PAPER
INTEGRATION OF PHYSICAL DEVICES INTO GAME-BASED VIRTUAL REALITY

Integration of Physical Devices into Game-based
Virtual Reality

http://dx.doi.org/10.3991/ijoe.v9i5.2705

Z. Zhang, M. Zhang, S. Tumkor, Y. Chang, S. K. Esche, and C. Chassapis
Stevens Institute of Technology, Hoboken, NJ 07030, USA

Abstract — Virtual reality (VR) systems have the potential
for alleviating the existing constraints on various natural
and social resources. Currently, real-time applications of
VR systems are hampered by the tediousness of creating
virtual environments. Furthermore, today’s VR systems
only stimulate the human senses of vision, hearing — and to
some extent touch — which prevents the system users from
feeling fully immersed in the virtual environment. By
integrating real physical devices with virtual environments,
the user interactions with such systems can be improved and
advanced technologies such as the MS Kinect system could
be used to augment the environments themselves. While
existing development platforms for VR systems are
expensive, game engines provide a more efficient method for
integrating VR with physical devices.

In this paper, an efficient approach for integrating virtual
environments and physical devices is presented. This
approach employs modifications of games that are based on
commercially available game engines for implementing the
virtual environments in conjunction with the application of
Dynamic Link Libraries (DLLs) for realizing versatile
communications between these virtual environments and
various application platforms, which in turn can interact
with the physical devices outside of the virtual
environments. This paper is divided into four sections. In
the first section, the motivation for the developments
described here is discussed, followed by a description of the
method used to integrate virtual environments with physical
devices in the second section. In the third section, an
interactive and collaborative laboratory environment based
on a multi-player computer game engine that is linked to
physical experimental setups is presented as an example of a
VR system. In the final section, some additional promising
applications of the developed platform and the
corresponding challenges are briefly introduced.

Index Terms — DLL, game, virtual laboratory, virtual
reality.

I. INTRODUCTION

A. Virtual Reality Systems

VR systems are representations of actual physical
systems with the potential for alleviating the existing
constraints on various natural and social resources. By
creating and interacting with virtual systems instead of
physical ones, it is no longer necessary to consume scarce
natural resources to create multiple copies of physical
devices. In addition, virtual representations of physical
systems can be shared remotely by multiple users and are
inherently safer and less failure prone than their physical
equivalents. Also, VR systems can be used to implement

iJOE — Volume 9, Issue 5, September 2013

training environments that do not involve human trainers,
do not require co-location of the participants and allow
dangerous situations and hazardous environments to be
simulated safely (e.g. military training, disaster relief
training, firefighter training, etc.). Moreover, recent
technological developments have made VR systems
accessible from mobile devices, thus enhancing their
flexibility.

Although there is no universally accepted definition for
it, VR is often considered to be simulations of real or
artificial environments based on 2D/3D graphics. The
most distinct characteristics of VR implementations are
that they are designed to provide the users with a sense of
immersion into the environment and facilitate (possibly
remote) interactions between multiple users as well as
between the users and objects within the environment. At
present, most VR implementations focus on the generation
of vision and sound perceptions, which are two of the five
human senses [1,2,3]. There are four basic types of VR
[1,4]:

* Desktop VR [1], which is often used in CAD/CAM
[5] and education [6].

e Immersive VR, which often uses head-mounted
displays, fiber-optic-wired gloves, position-tracking
devices or other devices to immerse the users in the
virtual world [1].

* Distributed VR, which is built on several computers
instead of one, whereby the users can interact with
each other through a network in real time [1,7].

* Augmented VR [1,8,9], which is a form of enhanced
immersive VR that can mix real and virtual features
to improve the users’ feeling of presence.

B. Motivation for Integrating VR and Physical Devices

Obviously, the more vivid VR is, the more meaningful
it becomes. However, even though in most instances VR
is designed to simulate the real world in a realistic fashion,
it still has some shortcomings to be overcome. First, while
VR eliminates the physical distances between the users
and/or objects in the virtual environment [1], the users’
real identities are lost, thus decreasing the credibility of
the users and the VR itself. Furthermore, VR is capable of
coordinating the users’ interactions both spatially and
temporally [1] but fails to induce the feeling of presence.
Note that the essence of the above shortcomings of VR
follows from the word ‘virtual’. Despite the fact that one
of the main objectives of VR is to mimic the real world as
realistically as possible [10], it is impossible — at least
today — to make the users feel totally immersed in VR

25

PAPER
INTEGRATION OF PHYSICAL DEVICES INTO GAME-BASED VIRTUAL REALITY

without actual physical devices. Therefore, the integration
of real devices into virtual environments is desirable.

II. GAME-BASED VIRTUAL REALITY AND INTEGRATION
WITH PHYSICAL WORLD

A. Game-based VR

Different types of VR have different characteristics and
applications. One approach for implementing VR is based
on multi-player computer game engines, which provide
the developers with various basic functions such as
graphics rendering, sound generation, physics modeling,
game logics, artificial intelligence, user interactions and
networking [11,12]. The resulting VR implementations
can be immersive, distributed and collaborative [13].
Some sample implementations include virtual laboratory
systems [14], virtual rehabilitation systems [15,16],
training systems [17,18,19, 20] and entertainment [21,
22]. Computer games are classified into first person, third-
person or a combination of these two types [23].
Moreover, they enable the users to create their own
avatars and can be used as a platform for realizing
interactions between virtual environments and real
physical systems, thus fostering the users’ sense of
immersion.

B. Status of Current Integration Methods

Overview

Recently, attempts of integrating physical devices into
virtual environments have begun to be reported. Among
those, there are four examples for the integration of real
experimental devices into virtual laboratory environments.
As part of the iLab Project [24] by MIT, simulations and
remote experiments from the iLab infrastructure [25] were
integrated into a virtual environment that was
implemented using Project Wonderland [26]. The virtual
laboratory environment SecondLab [27] was developed
based on Second Life [28] by the University of Deusto
und subsequently used as a platform for controlling
remote experiments over the WebLab-Deusto architecture
[29]. 3D AutoSysLab developed by the Universidade
Federal de Santa Maria based on Open Simulator [30]
interfaces with real and simulated experiments [31]. A
general approach for communicating between virtual
environments and physical devices was developed by
Stevens Institute of Technology (SIT) and a virtual
laboratory environment was implemented as a pilot
system with access to a remote experiment [32] using
Garry’s Mod (GMod) [33] and the Source game
engine[34].

Below, these systems are evaluated to determine their
suitability in different usage scenarios based on a series of
performance criteria. The criteria include licensing,
platform dependence, communication latency, scalability,
reliability and user friendliness.

Licensing

It is desirable for the software implementations of game
engines and the associated tools (software development
kits, application programming interfaces, etc.) to be open
source, free and standardized, which tends to lead to an
active developer community.

All the above-mentioned game engines and associated
tools are either open source and completely free or involve
only a modest licensing fee. Amongst developers, Source

26

is one of the most popular game engines, while the
currently extensive base of Second Life is shrinking. In
contrast, the fact that Open Wonderland and Open
Simulator are developed by comparatively small
communities leads to fairly slow upgrading and debugging
cycles.

Platform Dependence

When linking physical devices to virtual environments,
the communication techniques used should be general and
compatible with other platforms for virtual environments
and employ interoperable communication interfaces. The
Linden Scripting Language [35] used in Second Life is not
compatible with popular programming languages such as
Java, C++, Visual Basic, etc. and also offers very limited
support of data types and insufficient capabilities for
managing complex data structures [27]. Glue code was
used in SecondLab to interface the various software
components, which renders this approach platform
specific. In iLab and AutoSysLab, on the other hand, the
approach for integrating physical devices into the virtual
environment is compatible with other platforms by
developing some middleware. However, the Dynamic
Link Library (DLL) method presented here is not specific
to one kind of game platform, which allows its adaptation
to other platforms with minor modifications.

Communication Latency

The methods used for data transmission between virtual
environments and physical devices should be optimized,
i.e. the communication should be as fast as possible in
order to achieve a better user experience. The latency in
the data transmission is determined by the processors, the
network and the communication protocols. However,
actual data for the latency of the above-mentioned
platforms have not been published yet.

Scalability

Scalability refers to the number of users that a system
can service at any given time. In this respect, iLab,
WebLab-Deusto and the prototype system at SIT were all
developed with a scheduling function to accommodate
multiple users and multiple experiments.

Reliability

Both the hardware/software components as well as the
communication between the virtual environment and the
physical devices should be reliable. Possible problems
include software crashes, hardware component failures,
communication package losses and excessive latency,
among others. In order to eliminate the effects of these
problems, it would be desirable to equip the system with
redundancy or at least with an error alerting mechanism.
There have been no reports of the assessment of the
reliability of the above-mentioned VR systems yet, but
some conclusions may be drawn by considering the
limitations of the technology used to build these
platforms. Second Life employs XML-RPC [36], which is
not suitable for implementing complex services [29].
While Open Simulator is becoming more stable as it
approaches release 1.0, it is still considered alpha software
[30], which is lacking comprehensive system monitoring
functions.

Animation Accuracy

In VR systems with integrated physical devices, the
accuracy of animations of the physical behavior depends
mainly on the graphics resolution and the display refresh

http://www.i-joe.org

PAPER
INTEGRATION OF PHYSICAL DEVICES INTO GAME-BASED VIRTUAL REALITY

rate [37]. Animations developed using the Source game
engine and Second Life are smooth and accurate. Also,
both these systems contain sophisticated physics engines
which allow for development of simulations of the
physical behavior. Since SecondLab uses only Second
Life as interface for manipulating physical devices, the
users are merely presented with a video stream that is
projected into the game environment. The animation
quality in both Open Wonderland and Open Simulator is
comparatively low, i.e. the resolution of the models is
fairly low and motions may appear somewhat jerky
[38,39].

Data Type Compatibility

It is desirable for the various game platforms to
accommodate many data types, including alpha-numerical
strings, formatted texts, images, audio and video streams,
etc. Second Life and GMod are compatible with all the
data types listed above, albeit some may require slight
adaptations. Open Wonderland itself does not provide too
many functions for data handling, but due to its open-
source nature, various auxiliary modules created by the
developer community are available [26]. The audio
support in Open Simulator is currently primitive and
works only partially. Similarly, Open Simulator currently
does not accommodate video streaming [30].

User Friendliness

Minimal user skills should be necessary to navigate in
and interact with virtual environments. Open Wonderland
and Open Simulator lack support for many of the features
that are common in other game platforms, which renders
these systems less straightforward and self-explanatory to
users who are familiar with other game platforms.
Furthermore, the instant messaging in Open Simulator
requires third party plug-ins and the players’ names
cannot be displayed, which makes it difficult for users to
collaborate [30]. In SecondLab, a long specified procedure
must be followed in order to achieve even simple
functions.

E. Objectives of this Paper

VR systems had been the subject of active research in
the mid of 1990s, but subsequently further developments
in that area slowed down considerably. In addition to the
limitation of current VR systems due to their purely
virtual nature, this slowdown was attributable mainly to
the following three reasons: VR systems were too
expensive, head-mounted displays caused discomfort to
the users, and the limitation to only two (or three) of the
five human senses hampered the sense of realism
experience by the users. In order for VR systems to reach
their full potential as envisioned a couple of decades ago,
these shortcomings have to be overcome.

This paper will present VR systems implemented using
computer game engines, wherein the virtual environments
are linked to real physical devices with a general method.
This approach reduces the previously prohibitively high
VR system cost significantly and at the same time replaces
the problematic head-mounted displays by regular
computer displays. In addition, the integration of physical
devices into virtual environments has the potential for
improving the users’ feeling of immersion in the
environments.

iJOE — Volume 9, Issue 5, September 2013

The remainder of this paper is divided into three
sections:

* Methods for integrating virtual environments with
real physical devices

* A virtual laboratory environment implemented using
the Source game engine \ with real physical devices

* Potential future applications of game-based VR
systems

III. INTEGRATION OF VR SYSTEMS WITH PHYSICAL
DEVICES

A. Methods for Integration of VR Systems with Physical
Devices

Prior Integration Platforms for VR

The concept of combining virtual environments with
real physical devices is not new since augmented reality is
just such kind of a VR system. Some of the first
applications of this concept had been introduced for robots
more than 20 years ago [40,41], and the interaction
between real and virtual robots could be considered as the
antecedents of modern augmented reality systems. These
implementations were custom designed, device specific
and used a specialized 2D display to visualize the robots.
Later, 3D graphics technology was employed to develop
more advanced virtual environments. Then, augmented
virtual reality systems based on 3D graphics technology
was widely used in medical, manufacturing and repair,
annotation and visualization, robot path planning,
entertainment and military aircraft applications [8]. The
main characteristics of augmented reality platforms have
been described as a combination of real and virtual
objects, interactivity in real time and registration in 3D
[8]. For instance, MS OneNote was used as a platform for
integrating real (i.e. paper) and virtual (i.e. electronic)
documents [42], but that system lacked a user-friendly
interface. After recent advancements, augmented reality is
now also used in training systems. For example, a VR
system for batting practice was developed using OpenSim
as the development platform [43], but this platforms limits
the system to a small number of users.

VR Systems Based on Computer Game Engines

The purpose of computer game engines is to provide a
suite of development tools for games that make the
common components of the computer games reusable and
adaptable [11,12]. When computer game engines are
employed to implement VR systems that are linked to real
physical devices, the exploitation of the middleware that is
part of the game engine allows for efficient and fast
development (see for instance [44]). Conventionally, the
submodules of a game engine responsible for rendering,
physics simulation, environment modeling, texturing and
networking are denoted as middleware. Alternatively, the
entire game engine could be considered a middleware
[45]. In order to link game-based virtual environments
with real physical devices, the game engine’s software
development kit (SDK) and application programming
interface (API) must be compatible with other software
applications and hardware platforms, such as CAD/CAM
packages, LabVIEW, MATLAB, hardware peripherals or
other physical devices (see Figure 1).

27

PAPER
INTEGRATION OF PHYSICAL DEVICES INTO GAME-BASED VIRTUAL REALITY

VR peripherals] [Omer software platforms] [Other devices
V’\.‘Q/f‘/\

Game LIILIHL

sm<> C API

Game-based VR environment

Figure 1. Integration of game engine with other applications

Hardware
interface
protocol

Standard communication
protocol

—

Customized communication
protocol

<+
|
|
Other platform used Dynamic link library combined ! Game-based
to drive the devices | with shared memory 4 VR
[|
[|
<

>

Figure 2. Methods of communication between game-based VR systems and physical devices

C. Integration Using Dynamic Link Libraries

When linking virtual environments implemented using
computer game engines, the communication between the
game engine and the other platforms for controlling the
real physical devices can be realized either by
standardized or platform-specific =~ communication
protocols or alternatively by mixed-language
programming combined with shared memory. The use of
standardized communication protocols is preferred when
they are supported by all the different platforms to be
linked [46]. In some instances, the platforms to be linked
may not all support a common standardized
communication protocol [47], which then necessitates the
development of a customized, platform-specific
communication protocol. The latter approach is costly,
and therefore, it is preferable to resort to mixed-language
programming, where source codes written in different
programming languages are compiled together and can be
called back by different platforms. In the present work,
Dynamic Link Libraries (DLLs) under MS Windows were
employed because most of the present computer game
engines support the concept of DLLs (Dynamically
Linked ‘Shared Object’ Libraries under Linux), and so do
most of the platforms one may be interested in linking to
game engines, for instance MATLAB, LabVIEW, Java,
Basic, C/C++, etc. Figure 2 illustrates the three different
methods. In addition, the DLL-based approach allows for
faster communication between a game engine and a
physical device than standard communication protocols
such as TCP [48].

In principle, a DLL file simply represents a shared
library in the MS Windows or Linux operating systems. It
may contain data, functions, code, binary files for the
operating system, custom resources or any combination

28

thereof. Furthermore, its different contents have different
extensions (for MS Windows *.dll, *.exe, *.drv, *.fon, etc.;
for Linux *.so0). The subsequent discussions in this paper
will be limited to MS Windows. For the application
presented here, *.dll files are sufficient for implementing
the communication between the game-based VR system
and the other platforms. This communication involves
only data, functions and codes, which can all be packed
into a *.dll file.

B. Sample Implementation for Integration of Platforms

Below, a sample implementation based on mixed-
language programming is described, wherein *.dll files are
used to link a specific game engine (GMod) endowed with
a scripting language (Lua) with a specific platform
(LabVIEW). Subsequently, a game-based laboratory
environment is presented as an application of this
approach.

In this method, GMod and LabVIEW are two different
processes running under the MS Windows operating
system. Then, the same *.dll files are shared between
these different processes, ie. they can be called
simultaneously by these processes and they are used as
carriers for sharing data, functions and codes.

The motivation for using this technique is that the *.dll
files compiled by C++ under the MS Windows operating
system can be loaded by both LabVIEW and the GMod
game server. In LabVIEW 6.x (or later versions), *.dll
files can be called by the call library function node
(CLFN). Note that the CLFN used to be referred to as
code interface node (CIN) before, but LabVIEW no longer
supports this node [49]. In GMod, the extended interface
(i.e. the API of GMod), which is used to load modules in
the form of *.dll files, is denoted as GModInterface.

http://www.i-joe.org

PAPER
INTEGRATION OF PHYSICAL DEVICES INTO GAME-BASED VIRTUAL REALITY

Call library function node 1 < 1.dll > Require module 1

> Require module 2
"
a

o

Require module n

/

Figure 3. Functions supporting communication between LabVIEW and GMod

jpam——
GMod application
and callback

functions

LabVIEW
application and
callback functions

Figure 4. Architecture of *.dll file

This structure enables Lua scripts to communicate with
the *.dll files. Then, the GMod interface uses Lua’s C
application programming interface (C API) to embed data
or functions into the *.dll files. Furthermore, specific
functions used in LabVIEW can also be compiled in the
same shared *.dll file. After this step, any specific *.dll
file can be called by both GMod and LabVIEW in
different processes [50]. A simple flow chart of the
communications between the GMod and LabVIEW using
* dll files is depicted in Figure 3.

The above structure can only realize the simple callback
of data and functions that are packaged in *.dll files.
However, the problem of interest here is to interchange
data between different platforms and different processes.
In order to solve this problem, a shared memory that can
give simultaneous access to LabVIEW and GMod (which
represent different processes) is allocated. This shared
memory avoids unnecessary copies of the instances of
libraries which must be used as static libraries among the
processes, thus improving the efficiency in passing data
between different platforms [51]. The architecture of *.dll
files that are shared between LabVIEW and GMod is
illustrated in Figure 4.

In order to illustrate this method, a collaborative virtual
laboratory environment developed previously using the
multi-player computer game engine ‘Source’ and GMod
[52] was linked to real physical laboratory setups as
described in the next section.

IV. GAME-BASED COLLABORATIVE VIRTUAL LABORATORY
ENVIRONMENT WITH INTEGRATED PHYSICAL DEVICES

A. General Remarks

The collaborative laboratory environment presented
here was implemented by extending the game
environment GMod, which is based on the multi-player
game engine ‘Source’. This extension included the

iJOE — Volume 9, Issue 5, September 2013

creation of models, functions and a map as well as the
establishment of a link to actual physical devices for
conducting educational remote experiments as discussed
in detail in the subsequent sections. Figure 5 describes the
development process of this system and explains the
relationship between the concept of VR and the game-
based virtual laboratory.

B. Remote and Virtual Laboratories

The term remote laboratory refers to the use of
telecommunications to conduct real experiments from a
remote location. In recent years, remote laboratories have
become an alternative and/or complement to traditional
hands-on laboratories associated with science and
engineering curricula at many higher education
institutions worldwide. Significant contributions to this
area include iLabs [24,53], Labshare [54], LilLa [55],
Netlab [56], WebLab [57], iLough-Lab [58] and VISIR
[59]. Other noteworthy remote laboratories are described
elsewhere [60,61,62,63,64]. While remote laboratories
have been found to have several advantages over
conventional hands-on laboratories (e.g. increased
accessibility, improved safety and security, reduced
operating costs), they are most suitable for illustrating
conceptual knowledge as opposed to instilling design
skills, and they fail to provide the students with
experiences in setting up, trouble shooting and debugging
experimental equipment [65,66]. Virtual or simulated
laboratories are software-based imitations of real
experiments. In various studies, they have been found to
be good substitutes for hands-on experiments in teaching
abstract concepts and their applications [67]. Virtual
laboratories also provide advantages such as low operating
costs, reduced time for set-up and tear-down of the
experiments, and they create an active mode of learning
[65]. However, they are believed to have disadvantages
due to the disconnection between the real and virtual
worlds [65] and often do not include the imperfections
encountered in real systems.

C. Concept of Game-based Virtual Environments

Game-based virtual environments are designed to
closely simulate aspects of real or fictional scenarios and
recently have begun to be used for educational and
training purposes, for instance in medical training [68],
military training [69], sports training [43], management
simulations [70], and life simulations [28], etc. Research
on game-based learning has demonstrated that games
increase the users’ intrinsic motivation through fantasy,
control, challenge, curiosity and competition [71].

29

PAPER
INTEGRATION OF PHYSICAL DEVICES INTO GAME-BASED VIRTUAL REALITY

VR implementation
platforms

d

[

VR environment

&

Hardware enhanced VR

VR system

Game-based VR

Other platform-
based VR [

Physical devices &
VR peripherals

|

Hardware enhanced
virtual laboratory

Implementations

Other specified
implementations

Figure 5. Schematic of system development process

Game server
Memory
l spaces of
Network-
GMod server DLLs published N
side combined [~ shared N
with shared variables
memory LabVIEW
SVE
4N 4N
J0 <L
(Internet O) (Internet 1))
GMod GMod GMod
Bt SR e RS Remote lab
s ¢ server/SVE
client

L3

|
|
|
|
Platform used to drive devices !
|
I
|
|

Internet 0
Experiment Experiment Experiment
device 1 device 2 device m

Figure 6. System architecture

Also, by providing visual and auditory feedback, games
increase the interactivity between users and environments
and enable the users to learn by playing [72]. Without
doubt, playing is a powerful and pervasive method of
learning, by which ideas are tested, new skills are
developed and people participate in new social roles [71].

D. System Architecture of Collaborative Virtual
Laboratory Environment

The system architecture of the collaborative laboratory
environment presented here is shown in Figure 6. In this
system, the communication between different platforms is
realized by DLLs combined with shared memory or by
distributed shared memory (DSM). If the different
processes of the platforms are running in different
computers located throughout the network, then DSM
must be employed as indicated by the parts bounded by

30

dashed-double-dotted lines. On the other hand, if all of the
processes are executed in one computer, then DLLs
combined with shared memory should be used rather than
DSM because the latter requires communication between
different processes through the network, which is
inherently slow [73]. In the application presented here, all
processes (i.e. GMod and LabVIEW) are executed in one
computer (i.e. game server), and their integration is
discussed in detail below. The users access the client side
of GMod. Then, the information is passed on to the server
side of GMod by the network component of the game
engine. Finally, the server side of GMod exchanges data
with the server side of LabVIEW’s shared-variable engine
(SVE) through DLLs combined with shared memory.
Then, the network-published shared variables pass data
back and forth between the game sever and the remote
laboratory server/SVE client.

http://www.i-joe.org

PAPER
INTEGRATION OF PHYSICAL DEVICES INTO GAME-BASED VIRTUAL REALITY

require (“.DLL");
set of variables;
function_1 (argument_1, ..., argument _i_1);
function_2 (argument_2, ..., argument _i_2);

Function_n (argument_ 1, ..., argument_i_n);

return values_1 = function_n+1 (argument_1, ..., argument_i_n+1);
return values_2 = function_n+2 (argument_ 1, ..., argument_ i_n+2);

return values_m = functio_n_n+m (argument_1, ..., argument_i_n+m);

Figure 7. Lua script for passing data between GMod and shared memory

Fan Motor

Orifice Plate

Water level Meter

Pressure Reading Taps

Figure 8. Air flow rig (courtesy of Armfield Inc.)

Corresponding to output
parameters of Figure 10

| float ,bool * bool * float float float ,float, float)l

o~

Corresponding to output
parameters of Figure 10

Figure 9. Prototype of passData() function for data exchange between GMod and LabVIEW’s SVE

The remote laboratory server/SVE client is used to
connect with the experimental devices through the Internet
with another set of network-published shared variables.
Although all of the devices can be connected directly with
the LabVIEW SVE, they are managed by the remote
laboratory server. This two-level network architecture
facilitates the management of all data from the devices.

The communication between LabVIEW and GMod is
summarized in Figure 3. A *.lua script file is loaded
automatically when starting GMod. This file is composed
of a basic set of variables and the necessary functions to
read/write data from shared memory. Among these
functions, some that do not have return values are used to
pass data from GMod to the shared memory. The other
functions with return values are used to get data from
shared memory. The pseudo code used to explain how to
call a *dll file and how to use these variables and
functions in a *.lua script file is listed in Figure 7.

iJOE — Volume 9, Issue 5, September 2013

Functions 1 to n+m are registered functions that reside
in the *.dll file. Moreover, according to the conventions of
the GMod interface, if a *.dll file is taken as one of the
modules of the GMod game server, the name of this *.dll
file must be in the format gm_*.dll. Then, GMod can load
this module using the ‘require()’ function provided by the
Lua scripting language.

E. Sample Experiment

Experimental Setup

A multi-user game-based virtual laboratory
environment with an integrated remote flow-development
apparatus was developed as a pilot application at SIT.
This implementation uses a commercially available air
flow rig by Armfield Inc. (see Figure 8). Experiments
were designed for measuring the important characteristics
of industrial air distribution systems as well as to show
how certain basic principles of fluid mechanics are
applied to analyze flows in ducts and jets.

31

PAPER
INTEGRATION OF PHYSICAL DEVICES INTO GAME-BASED VIRTUAL REALITY

| Initial parameters |

| Initial Locations l
. » -

Desired Locations
»

|
l |
l |
| Initial Direction l | Directions |
- -
| initisl PoweButton | : PowerSW |
I Initial RestButton | Reset Value '
: i - | I
Initial MainSW1 | l MainSW1 Status '
B
© initial MaindW2 | MainSw2status |
| i . |
. Initial MainSW3 ManSW3 Status |
| i B | ,
N Initial MainSW4 . l ainSW4 Status
| I CLFN |
, Initial TaplSW - | TaplSW Status '
x| “
| Initial Tap. | 2p2oW Status |
: : 3 e 1
| Initisl Tap3swW | 2 i 2p35W Status |
M : s A hid l l
| Initial TapdSW | A ki | TapdSW Status
. , < 2 i |
l Initial MotorSelect | A ik l otor Number '
» »
_________ s o B S T b o b
Input parameters
LVActuralloc
»
LVTopLimit
LVBottomLimit
LVPTPre
L Shared memory
LVTalPre
LVTaZPr: *.dll called by CLFN
»
LVTa3Pre
! »
LVTa4Pre
»

Figure 10. Calling DLL in LabVIEW with CLFN

In this experimental setup, motor-controlled Pitot tubes
are employed to measure the pressure distributions at
various cross sections and at the outlet of the flow pipe.
One of the experiments enables the calibration of a flow
meter based on an orifice plate that is inserted into the air
stream. An orifice plate is a precisely measurable
obstruction that narrows the pipe, thus constricting the
flowing substance. The experiment also allows the
exploration of the flow development in a straight flow
pipe and the determination of the free-flow velocity
profile at the pipe’s outlet [74].

Middleware

In the demonstrated implementation, only one *.dll file
is compiled for use with the laboratory environment since
the data and the functions to be passed are not very
complicated. However, more than one *.dIl file can be
compiled and uploaded at a time as depicted in Figure 3.
In order to explain how the system works, Figure 10

32

shows a piece of the LabVIEW graphics program that is
used by the CLEN to call the *.dll file in which the
corresponding prototype of the function is imbedded. This
function is used to exchange data between GMod and
LabVIEW’s SVE, and its prototype is shown in Figure 9.

As shown in Figure 10, the initial parameters (see
Table 1) are used to set the initial values of the output
parameters. The input parameters (see

Table 2) are used to transmit the experimental data from
the real laboratory to GMod and to then configure the
animation of the corresponding models of the
experimental devices in GMod. These input parameters
correspond to the last eight arguments in the passData()
function shown in Figure 9. The output parameters (see

Table 3) are used to pass data from GMod to LabVIEW
in order to control the experimental devices. These output
parameters correspond to the first thirteen arguments in
the passData() function shown in Figure 9.

http://www.i-joe.org

PAPER
INTEGRATION OF PHYSICAL DEVICES INTO GAME-BASED VIRTUAL REALITY

TABLE 1.

INITIAL PARAMETERS APPEARING IN FIGURE 10

Name Description Name Description

Initial Locations Jet piston initial position Initial MainSW4 Main switch 4 initial status
Initial Direction Motor initial rotation direction Initial TaplSW Tap 1 switch initial status
Initial PowerButton Power switch initial status Initial Tap2SW Tap 2 switch initial status
Initial ResetButton Reset switch initial status Initial Tap3SW Tap 3 switch initial status
Initial MainSW1 Main switch 1 initial status Initial Tap4SW Tap 4 switch initial status

Initial MainSW2 Main switch 2 initial status

Initial MotorSelect

Initial selected motor

Initial MainSW3 Main switch 3 initial status

TABLE 2.

INPUT PARAMETERS APPEARING IN FIGURE 10

Name Description Name Description
LVActualLoc Jet piston actual position LVTalPre Tap 1 pressure
LVTopLimit Jet piston top limit position LVTa2Pre Tap 2 pressure
LVBottomLimit Jet piston top bottom position LVTa3Pre Tap 3 pressure
LVPTPre Pit tub pressure LVTa4Pre Tap 4 pressure
TABLE 3.
OUTPUT PARAMETERS APPEARING IN FIGURE 10
Name Description Name Description

Desired Locations Control jet piston position

MainSW4 Status

Main switch 4 status

Directions Motor rotation direction

Tap1SW Status

Tap 1 switch status

PowerSW Power switch

Tap2SW Status

Tap 2 switch status

Reset Value System reset

Tap3SW Status

Tap 3 switch status

MainSW1 Status Main switch 1 status

Tap4SW Status

Tap 4 switch status

MainSW?2 Status Main switch 2 status

Motor Number

Motor selection

MainSW3 Status Main switch 3 status

Development of Laboratory Environment

The virtual laboratory environment presented here was
created using the ‘Source’ game engine, which provides
all functions needed to develop a realistic virtual
environment. In addition, it provides extensive support via
its ‘Source’ SDK, which includes the ‘Hammer’ map
editor. The latter enables users to create and edit the
virtual map of the game environment [10].

The models of the experimental components of the
virtual laboratory environment were created based on
custom 3D CAD models of the real physical equipment.
Such custom models can be built using third-party 3D
modeling software such as 3ds Max [75] or SolidWorks
[76]. The flow rig assembly models of the experiment
described here were created in SolidWorks and then
converted into a file format that is compatible with GMod.

The ‘Source’ game engine employs the ‘Havok’
physics engine [77] to model real-world phenomena based
on Newtonian physics in order to achieve realistic
interactions between objects in the virtual environments
[14]. Furthermore, certain features of ‘Havok’ were also

iJOE — Volume 9, Issue 5, September 2013

used to implement some functionality of the virtual
laboratory environment, such as collision detection during
the assembly of components into experimental systems
and the support of realistic animations of the experimental
devices. GMod provides an extensive Lua library, which
enables programmers to create game rules and game
entities and to define the behavior of certain game
characters and objects [78]. In the virtual laboratory
environment, the Lua scripting language adopted by
GMod was also used to create tools and game
modifications.

Experimental Procedure

In real hands-on experiments using the flow rig, the
experimental apparatus has already been set up when the
students arrive in the laboratory. Thus, the students just
need to start up the fan motor, adjust its speed, select the
Pitot tube to be used for the required pressure
measurements, adjust its position using a step motor, read
off the values of the water-level meter and calculate the
corresponding pressure values. Then, this procedure can
be repeated several times for different Pitot tube locations
and/or positions as well as for different fan speeds.

33

PAPER
INTEGRATION OF PHYSICAL DEVICES INTO GAME-BASED VIRTUAL REALITY

Figure 11. 3D virtual model of flow rig apparatus

Initial Stage =+ Input Parameters = Final Stage =

Output Values

Figure 12. Simulations linked to a real device

However, in the virtual laboratory environment
described here, the students, the instructor and the
teaching assistant are represented as avatars. They interact
with a virtual flow rig apparatus that represents the real
physical device. The positions of the Pitot tubes can be
observed based on a real-time animation within the virtual
laboratory environment. This animation is driven by data
acquired from the physical devices or based on the video
stream from a webcam that is located at the real flow rig
apparatus (see Figure 12).

To achieve the intended learning outcomes, students
should be able to perform the following laboratory
exercises:

* Assemble the components of the flow rig setup into a
functioning system (including a base, a flow pipe
with built-in fan motor, fan and diffuser, step motors,
Pitot tubes, pressure reading taps and an orifice plate
if needed).

* Input the initial parameters (including fan speed, Pitot
tube selection and position)

34

* Press the RUN button to start the acquisition of the
pressure data (see Figure 11)

* Record the pressure data (either electronically into a
file or manually on paper)

¢ If needed, repeat Steps 2 to 4 with different input
parameters in order to obtain entire pressure
distributions at the locations of interest

* Ifneeded, modify the experimental setup by inserting
an orifice plate into the flow and repeat Steps 1 to 5.

V. OTHER POTENTIAL APPLICATIONS

A variety of VR applications can be found in the
literature (see for instance [79,8]). Some of these
applications that could be implemented using the platform
presented above are discussed below. Because of the use
of the mixed programming technique for integrating the
physical devices and the VR system, the platform
described above (possibly with some minor modifications)
can be made compatible with most hardware interface
drivers, i.e. it is capable of supporting most peripheral

http://www.i-joe.org

PAPER
INTEGRATION OF PHYSICAL DEVICES INTO GAME-BASED VIRTUAL REALITY

devices used to connect the real and virtual worlds. In
addition, the multiplayer game-based platform lets all
users engage in group collaboration and relieves the users’
tension resulting from some serious game applications
such as virtual rehabilitation, military training, etc.

Virtual rehabilitation makes it possible to implement
therapeutic interventions locally or at a distance with the
help of VR systems. VR therapy systems have been
applied to various patient populations, including musculo-
skeletal, post-stroke and cognitively impaired patients
[15]. The benefits and challenges of virtual rehabilitation
were discussed in more detail in [15]. The concept of VR
rehabilitation for post-stroke patients was introduced
carlier [80,81,82], and more recently, the SeeMe system
[83] was presented. The procedures of rehabilitation are
tedious and painful, and therefore improving the patients’
motivation and keeping the patients interested in the
therapy is considered critical in order to achieve good
clinical outcomes. Although products such as SeeMe were
developed based on first-person game environments, it is
unavoidable for patients to feel lonely in such single-
person games. Multiplayer game-based VR platforms
have the potential for solving this problem, resulting from
the inherent entertainment characteristics of games. In VR
therapy systems, doctors, therapists and patients can
interact in the same scenario: the patients can get
instructions from the doctors and therapists, the therapists
can consult with the doctors, and the therapists and
doctors can get feedback from the patients. In fact, all of
these activities can happen in real time. At the same time,
certain patient groups could also use rehabilitation devices
locally while the therapists operate these devices remotely
through this platform.

Similarly, various virtual athletic training systems
[84,85] and virtual military training system [86,87] have
been developed using VR. The cost of these systems is
often significant since the implementation of a user-
friendly virtual environment is a complex proposition
unless it is based on a ready-made platform. Fortunately,
VR based on game engines can shorten the development
time and cost significantly. In addition, multiplayer game-
based VR platforms also provide an effective environment
for group training (e.g. team sports).

Finally, VR is also often used as a tool for treating
psychiatric and psychological diseases, for example
various phobias and disorders [88,89,90,91,92]. Although
VR applications in the realm of psychiatry and
psychology remain controversial, some results are
promising [93]. For instance, a virtual sandbox treatment
was introduced [94], and it was argued that play therapy
including a virtual sand box is helpful for children with
social phobias [95]. A shortcoming is that in a virtual sand
box based on both augmented reality and immersive VR,
the users play only with virtual characters. In systems
based on the platform presented here, other persons could
join in the same environment by creating their own avatars
and interact with the users who need help. By immersing
the users with problems in environments that feel more
real, the effectiveness of the treatment could be improved
significantly.

VI. CONCLUSIONS AND FUTURE RESEARCH

In this paper, the current state of VR and the integration
of the real and virtual worlds were studied and the

iJOE — Volume 9, Issue 5, September 2013

advantages and disadvantages of current technologies in
game-based VR were compared. In addition, a general
method for integrating VR and physical activities was
proposed. This method is based on the mixed
programming technique and employs callable DLLs for
the communication between the VR and other application
platforms. In order to demonstrate the efficiency of this
method, a multiplayer game-based virtual laboratory
environment was implemented as one of the instances of
VR. This system was integrated with a prototype of a
remotely controllable, real-time air flow laboratory
apparatus. This system has proven to be a promising,
economical and efficient way to overcome the difficulties
in integrating physical devices into VR systems.

In future work, some other challenges associated with
the development of VR should be addressed, including for
instance the creation of virtual environments in real time,
the seamless integration of different platforms and
systems, the facilitation of more efficient interactions
between humans and virtual environments, and the
integration of 3D sound synthesis, stereoscopic 3D display
technologies and perception feedback. The integration of
VR and physical activities has tremendous potential in
diverse fields such as medical, athletic and military
training and virtual rehabilitation, but future generations
of these kinds of applications could benefit significantly
from the integration of real-time video streams into virtual
environments, the real-time generation of avatars by the
users themselves and further improvements in the
immersive perception of the users.

ACKNOWLEDGMENTS

This multi-disciplinary research project was carried out
at Stevens Institute of Technology with funding from NSF
CCLI Grant No. 0817463. This support is gratefully
acknowledged. Also, the authors wish to thank Dr. El-
Sayed Aziz for many stimulating discussions on the topic.

REFERENCES

[11 McLellan, H., 2001, “Virtual Realities”, McLellan Wyatt Digital.

[2] Gaggioli, A. & Breinin, R., 2001, “Communications through
Virtual Technology, Identity Community and Technology in the
Internet Age, Edited by G. Riva and F. Davide, IOS Press,
Amsterdam.

[31 Dilwort, J., 2010, “Realistic virtual reality and perception”,
Philosophical Psychology, Vol. 23, pp. 23-42.
http://dx.doi.org/10.1080/09515080903533942

[4] Brady, S. & O’Sullivan, C., 1999, “3D training environments —
VRML and its use in interactive task-based simulations, Technical
Report, TCD-CS-1999-20, March 1999.

[5] Zheng, J., 2000, “VR interfaces for conceptual design using
geometric modeling techniques”, Ph.D. Dissertation, The
University of Hong Kong, May 2000.

[6] Ausburn, L. J. & Ausburn, F. B., 2004, “Desktop virtual reality: a
powerful new technology for teaching and research in industrial
teacher education”, Journal of Industrial Teacher Education,
Vol. 41, No. 4, pp. 1-16.

[71 Freund, E. & RoBmann, J., 2003, “Distributed virtual reality:
system concepts for cooperative training and commanding in
virtual worlds”, Journal of Systemics, Cybernetics and
Informatics, Vol. 1, No. 1, pp. 1690-4524.

[8] Azuma, R. T., 1997, “A survey of augmented reality”, Presence:

Teleoperators and Virtual Environments, Vol. 6, No. 4, pp. 355-
386.

35

PAPER
INTEGRATION OF PHYSICAL DEVICES INTO GAME-BASED VIRTUAL REALITY

[10]

(1]

[12]

[13

—

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25

—

[26]

36

Silva, R., de Oliveira, J. C. & Giraldi, G. A., “Introduction to
augmented reality”, LNCC Research Report, No.25/2003,
National Laboratory for Scientific Computation, ISSN: 0101 6113.

Chang, Y., Aziz, E.-S., Esche, S. K. & Chassapis, C., 2012, “A
game-based laboratory for gear design”, Computers in Education
Journal, Vol. 22, No. 1.

Baba, S. A., Hussain, H. & Embi, Z. C., 2007, “An overview of
parameters of game engine”, IEEE Multidisciplinary Engineering
Education Magazine, Vol. 2, No. 3, pp. 10-12.

Thorn, A., 2010, “Game Engine Design and Implementation”,
Chapter 1, 1" Ed., Jones & Bartlett Publishers.

Aziz, E.-S., Chang, Y., Tumkor, S., Esche, S. K. & Chassapis, C.,
2010, “Adapting computer game technology to support
engineering laboratories”, Proceedings of the ASME International
Mechanical Engineering Conference & Exposition, November 12-
18, Vancouver, British Columbia, Canada.

Chang, Y., Aziz, E.-S., Esche, S. K. & Chassapis, C., 2011,
“Overcoming the limitations of current online laboratory systems
using game-based virtual environments”, Proceedings of the
ASME 2011 International Mechanical Engineering Congress &
Exposition, Denver, Colorado, USA.

Burdea, G. C., 2002, “Key note address: virtual rehabilitation —
benefits and challenges”, Proceedings of the First International
Workshop on Virtual Reality Rehabilitation (Mental Health,
Neurological, Physical, Vocational), Lausanne, Switzerland,
November 7-8, 2002, pp. 1-11.

Jack, D., Boian, R., Merians, A. S., Tremaine, M., Burdea, G. C.,
Adamovich, S. V., Recce, M. & Poizner, H., 2001, “Virtual
reality-enhanced stroke rehabilitation”, IEEE Transactions on
Neural Systems and Rehabilitation Engineering, Vol. 9, No. 3,
pp. 308-318. http://dx.doi.org/10.1109/7333.948460

Harrison, G. W., Haruvy, E. & Rutstréom. E. E., 2011, “Remarks
on virtual world and virtual reality experiments”, Southern
Economic Journal, Vol. 78, No. 1, pp- 87-94.
http://dx.doi.org/10.4284/0038-4038-78.1.87

Fox, J., Arena, D. & Bailenson, J. N., 2009, “Virtual reality — a
survival guide for the social scientist”, Journal of Media
Psychology, Vol. 21, No. 3, pp. 95-113.
http://dx.doi.org/10.1027/1864-1105.21.3.95

“The Virtual Football Trainer”, http://www-vrl.umich.edu/project
/football/index.html, accessed in August 2012.

Stepan, V. & Zara, J.,, 2002, “Teaching tennis in virtual
environment”, Proceedings of the Spring Conference on Computer
Graphics, Budmerice, Slovakia, pp. 49-54.

Olanda, R., Pérez, M., Morillo, P., Fernandez, M. & Casas, S.,
2006, “Entertainment virtual reality system for simulation of
spaceflights over the surface of the planet Mars”, Proceeding of
VRST '06 Proceedings of the ACM symposium on Virtual reality
software and technology, Limassol, Cyprus, pp. 123-132.

Craig, A. B., Sherman W. R. & Will J. D., 2009, “Developing
virtual reality applications: foundations of effective design”,
Chapter 9, 1" Ed., (August 7, 2009), Morgan Kaufmann
Publishers.

Jacobson, J. & Lewis, M., 2005, ”Game engine virtual reality with
CaveUT”, Computer, Vol. 38, No. 4, pp. 79-82.
http://dx.doi.org/10.1109/MC.2005.126

Harward, V. J., del Alamo, J. A., Choudhary, V. S., deLong, K.,
Hardison, J. L., Lerman, S. R., Northridge, J., Talavera, D.,
Varadharajan, C., Wang, S., Tehia, K. & Zych, D., 2004, “iLab: a
scalable architecture for sharing online experiments,” Proceedings
of the International Conference on Engineering Education,
Gainesville, Florida, USA, October 16-21, 2004.

Scheucher, T., Bailey, P. H., Giitl, C. & Harward, V. J., 2009,
“Collaborative virtual 3D environment for Internet-accessible
physics experiments”, International Journal of Online
Engineering, Vol. 5, No. 1, pp. 65-71.

Sun Microsystems, Inc., Project Wonderland: Toolkit for Building
3D Virtual Worlds. http://openwonderland.org/, accessed in
August 2012.

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Garcia-Zubia, J., Irurzun, J., Angulo, 1., Hernandez, U., Castro,
M., Sancristobal, E., Ordufa, P. & Ruiz-de-Garibay, J., 2010.
“SecondLab: a remote laboratory under Second Life”,
Proceedings of the IEEE EDUCON 2010 Conference, Madrid,
Spain, April 14-16, 2010, pp. 351-356.

Second Life, from Linden Research, Inc., http://secondlife.com/,
accessed in August 2012.

Garcia-Zubia, J., Irurzun, J., Angulo, I., Ordufa, P., Ruiz-de-
Garibay, J., Hernandez, U. & Castro, M., 2010, “Developing a
Second-Life-based remote lab over the WebLab-Deusto
architecture”, Proceedings of the Remote Engineering and Virtual
Instrumentation Conference (REV2010), Stockholm, Sweden,
June 29 - July 2, 2010, pp. 171-176.
http://dx.doi.org/10.1109/EDUCON.2010.5492556

OpenSimulator, http://opensimulator.org/wiki/Main_Page,
accessed in August 2012.

Schaf, F. M., Paladini, S. & Pereira, C. E., 2012, “3D AutoSysLab
prototype - a social, immersive and mixed reality approach for
collaborative learning environments”, Proceedings of the 2012
IEEE Global Engineering Education Conference, pp. 1-9.

Tumkor, S., Zhang, Z., Zhang, M., Chang, Y., Esche, S. K. &
Chassapis, C., (2012), “Integration of a real-time remote
experiment into a multi-player game laboratory environment”,
Paper accepted for presentation at the ASME International
Mechanical Engineering Conference & Exposition IMECE’12,
Houston, Texas, USA, November 9-15, 2012.

Garry’s Mod, developed by Garry
http://garrysmod.com/, accessed in August 2012.

Newman,

Source Engine, developed by Valve Corporation, http://source.
valvesoftware.com/, accessed in August 2012.

Description of Linden Scripting Language from Wikipedia,
http://en.wikipedia.org/wiki/Linden_Scripting Language,
accessed in August 2012.

XML-RPC, from Wikipedia, http://en.wikipedia.org/wiki/XML-
RPC, accessed in August 2012.

Rekapalli, P. V., Martinez, J. C. & Kamat, V. R., 2009,
“Algorithms for accurate three-dimensional scene graph updates in
high speed animations of simulated construction operations”,
Computer-Aided Civil and Infrastructure Engineering, Vol. 24,
No. 3, pp. 186-198. http://dx.doi.org/10.1111/j.1467-
8667.2008.00565.x

Demonstration of Open Wonderland, http://vimeo.com/6581845,
accessed in August 2012.

Open Simulator screenshots: http://opensimulator.org/wiki/Screen
shots, accessed in August 2012.

Bejczy, A. K., Kim, W. S. & Venema, S. C., 1990, “The phantom
robot: predictive displays for teleoperation with time delay”,
Proceedings of the 1990 IEEE International Conference on
Robotics and Automation, Cincinnati, Ohio, USA, May 13-18,
1990, Vol. 1, pp. 546-551.
http://dx.doi.org/10.1109/ROBOT.1990.126037

Milgram, P., Zhai, S., Drascic, D. & Grodski, J. J., 1993,
“Applications of augmented reality for human-robot
communication”, /993 IEEE/RSJ International Conference on
Intelligent Robots and Systems, Yokohama, Japan, July 26-30,
1993, Vol. 3, pp. 1467-1472.

Seifried, T., Jervis, M., Haller, M., Masoodian, M. & Villa, N.,
2008, “Integration of virtual and real document organization”,
Proceedings of the 2" International Conference on Tangible and
Embedded Interaction, Bonn, Germany, February 18-20, 2008,
pp- 81-88. http://dx.doi.org/10.1145/1347390.1347410

Syamsuddin, M. R. & Kwon, Y. M., 2010, “Research on virtual
world and real world integration for batting practice”, Proceedings
of the 2010 International Symposium on Ubiquitous Virtual
Reality (ISUVR), Gwangju, South Korea, July 7-10, 2010, pp. 44-
47. http://dx.doi.org/10.1109/ISUVR.2010.21

http://www.i-joe.org

PAPER
INTEGRATION OF PHYSICAL DEVICES INTO GAME-BASED VIRTUAL REALITY

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

van Oijen, J., Vanhée, L. & Dignum, F., 2011, “CIGA: A
middleware for intelligent agents in virtual environments”,
Proceedings of the 3™ International Workshop on Agents for
Education, Games and Simulations AAMAS’11, Taipei, Taiwan,
May 2-6, 2011.

Yip, M. K., Liu, E. S., Cheung, M. K., Lung, R. M. & Yu, G.,
“Design decisions in game middleware development: experiences
from lucid platform”, Proceedings of the 1" International
Symposium on Game’s Science, Art, Education and Applications,
Taipei, Taiwan, December 2005.
Microsoft Patterns & Practices
application architecture guide”, 2"
Chapter 18.

Brutzman, D., Zyda, M., Watsen, K. & Macedonia, M., 1997,
“Virtual reality transfer protocol (VRTP) design rationale”,
Proceedings of the Sixth IEEE Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises,
Cambridge, Massachusetts, USA, June 18-20, 1997, pp. 179-186.
Mitchell M., Oldham J. & Samuel A., 2001, “Advanced Linux
programming”, Chapter 5, 1* Ed., Sams Publisher.

Team, 2009, “Microsoft”
Ed., Microsoft Press,

LabVIEW 2010 help, available on the Web ,
http://zone.ni.com/reference/en-XX/help/371361G-
01/lvexcodeconcepts/cins_vs_clf nodes/, accessed in August

2012.

Terusalimschy, R., 2006, “Programming in LUA”, 2" Ed.,
Lua.org.

Windows Developer Center, July 2012, available on the Web,
http://msdn.microsoft.com/en-us/library/windows/desktop/
€e663297(v=vs.85).aspx, accessed in August 2012.

Aziz, E.-S., Esche, S. K. & Chassapis, C., 2010, “An interactive
game-based engineering laboratory’, World Transactions on
Engineering and Technology Education, Vol. 8, No. 2, pp. 131-
136.

iLab Group at the University of Queensland’s Center for
Educational Innovation & Technology,
http://ceit.uq.edu.au/content/ilabs-group, accessed in August 2012.

Lowe, D., Berry, C., Murray, S. & Lindsay, E., 2009, “Adapting a
remote laboratory architecture to support collaboration and
supervision”, Proceedings of 6th International Conference on
Remote Engineering and Virtual Instrumentation, Bridgeport,
Connecticut, USA, June 22-25, 2009, pp. 103-108.

Richter, T., Boehringer, D. & Jeschke, S., 2009, “LilLa: A
European project on networked experiments”, Proceedings of 6"
International Conference on Remote Engineering and Virtual
Instrumentation, Bridgeport, Connecticut, USA, June 22-25, 2009.

Machotka, J., Nedic, Z. & Gol, O., 2008, “Collaborative learning
in the remote laboratory NetLab”, Journal on Systemics,
Cybernetics and Informatics, Vol. 6, No. 3, pp. 22-27.
Garcia-Zubia, J., Lopez de Ipifia, D., Orduiia, P., Hernandez, U. &
Trueba, 1., 2006, “Evolution of the WebLab at the University of
Deusto”, Proceedings of the 6" European Workshop on
Microelectronics Education, Stockholm, Sweden, June 8-9, 2006.

Abdulwahed, M. & Nagy, Z. K., 2011, “The TriLab, a novel ICT
based triple access mode laboratory education model”, Computers
and Education, Vol. 56 No. 1, pp. 262-274.
http://dx.doi.org/10.1016/j.compedu.2010.07.023

Gustavsson, 1., 2003, “A remote access laboratory for electrical
circuit experiments”, International Journal of Engineering
Education, Vol. 19, No. 3, pp. 409-419.

Control labs online, University of Tennessee at Chattanooga,
http://chem.engr.utc.edu/, accessed in August 2012.

Schauer, F., Lustig, F., & Ozvoldova, M., 2006, ‘“Remote
scientific experiments across internet: Photovoltaic cell
characterization”, Proceedings of International Conference on
Interactive Collaborative Learning, Villach, Austria, September
27- 29, 2006.

iJOE — Volume 9, Issue 5, September 2013

[62]

[63]

[64]

[65]

[67]

[68]

[69]

[70]

(71]

[72]

(73]

[74]

[75]
[76]
[77]

(78]

[79]

(80]

(81]

Remotely controlled laboratory, Department of Experimental

Physics, Olomouc,
http://ictphysics.upol.cz/remotelab/index_en.html, accessed in
August 2012.

The telelabs project, School of Mechanical Engineering, The
University of Western Australia, http:/telerobot.mech.uwa.edu.au/,
accessed in August 2012.

Remote internet laboratory, GymKT, http://remote-lab.fyzika.net/,
accessed in August 2012.

Ma, J. & Nickerson, J. V., 2006, “Hands-on, simulated and remote
laboratories: a comparative literature review”, ACM Computing
Surveys, Vol. 38, No. 3, pp. 1-24.
http://dx.doi.org/10.1145/1132960.1132961

Corter, J. E., Esche, S. K., Chassapis, C., Ma, J. & Nickerson, J.
V., 2011, “Process and learning outcomes from remotely operated,
simulated, and hands-on student laboratories”, Computers and
Education, Vol. 57, No. 3, pp- 2054-2067.
http://dx.doi.org/10.1016/j.compedu.2011.04.009

Corter, J. E., Nickerson, J. V., Esche, S. K., Chassapis, C., Im, S.
& Ma, J., 2007, “Constructing reality: a study of remote, hands-on
and simulated laboratories”, ACM Transactions on Computer-
Human Interaction, Vol. 14, No. 2, Article 7, 2007.

Tsuda, S., Scott, D., Doyle, J. & Jones, D. B., 2009, “Surgical
skills training and simulation”, Current Problems in Surgery,
Vol. 46, No. 4, pp. 271-370.
http://dx.doi.org/10.1067/j.cpsurg.2008.12.003

Prensky, M., 2001, “True believers: digital game-based learning in
the military”, Chapter 10 of Digital Game-Based Learning,
McGraw-Hill, 2001.

http://www.gamespot.com/school-tycoon/reviews/school-tycoon-
review-6091764/, accessed in August 2012.

Squire, K., 2005, “Changing the game: What happens when video
games enter the classroom?”, Innovate: Journal of Online
Education, Vol. 1, No. 6.

Burdea, G., 2003, “Virtual rehabilitation — Benefits and
challenges”, Methods of Information in Medicine, Vol. 42, No. 5,
pp. 519-523.

Coulouris, G., Dollimore, J. & Kindberg, T., 2005, “Distributed
Systems: Concepts and Design”, Ch. 18, 4" Ed., Addison Wesley.

Dai, S., Aziz, E.-S., Esche, S. K. & Chassapis, C., 2008, “A
remotely accessed flow rig student laboratory”, Proceedings of the
ASME International Mechanical Engineering Congress and
Exposition IMECE'08, Boston, Massachusetts, USA, October 31 -
November 6, 2008.

3ds Max from Autodesk, Inc., http://usa.autodesk.com/3ds-max/,
accessed in August 2012.

Dassault Systemes SolidWorks
http://www.solidworks.com/, accessed in August 2012.

Corp.,

Havok physics engine, http://www.havok.com/products/physics,
accessed in August 2012.

Aziz, E.-S., Chang, Y., Esche, S. K. & Chassapis, C., 2012,
“Capturing assembly constraints of experimental setups in a
virtual laboratory environment”. Proceedings of the ASME
International Mechanical Engineering Conference & Exposition
IMECE'12, Houston, Texas, USA, November 9-15, 2012.

Frederick, B. P., 1999, “What’s real about virtual reality?”, [EEE
Computer Graphics and Applications, Vol. 19, pp. 16-27.
http://dx.doi.org/10.1109/38.799723

Boian, R., Sharma, A., Han, C., Merians, A., Burdea, G.,
Adamovich, S., Recce, M., Tremaine, M. & Poizner, H., 2002,
“Virtual reality-based post-stroke hand rehabilitation”,
Proceedings of Medicine Meets Virtual Reality 2002 Conference,
Newport Beach, CA, pp. 64-70.

Correa, A. G. D.; de Assis, G. A.; do Nascimento, M.; Ficheman,
1. & de Deus Lopes, R., 2007, “GenVirtual: an augmented reality
musical game for cognitive and motor rehabilitation”, Proceeding
of Virtual Rehabilitation, 2007, Venice, Italy, pp. 1-6.

37

PAPER
INTEGRATION OF PHYSICAL DEVICES INTO GAME-BASED VIRTUAL REALITY

[82] Sisto, S. A., Forrest, G. F. & Glendinning, D., 2002, “Virtual
reality applications for motor rehabilitation after stroke”,
Proceeding of Topics in Stroke Rehabilitation, Vol. 8, No. 4.,
pp. 11-23. http://dx.doi.org/10.1310/YABD-14KA-159P-MN6F

[83] SeeMe rehabilitation system, http://www.virtual-reality-
rehabilitati on.com/products/seeme/what-is-seeme, accessed in
August 2012.

[84] Mihalik, J. P., Kohli, L. & Whitton, M. C., 2008, “Do the physical
characteristics of a virtual reality device contraindicate its use for
balance assessment?”, Journal of Sport Rehabilitation, Vol. 16,
pp- 38-49.

Bailenson, J. N., Patel , K., Nielsen, A., Bajcsy, R., Jung, S. &
Kurillo, G., 2008, “The effect of interactivity on learning physical
actions in virtual reality”, Media Psychology, Vol. 11, pp. 354—
376. http://dx.doi.org/10.1080/15213260802285214

[86] Wilson, C., 2008, “Avatars, virtual reality technology and the U.S.
military: emerging policy issues”, CRS Report for Congress,
Order Code RS22857.

“Virtual reality in military”, available on the Web, http://www.vrs.
org.uk/virtual-reality-military/index.html, accessed in August
2012.

[88] Marques, A., Queirds, C. & Rocha, N., 2008, “Virtual reality and
neuropsychology: a cognitive rehabilitation approach for people
with psychiatric disabilities”, Proceeding of the Seventh
International Conference on Disability, Virtual Reality and
Associated Technologies with ArtAbilitation 2008, Maia & Porto,
Portugal, Session I, pp. 39-46.

[89] Penate, W., Pitti, C. T., Bethencourt, J. M., de la Fuente, J. &
Gracia, R., 2008, “The effects of a treatment based on the use of
virtual reality exposure and cognitive-behavioral therapy applied
to patients with agoraphobia”, International Journal of Clinical
and Health Psychology, Vol. 8, No. 1, pp. 5-22.

Botella, C., Bafios, R. M., Guerrero, B., Garcia Palacios, A.,
Quero, S. & Alcafiiz, M., 2006, “Using a flexible virtual
environment for treating a storm phobia”, Psychology Journal,
Vol. 4, No. 2, pp. 129-144.

[91] Huang M. P. & Alessi N. E., 1998, “Current limitations into the
application of virtual reality to mental health research”, ISO Press,
1998, Amsterdam, Netherlands

[92] Freeman, D., 2008, “Studying and treating schizophrenia using
virtual reality: a new paradigm”, Schizophrenia Bulletin, Vol. 34,
No. 4, pp. 605-610. http://dx.doi.org/10.1093/schbul/sbn020

[93] Rizzo, A. A., Schultheis, M. T. & Rothbaum, B. O., 2002,
“Ethical issues for the use of virtual reality in the psychological
sciences”, In: S. Bush & M. Drexler (Eds.), “Ethical Issues in
Clinical Neuropsychology”, Swets & Zeitlinger Publishers, Lisse,
Netherlands, pp. 243-280.

[94] Kijima, R., Shirakawa, K., Hirose, M. & Nihei, K., 1994, “Virtual
sand box: development of an application of virtual environments
for clinical medicine”, The MIT Press, Vol. 3, pp. 45-59.

[95] Davis, A., “What about the digital toys? Looking into the idea of
using digital media in play therapy sessions”, http://www.mlppubs

online.com/display_article.php?id=887087, accessed in August
2012.

(85

—

[87

—

[90

[t}

AUTHORS

Zhou Zhang. Ph.D. candidate, Mechanical Engineering
Department, Stevens Institute of Technology, Hoboken,
NJ 07030 USA. (Email: ZZhangl1@stevens.edu).

Mingshao Zhang, Ph.D. candidate, Mechanical
Engineering Department, Stevens Institute of Technology,

Hoboken, NJ 07030 USA. (Email:
MZhang3@stevens.edu).
Serdar Tumkor, Research Scientist, Mechanical

Engineering Department, Stevens Institute of Technology,
Hoboken, NJ 07030 USA. (Email:
STumkor@stevens.edu) .

38

Yizhe Chang, Ph.D. candidate, Mechanical
Engineering Department, Stevens Institute of Technology,
Hoboken, NJ 07030 USA.
(Email:YChangl@stevens.edu).

Sven K. Esche, Associate Professor, Graduate Program
Director, Mechanical Engineering Department, Stevens
Institute of Technology, Hoboken, NJ 07030 USA.
(Email: SEsche@stevens.edu).

Constantin Chassapis, Professor, Vice Provost for
Academics, Mechanical Engineering Department, Stevens
Institute of Technology, Hoboken, NJ 07030 USA.
(Email: CChassap@stevens.edu).

Submitted 23 April 2013. Published as re-submitted by the authors 15
Septemeber2013.

http://www.i-joe.org

