. 2.

The main purpose of the implemented micro-computers
is to allow the students to understand the micro-operations
of the corresponding CPU by observing the values of its
internal registers and buses. Consequently, the hardware
implemented systems support the display of these values
in hexadecimal format on a computer monitor utilizing the
Video Graphic Array (VGA) port of the DE2 board [23].
The advantage of these systems is that they allow the
control of the corresponding micro-computer locally or
remotely according to the selected operational mode. The
default operational mode is the local and these systems
switch into the remote operational mode when they
receive the appropriate command by the host computer.

In the local operational mode, the students are able to
control the program execution utilizing the clock and reset
signals which are connected to the push buttons KEYO0
and KEY1 of the DE2 board. They are also able to control
the 8-bit isolated input using the toggle switches 0-7 and
observe the 8-bit isolated output through the red LEDs 0-7
of the DE2 board. An IRQ signal is generated every time
the value of the 8-bit isolated input is changed.

In the remote operational mode, the above systems are
controlled by a host computer utilizing the USB Blaster
interface of the DE2 board. In this mode the hardware
implemented system receives the appropriate commands
from the host computer and generates the clock and reset
signals for the control of the corresponding micro-
computer. The data of the 8-bit isolated input are also sent

50 MHz / 27 MHz / Ext In

A 4

| USB 2.0 Host/Device |<—> <—>| 16-bit Audio CODEC |
10/100 Ethernet Phy/MAC VGA 10-bit Video DAC
S0 Gard
o User Groen LEDs (8
Flash (1 Mbyte) FPGA User Red LEDs (18)
SDRAM (8 Mbytes) 2 16 x 2 LCD Module
SRAM (512 Kbytes) PS2 & RS-232 Ports
7-Segment Display (8) Toggle Switches (18)
| Expansion Headers (2) I(—) (—I Push Button Switches (4) I
A A
EPCS 16 USB
Contig Blaster
Device

Figure 2. The block diagram of the DE2 board.
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to the implemented system by the host computer. In
addition, the values of the internal registers, buses and the
8-bit isolated output are also returned to the host computer
in every clock cycle.

A detailed block diagram of these two systems is
presented in Fig. 3. The common elements of both
systems are indicated with the index (1) and the additional
elements of the implementation which is based on the
ERS CPU are indicated with the index (2). The presented
implementations besides the corresponding CPU and the
Memory contain also a VGA Video Generation unit and
an In-System Probes and Sources unit [24]. They also
contain two multiplexers which undertake to select the
clock and reset inputs of the corresponding micro-
computer, according to the selected operational mode. The
micro-computer based on the ERS CPU is also equipped
with an I/O Port. The 8-bit input of the isolated I/O Port is
selected by an additional multiplexer. All the above
components were implemented using both the library of
Quartus II megafunctions and generic HDL models. The
megafunctions are vendor specific Intellectual Property
(IP) blocks that are parameterizable and optimized for
Altera device architecture. The megafunctions library
which includes the Library of Parameterized Modules
(LPM) and other parameterized functions, offers more
efficient logic synthesis and device implementation.

The Memory is a common element in both hardware
implementations and is used to store user programs and
data. It is declared as RAM utilizing the altsyncram
component of the LPM library. The width of the data port
is set to 8-bits and the memory length is set to 4096 bytes.
The Memory is connected to the correspo-nding CPU
through the address, the data and the control buses. The
altsyncram megafunction in combination with the In-
System Memory Content Editor of Quartus II allows users
to view and update the memory contents during run time
through the USB Blaster interface [24].

The 1/O port is an 8-bit isolated I/O interface which is
designed as generic HDL model and is available only in
the micro-computer based on the ERS CPU. It is conne-
cted to the ERS CPU through the address, data and control
buses. The I/O port generates an IRQ signal every time the
value of the 8-bit input is changed. This feature allows the
students to understand the micro-operations of the ERS
CPU during the execution of an interrupt driven program.
The 8-bit isolated input is connected to a multiplexer. In
local operational mode, the toggle switches 0-7 of DE2
board are connected to the 8-bit isolated input. In the

______________________ |
| r T
Toggle (2)
: Switches (0...7) | 11
—> 11
|
| | UserRed LEDs |
T 4 (1 addr|— |
| | data |« 11
(1) ctrl
S i S Ao ra | Il
I pushButton kYo | MUX - dlk cpyy Il
| ctrl 11
| : L addr ) 1l
) > data 4« RAm
| __l_L { > L3 ctrl 11
| push Button KEYL | Mux [P rst  probe[— I
| | ctrl Micro-Computer 14
| 11
[ ' I N
| i ! w]| 11
| uss | | InSystem I < VGA i
Blaster [ || Sources & Probes 3 71 video generation |

: | Cyclone Il EP2C35 I :
| |
| |

VGA Port <
(1)

Figure 3. The block diagram of the implemented systems: (1) common
components, (2) additional components of the ERS CPU based system
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remote operational mode, the 8-bit isolated input is driven
by the host computer through the In-System Sources and
Probes unit. The data of the 8-bit isolated output which is
connected to the red LEDs 0-7 of DE2 board, are sent to
the host computer through the In-System Sources and
Probes unit.

The hardware implemented systems utilizing the VGA
Video Generation unit are able to display on a computer
monitor in both local and remote operational modes the
values of their internal registers and buses. The resolution
of the display area is defined to 640x480 pixels and it is
divided to thirty lines of forty characters per line. The
representation of each character which is based on a fixed
pixel pattern requires a block of 16x16 pixels. The display
area is also divided in two sections with two columns per
section. The left column of each section displays the
registers and buses names and the right column their
values. Since left column never changes, the data are
retrieved from an internal Read Only Memory (ROM)
which is initialized through a memory initialization file
(“.mif”). The values of the right column are produced
dynamically in each clock cycle of the corresponding
CPU by the VGA Video Generation unit. The hardware
implemented system which is based on the RS CPU
utilizes only one section of the display area as it is
presented in Fig. 4a. In the case of the system which is
based on the ERS CPU, the representation of internal
registers and buses requires both sections of the display
area (Fig 4b).

The In-System Sources and Probes unit is a hardware
component which enables the remote control of the
implemented systems through the USB Blaster interface.
This unit utilizing altsource probe megafunction of the
LPM Library provides source and probe ports which act as
inputs and outputs of the implemented micro-computer,
respectively. In remote operational mode the In-System
Sources and Probes unit initially generates the selection
signal of multiplexers. Subsequently, it catches the virtual
push buttons events from the host computer and triggers
the clock and reset signals of the corresponding micro-
computer. In case of the system which is based on the
ERS CPU, the In-System Sources and Probes unit also
generates the data of the 8-bit isolated input according to
the virtual toggle switches event. In addition, using the
probe port of this unit the values of the internal registers
and buses are returned to the host computer. The data of
the 8-bit isolated output which drives the red LEDs 0-7 of

@ (b)

Figure 4. The video representation of internal registers and buses of
(a) the RS CPU and (b) the ERS CPU.
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the DE2 board are also transferred to the host computer
through the corresponding probe port. The In-System
Sources and Probes Editor of Quartus II can be used to
shift data to and from the source and probe ports of the
design through the USB Blaster interface [24].
Consequently, the control of the presented hardware
implemented systems and their feedback are available to
the students locally or remotely through a host computer.

IV. THERL ON COMPUTER ARCHITECTURE

This section presents the architecture and the operation
of the proposed RL on computer architecture. In addition,
the verification process of an example code from the
student’s point of view is also given in order to
demonstrate the features of the proposed RL. The results
of an early evaluation of this RL are also discussed.

A. The RL Architecture

According to the RL structure which is presented in
Fig. 5, the RL Server consists of two components, the
LabVIEW Server and the Tool Command Language
(TCL) Server. The communication between the two
components is achieved through Transmission Control
Protocol/Internet Protocol (TCP/IP) messages.

The LabVIEW server allows the students to remotely
program, control and verify the hardware implemented
system based on the selected CPU through a user friendly
GUI. This GUI is accessible to students through a
common web browser utilizing the features of the
integrated LabVIEW web server and the remote panel
technology of National Instruments. The LabVIEW server
also supports the syntax error check of student’s assembly
programs and the translation of these programs in machine
code using the integrated cross-assembler [6]. Following
the successful completion of the syntax error check and
the assemble process, the LabVIEW server produces a
“.mif” file which contains the generated machine code.

The TCL server is a socket server based on the TCL
Application Program Interface (API) of Quartus II. It acts
as an intermediate tier between the LabVIEW server and
the DE2 board. The TCL server handles the Quartus II
Programmer in order to program the FPGA of DE2 board
by downloading the corresponding static random access
memory object file (“.sof”). It also updates the memory

Client

Lab Monitor

Figure 5. The structure of the RL on computer architecture.
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Figure 6. The web page of the Programming Environment.
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Figure 7. The web page of the Control Environment.

content of the selected micro-computer using a “.mif” file
which is generated by the cross-assembler of the
LabVIEW server. In addition, utilizing the features of
both the In-System Probes and Sources unit of the
hardware implementation and the In-System Probes and
Sources Editor of Quartus II, the TCL server handles the
data of 8-bit isolated input, the clock and the reset signals.
It also reads the data of the internal CPU registers, buses
and 8-bit isolated output.

B.  The RL Operation

The student, who performs remote experiments with the
proposed RL, initially selects the desired CPU architecture
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through the field CPU Selection of the Programming
Environment’s web page (Fig. 6). The field Instruction Set
displays the instructions which are supported by the
selected CPU. Initially, the student should write her/his
assembly code using the Command Editor of the
presented RL.

Subsequently, the student enables the syntax error
check procedure by pressing the button Assemble and the
possible errors are displayed in the field Status. If the
student’s program has no syntax errors, the integrated
cross-assembler undertakes the translation from assembly
to the machine language and generates a “.mif” file which
contains the executable code. In the field Memory
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Contents the student is able to observe in hexadecimal
format the generated code which will be stored in the
micro-computer’s memory.

Following a successful assembly procedure, the student
presses the button Run and enables the download
procedure. The selected hardware implemented system is
automatically downloaded to the FPGA. Subsequently, the
generated executable code is also downloaded to the
micro-computer’s memory and the student is redirected to
the Control Environment’s web page (Fig. 7). Through
this webpage, she/he remotely controls the DE2 board and
the selected micro-computer in order to verify the
operation of the corresponding CPU.

C. The Verification Process of an Interrupt Driven
Example Code

The verification process of an interrupt driven example
code from the student’s point of view is presented in this
paragraph for demonstration purposes. The example code
which is written in assembly language is presented in
Fig. 6. This code allows the student to understand the
mechanism of the non-vectored interrupts and how the
ERS CPU handles the 8-bit isolated I/O device which is
referred as Port A. The presented code is divided into
three parts, the vector table, the main program and the
ISR. The simple vector table defines the addresses of the
main program and of the ISR of the supported IRQ. The
main program initializes the SP with the instruction LDSP
and enables the non-vectored interrupts using the
instruction IESET. It also implements a simple endless
loop which executes the instructions NOP, NOT and
NOP. In addition, the example code contains the ISR of
the supported IRQ. The ISR which is executed when the
IRQ is occurred, reads the data of the 8-bit isolated input
of Port A using the instruction INPT. Subsequently, it
writes this data to the 8-bit isolated output of Port A using
the instruction OTPT. The 8-bit isolated 1/O of port A is
associated with the first eight virtual toggle switches and
the first eight red LED of the DE2 representation,
respectively.

During the verification process of the above example
code the student is redirected to the Control Environment
web page (Fig. 7). At this point, the student starts the step
by step execution of her/his code by pressing the push
button Clock. Every time she/he presses the push button
Clock a single clock pulse is generated by the In-System
Sources and Probes unit of the selected hardware
implemented system and the current values of the internal
CPU registers and buses are displayed, in hexadecimal
format, in the GUI’s monitor representation. Through this
process which is very important, the student understands
the internal CPU micro-operations which are taking place
during the fetch, decode and execute phases of each
instruction. One major advantage of the proposed RL is
that the student is able to understand the interrupt handling
mechanism of the ERS CPU. When the student changes
the value of one of the first eight virtual toggle switches
the isolated 1/O device (Port A) generates an IRQ signal
and the value of the IP changes to logical ‘1’. The student
by pressing the push button Clock observes the step by
step execution of the internal micro-operations which are
taken place in order to be served the occurred IRQ by the
ERS CPU. She/he initially observes how the ERS CPU
pushes the current value of the PC to the stack.
Subsequently, she/he understands the generation of the
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ISR address and how the ERS CPU calls the ISR of the
corresponding interrupt. Following the ISR completion the
student learns how the ERS CPU retrieves the return
address from the stack and resumes the execution of the
main program. During the execution of the above ISR, the
student is able to understand the step by step operation of
the handing mechanism of an 8-bit isolated 1/O device.
The student is also able to reset the selected CPU by
pressing the push button Reset. In this case, the selected
CPU resets its internal registers. In the following clock
cycle the CPU starts over the program execution.

D. The Students’ Evaluation

At this time the proposed RL is in the pilot phase and is
going to be integrated into the course “Computer Archite-
cture and Digital System Design with VHDL” in the next
academic year. An early evaluation of the proposed RL
was already voluntarily held, in the winter semester of the
academic year 2012-2013, by ten postgraduate students.

Most of the students were enthusiastic with this RL not
only because it has a user-friendly GUI but also because
they are able to write assembly programs that can be
downloaded onto and executed by the selected hardware
implemented system. They are also convinced that this RL
provide the students in one hand with a valuable
experience in assembly programming language and on the
other hand with a deep understanding of the CPU’s
program execution mechanism. As they commented, this
process is very important especially for students with low
background knowledge in computer architecture. In
addition, the students mentioned that remote experiments
which utilize the isolated I/Os and the interrupt handling
mechanism of the ERS CPU allow them to understand
how a simple CPU serves an IRQ from an external device.
They also confirmed that the use of the proposed RL is
more interesting and suitable for their education than the
corresponding simulators because they are able to interact
with a real system. Finally, the students suggested the
extension of the proposed RL features in order to support
the wverification of hardware designs which were
implemented by them.

V. CONCLUSIONS AND FUTURE WORK

This paper proposes an interactive RL which allows the
students to understand basic theoretical concepts on
computer architecture and organization using two rather
simple micro-computers. These micro-computers are
based on the RS and the ERS CPUs which are also
presented in this paper. The simplicity of their
architectures renders these CPUs ideal for educational
purposes. The ERS CPU is a super set of the RS CPU and
due to this, it has an extended ISA. The main advantage of
the ERS CPU is the integration of a subroutine calling
mechanism which is implemented by exploiting the stack.
It also supports the handling of both vectored and non-
vectored interrupt requests and an interface of 8-bit
isolated 1/Os. The presented hardware implemented
systems which are based on the above CPUs were
designed in both VHDL and Verilog using the Quartus II.

The students through the programming environment
web page of the proposed RL select and program in
assembly one of the two available micro-computers which
are based on the above CPUs. The hardware impleme-
ntation of the selected micro-computer and the machine
code which is generated by the integrated cross-assembler
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are downloaded to the FPGA of the DE2 board. During
the verification process the students following the step by
step execution of the downloaded program, are able to
observe the values of the CPU’s internal registers and
buses using the monitor representation of the RL Control
Environment. The required clock and reset signals are
produced by pressing the corresponding virtual push
buttons. The students through the web page of the
proposed RL are also able to test their programs using the
virtual toggle switches and LEDs of DE2 board
representation.

The integration of new features on the proposed RL
which will support the remote control of additional DE2
board peripheral devices, as for example the seven
segment displays or the LCD display, belongs to the
authors’ future plans. These features will increase the
level of the interactivity of the proposed RL. In addition,
there are plans for the development of remote experiments
which are based on other CPU architectures such as the
Microprocessor without Interlocked Pipeline Stages
(MIPS).
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