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Abstract—Measuring oxygen in blood with a standard imaging method is 

challenging. Most of the conventional imaging systems presented outcomes of 

microcirculatory change measurement as signals of complex forms. This leads 

to analytical insufficiency due to the complicated and visually unnoticeable fea-

tures of the signals. For that reason, there is a great need to explore the use of 

photoacoustic (PA) method and deep learning technique for the task. This work 

presents the use of a deep network containing long short-term memory (LSTM) 

units for temporal features extraction and classification of skin microcirculatory 

status. The model was trained using a limited number of PA signals. One way 

ANOVA test was used to evaluate changes in the PA signals collected under 

different experiment condition. The results showed a strong statistical signifi-

cance between the means of two groups (ρ < 0.05). The mean ± standard devia-

tion (SD) final validation accuracies of the trained model is given by 95.60 ± 

0.47 % with inclusion of augmented data, which showed better performance 

than the case without the augmentation method. The results of the testing set 

showed a considerably good classification accuracy, specificity, and sensitivity 

given by 97.6 %, 100 %, and 83.3%. The future of this work includes improve-

ment of the network architecture to include more convolutional layers for 

searching patterns in the features extracted. 

Keywords—photoacoustic imaging, microcirculatory changes, temporal fea-

tures, long short-term memory 

1 Introduction 

A cardiovascular system is responsible for delivering nutrition and oxygen through 

the bloodstream to all of the body's cells. It is made up of the heart and a closed sys-

tem of vessels that transports blood throughout the body. The key function of the 

microcirculation is to ensure adequate oxygen transport to meet the oxygen demands 

of every cell within an organ. In order to accomplish this, a healthy and well perfused 

microvasculature will respond to variations in metabolic demand or blood flow to the 
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organ. Tissue hypoxia may develop if the microvasculature is malfunctioning, or 

under the condition of impeded blood flow to the affected area. 

Hypoxia is a medical condition when the supply of oxygen is insufficient for nor-

mal living functions, while hypoxemia is a situation where the arterial oxygen supply 

is inadequate. In the event when blood is unable to carry enough oxygen to the tissues, 

hypoxemia (low oxygen levels in the blood) can lead to hypoxia (low oxygen in the tis-

sues). Shortness of breath, rapid breathing, and a quick heart rate are the most prevalent 

acute symptoms. The blood oxygen level is about 92 % or lower for a hypoxemia patient. 

Late treatment of hypoxia may lead to coma, and even death. Very often, hypoxia cannot 

be reliably predicted through a physical examination using oxygen sensors, such as a pulse 

oximeter.  

Blood oxygen saturation level is an indicator commonly used to evaluate the level 

of oxygen in the blood, and the effectiveness of clinical treatment of hypoxia related 

diseases [1]. Blood oxygen saturation measurement technology has gained increasing 

interest among the scientific community. Many works have been done to estimate 

one’s blood oxygen level using photoplethysmography (PPG) [2] and spectroscopy 

technology [3]. The state of peripheral microcirculation in patients can be assessed 

using PPG that provides measurement of volumetric changes in blood. This system 

consists of a probe containing an infrared light source and optical sensors, the meas-

ured intensity of light reflected from the medium is correlated with changes in blood 

oxygen levels. According to [4], PPG offers a greater depth of discrimination than 

Laser Doppler flowmetry (LDF) in the detection of skin microcirculatory flow 

change. However, measurement using the PPG signal required the use of either a 

database or a look-up table or a calibration model [5]. Spectroscopy is an alternative 

technique for valuation of tissue oxygen saturation level. In [6], this approach is 

shown to produce considerably good prediction sensitivity and specificity of 94 % 

and 72 %, respectively, for measurement of oxygen saturation (SO2) in patients with 

chronic mesenteric ischemia. However, the measurement is adversely affected by skin 

pigmentation [7]. Photoacoustic (PA) technique is a commonly used technique in the 

study of pressure variation in a closed system, and very recently its use has been ex-

tended to biomedical applications [8]. This method is based on absorption of light that 

causes thermal expansion within the medium. The latter is responsible for acoustic 

wave generation. The effect of scattering on acoustic waves is two to three orders of 

magnitude lower than in the light signals, and thus a higher imaging resolution and 

contrast can be achieved using this hybrid optical-ultrasonic approach [9]. The find-

ings in [10] suggested PA as a suitable approach for study of microcirculation in acu-

points, as it allows determination of various blood circulation-related parameters, 

such as total hemoglobin concentration, blood oxygenation level, blood flow velocity, 

oxygen metabolism level, vasoconstriction, vasodilation, and hemodynamic of a tar-

get vessel in real time. 

Artificial intelligence (AI) technology is a popular and efficient tool in classifica-

tion and decision-making problems. It is widely used in various fields, such as in gas 

and oil industry [11, 12], clinical diagnosis [13-15], and agricultural [16]. AI has 

made great progress in the advancement of system development and performance, 

making it a technological reality. Deep learning has evolved from artificial neural 
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networks (ANN), which are a web of interconnected "nodes". Unlike traditional ma-

chine learning that requires feature engineering to extract useful features from a large 

amount of data before making accurate decisions based on what has been discovered, 

deep learning is able to learn representative features and make intelligent decisions by 

recognizing the significant pattern from the data. Some of the popular deep learning 

models used for data mining include Convolutional Neural Network (CNN), Deep 

Neural Network (DNN), and Recurrent Neural Network (RNN). A CNN is designed 

to exploit “spatial correlation” in data, and it works well on images and speech. The 

training information is passed from the input to the output layer without travelling 

backward, such as in a DNN. A RNN addresses the common feed forward network 

issue (i.e., vanishing gradient problem) with a time twist. It enables the gradients to 

flow back to the previous layers to preserve information, making it an excellent choice 

in modelling sequence data, such as text and video. LSTM is a special form of RNN 

that specializes in classifying, processing, and predicting time series (one-

dimensional) events. This model uses a gating mechanism that controls the memoriz-

ing process. The three gates in an LSTM cell are namely a forget gate, an input gate, 

and an output gate. The forget gate determines the data that needs attention or can be 

overlooked. The input gate decides the relevant information that should be added to 

the cell state (long-term memory), and the output gate finalizes the value of the next 

hidden state.  

Diagnostic methods able to provide detailed information of microcirculatory func-

tional status and tissue oxygen saturation level have come to the limelight in recent 

years to evaluate the effectiveness of intensive care treatment, especially for hypoxia 

[17]. In [18] a total of 420 microcirculation images were collected using an optical 

imaging system for diagnosis purposes using a DNN model. The study reported an 

accuracy of 92 % for prediction of microcirculation identification It was reported that 

the performance of the model was affected by the signal to noise ratio (SNR) of the 

collected images, where low SNR images exhibit complex capillary morphological 

pattern. In another work [19], a self-developed model named CapillaryNet is used to 

predict the microcirculation parameters (i.e., red blood cell flow velocity) within the 

capillary network using microscope video data as its input. The results showed an 

improved accuracy of 93 % in the detection and classification of the velocity of red 

blood cell flow density as compared to the results in [20]. The performance of this 

model was limited by the capillary types, tissue type and imaging system quality. A 

deep learning multi-cell tracking model named CycleTrack modified from Deep Lay-

er Aggregation (DLA) model is used in [21] to non-invasively investigate the features 

of capillary blood cell flow with a good accuracy of 96.58 % using capillaroscopy 

videos. Another related work in [22] used 2D CNN algorithms for classification of 

microcirculation images from septic and non-septic patients, and were shown to pro-

duce an accuracy of 89.45 % and precision of 92 %. But variability in the quality of 

the image captured using the CytoCam incident dark field imaging camera system and 

the background noises were reported as the potential confounding factors precluding 

clinical evaluation. Two other works in this direction is by Mason et al. [23] and Os-

sama et al. [24]. The authors in [23] suggested the use of generative adversarial net-

work (GAN) to estimate both uncorrected and profile-corrected tissues oxygenation, 
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and showed an accuracy of 96.5 %. Meanwhile the method in [24] includes a two-step 

training of CNN model to classify microscopic images for functional blood flow, and 

achieved an accuracy of 83 %. Other field-based and laboratory-based approaches for 

detection of microcirculatory parameters include the use of a personal computer and 

oscilloscope to display the electrical signals acquired using readily available devices 

such as PPG [25]. These signals can be complex, and its variation with microcircula-

tory change can be visually indiscernible from one another, causing insufficiency in 

its analysis. This calls for the use of AI for automatic extraction of important features 

in classification of microcirculatory status, similar to that demonstrated in earlier 

presented works. In [26], deep spectral learning (DSL) was used in the design of an 

oximetry that is robust towards changes in experimental, including different setups, 

imaging protocols, speeds, and other possible longitudinal variations. This approach 

also provides uncertainty measures of the prediction results. In [27], LSTM technique 

and an inexpensive fingertip sensor is used to predict oxygen saturation level in indi-

viduals with signs of approaching hypoxia. The prediction was more accurate than 

anaesthesiologists in the operating room. However, no work has been found in the 

literature combining PA technique and time series deep learning model for field ap-

plication purposes. This work aims to investigate the performance of LSTM for the 

prediction of microcirculatory status (i.e., at rest and perfusion occlusion) using PA 

signals. It is also our objective to demonstrate improvement in the model’s classifica-

tion performance with the inclusion of signal augmentation strategy in our training. 

2 Materials and methods 

This section discusses the research methods used in the research. The first section 

describes the methodologies of this work, followed by preparation of data for model 

training and testing. Lastly, we provide a description of the designed deep model in 

section 2.3. 

2.1 Experimental system  

Shown in Figure 1 is the PA system assembled in this study. This system compris-

es of a laser source producing light of wavelength 633 nm (R-30993 New-port Corp.) 

and an ultrasonic flaw detector (EPOCH 650, Olympus Corp, Japan) in its detection 

arm. The continuous laser beam passes through an 80 MHz acousto-optic modulator 

(AOM, Gooch & Housego 2910 series) produces a modulating light signal. The latter 

was controlled by a radiofrequency (RF) driver with a carrier frequency of 15 MHz. 

The modulated light absorbed by absorbers in a sample resulting in thermal expansion 

in the cavity. This causes pressure changes propagated through the medium, and 

measured using a flat acoustic transducer (V232-SU/2.25 MHz, Olympus NDR) that 

is connected to the flaw detector. This device plots the amplitude of ultrasonic echo as 

a function of time. The penetration depth of visible light in skin is in the range of 4 - 5 

mm [28], so the measured acoustic signals are likely from subcutaneous tissue. An 
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ultrasonic gel was applied on the imaged skin area to provide good contact between 

the skin and the transducer head during the measurement.  

2.2 Experimental procedures and subjects  

In this exploratory study, four healthy participants (one male and three females be-

tween the ages of 26 and 27, identified by subject A, B, C and D) were recruited. The 

Research Ethics Committee of Universiti Tun Hussein Onn Malaysia has given its 

approval to the experimental procedures. Prior to the experiment, volunteers were 

briefed on the technique, purpose, possible complications, and expected benefits. All 

subjects claimed no known major medical conditions. Upon enrolment, they were 

instructed to sign an informed consent form. The experiment was carried out under 

two conditions to represent different microcirculatory statuses, i.e., at rest (well per-

fused microcirculatory system) and under systolic occlusions (impeded skin blood 

flow). The application of occlusion is intended to cause blood flow blockage in the 

examined arm, and hence variations in local hemodynamic conditions. A finger pulse 

oximeter (model no. 1805) was used to confirm changes in the oxygen levels during 

these experiments. The results showed a drop in the average pulsating blood oxygen 

saturation from 99 % to 93 % for measurement on the index finger as the inflow of 

oxygenated blood is impeded. The experiment began with at rest condition, where 

each subject was told to place the examined site under modulated beam illumination. 

Three measurements were taken with a ten-second gap between them. Following that 

a systolic pressure of 120 mmHg was applied on the upper left forearm of the selected 

limb for 60 seconds before the first signal was captured. A total of 18 signals were 

collected under occlusion conditions with a 10 seconds waiting time allowed between 

measurements. The transducer head was in contact with the skin during the test, as 

illustrated in Figure 1, and the PA signals were captured using the ultrasonic flaw 

detector at the time points mentioned above. These signals were saved on a microSD 

memory card before they were manipulated and analyzed offline. The consort dia-

gram of the study is presented in Figure 2. 
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Fig. 1. Schematic diagram of the assembled photoacoustic system 

 

Fig. 2. A consort diagram of recruitment process, intervention strategy and data collection 

procedures 

2.3 Data handling and signal augmentation 

The collected photoacoustic signals are used to train and test the designed model. 

There are a total of 105 PA signals collected under both at rest and occlusion condi-

tions, i.e., 3 signals and 18 signals/volunteer from at rest and under occlusion condi-
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tion, respectively. They are randomly split for training, validation and testing using a 

ratio of 40/20/40 %. For the ease of data handling, measurements from three volun-

teers (subject A-C) are used for training and validation (i.e., 60 %), while subject D 

for testing. In the beginning, there are 42 signals available for training of the model. 

To increase the number of data available for training and validation, data augmenta-

tion has been used in this work. White Gaussian noise is added to these sets using 

AWGN function in MATLAB 2020b. This process produces four additional signals 

with SNR of 20 dB, 30 dB, 40 dB and 50 dB for each signal. Hence 210 signals (in-

cluding augmented data) are available for the training of the model, and 105 for net-

work validation. The distribution of signals for the training, testing and validation 

processes is shown in Table 1. 

Table 1.  Distribution of data for model training, validation and testing 

Exp. method  

No. of data 

Training (ori‡) 
Training 

(ori + noise*) 
Validation 

Validation 

(ori+noise) 
Testing 

At rest 6 24 3 12 6 

Occlusion 36 144 18 72 36 

Total 42 210 21 105 42 

‡ original data 

* noise corrupted data 

2.4 Model training and hyper parameters tuning 

This study used the LSTM model for the classification of different blood CO levels 

owing to its ability of dealing with sequential data and learning time series infor-

mation, and its ease of implementation. A network containing LSTM shown in Figure 

3 is used for transfer learning for PA signal classification task. This network was 

validated using the validation set to provide evidence of over or under-fitting of the 

model during the training session. The training of the proposed model was performed 

on a DELL laptop with 64-bit window 7, Intel® Core™ i3-3110M CPU @2.40 GHz. 

The model was trained using Adaptive Moment Estimation (ADAM) optimizer, and 

with manually tuned hyper parameters value. The epoch number was allowed to vary 

from 100 to 600, while the initial learning rate was increased from 0.0001 to 1, at 

tenfold intervals. Other fixed hyper parameters include mini-batch size of 8, and gra-

dient threshold of 0.0001. This model consists of one input of size 378 (i.e., X1 …, 

X378) feeding into a network LSTM cells of 30 hidden layers to extract the important 

time features. This is followed by three fully connected layers, FC, of size 30, 15 and 

2, respectively. The output of the FCs is fed to the Softmax to classify the output into 

two classes: class 1 (well perfused skin) and class 2 (impeded blood flow).  
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Fig. 3. Architecture of the proposed deep LSTM model 

3 Results and analysis 

An example of the PA signal (under at rest condition) and its corresponding noise-

added simulation signal of different SNR levels are shown in Figure 4. 

 

Fig. 4. Example of signals used in model training and validation 
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In this study, epoch number and initial learning rate were manually chosen to train 

the model. The model’s percent accuracy trained was run three times for each learn-

ing rate and epochs. The mean ± standard deviation (SD) of the model’s percent vali-

dation accuracy, and the average computing time obtained from varying these param-

eters are shown in Table 2. 

Table 2.  Changes in the mean ± SD of model’s final validation accuracies (in %) and training 

time (in seconds, s) trained using different hyperparameters set 

Mean ± SD Validation accuracy (%) 

[training time (s)] 

Epoch no. Initial learning rate 

 0.0001 0.001 0.01 0.1 1 

100 
84.3 ± 0.94 

[241] 
84.6 ± 0.47 

[213] 
85.3 ± 0.47 

[189] 
59 ± 0.82 [274] 

38.6 ± 0.94 
[225] 

200 
79 ± 0.82 

[651] 

78.6 ± 0.94         

[512] 
78.3 ±0.47 [488] 

59.6 ± 0.47 

[314] 

49.3 ± 0.47 

[395] 

400 
95.6 ± 0.47 

[671] 

94.3 ± 0.94 

[667] 

84 ± 0.82 

[656] 

60.3 ± 1.25 

[642] 
6.3 ± 0.94 [628] 

600 
95 ± 0.82 

[1192] 

79.3± 0.94 

[935] 

61.6 ± 1.25 

[917] 

6 ± 0.82 

[810] 

3.6 ± 0.47 

[705] 

 

The highest validation accuracy of our trained model is given by 95.60 ± 0.47 % 

highlighted in the blue. The training progress of this best model is shown in Figure 

5(a). Using the optimal hyperparameter set (i.e., epoch no. 400, learning rate of 

0.0001) chosen from Table 2, we demonstrated the classification performance of the 

model trained without the inclusion of the augmentation strategy described in section 

2.2. The training progress of this model is shown in Figure 5(b). 

 

Fig. 5. (a) Training progress of the best trained model (including augmented data) using initial 

learning rate value of 0.0001, and epoch number 400 
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Fig. 5. (b) Training progress of model trained without augmented data using learning rate 

value of 0.0001, and epoch number 400 

One-way ANOVA test (SPSS 26, IBM® SPSS® Statistics) with the confidence 

level, σ, of 95 % was used to evaluate the differences in the (unaugment) PA signals 

collected under different experiment condition. A statistically significant difference (ρ 

= 0.006) was observed between the two groups.  

The best performed model chosen from Table 2 is used for the subsequent analysis. 

The classification performance of this model chosen based on the lowest validation 

accuracies and short training time in Figure 5(a) are evaluated using the testing da-

taset that has no role in the training. The considered evaluation metrics are accuracy 

(Ac), specificity (Sp) and sensitivity (Sn) given in Equation (1), (2) and (3).  

 𝐴𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (1) 

 𝑆𝑝 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 (2) 

 𝑆𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3) 

Where a true negative (TN) is a result in which the model predicts the negative 

class properly. A false positive (FP) is a case when the model predicts the positive 

class inaccurately. A true positive (TP) is an outcome in which the model predicts the 

positive class correctly, whereas a false negative (FN) is when the model inaccurately 

predicts the negative class. Figure 6 shows the confusion matrix of the prediction 

results. Using information from this table, the model’s accuracy, specificity and sensi-

tivity in the classification of the testing dataset are calculated as 97.6 %, 100 % and 

83.3 %, respectively. 
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Fig. 6. Classification performance of the trained model with learning rate of 0.0001, and epoch 

number 400 

There are very few studies, which we could find in literature, that deal with micro-

circulatory changes in human skin using PA signals and deep learning method. In 

Table 3, we report state of the art techniques used for the same reason as ours. We 

also included the measurement technique and deep model considered, and the meas-

urement site to facilitate the comparison of results.  
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Table 3.  Diagnostic performance comparison with the recent microcirculation studies. 

Experimental study Measurement method Skin site Deep model 
Performance 

measures 

Fei. Y et al. [18] Optical imaging 
Human face and 

arm skin 
DNN Ac = 92 % 

Maged. A. H et al. 

[19] 
Microscopy Skin 

2D CNN and 

RNN 
Ac = 93 % 

LuoJie. H et al. [21] 

Oblique back-

illumination capillaros-

copy 

Human ventral 
tongue capillaries 

CycleTrack Ac = 96.58 % 

Perikumar. J et al. 
[22] 

Video microscopy 
Septic and Non-
Septic Patients 

CNN Ac = 89.45 % 

Mason T. C et al. 
[23] 

Spatial Frequency-
domain imaging (SFDI) 

Feet GAN Ac = 96.5 %, 

Ossama. M et al. 
[24] 

Multispectral imaging 
system 

Extensor digi-

torum longus of 

rats 

3D CNN 
Ac = 83 % 
Sen = 95 % 

This work Photoacoustic Posterior arm LSTM 

Ac = 97.6 %, Sen = 

83.3 %, Spec = 100 
% 

4 Discussion  

The number of epochs and initial learning rate, which are identified as the most 

significant parameters in deep learning neural networks [29], were tuned in this study. 

Table 2 revealed that a low learning rate value, complemented with a large epoch 

number, are needed for better model learning. Similar to the findings reported in the 

past, validation accuracy in Table 2 decrease as the learning rate increases. It can be 

clearly observed that the larger the number of epochs, the longer the training time due 

to the increased number of times the learning algorithm required to work through the 

entire training data set. Therefore, with a low learning rate, more training epochs are 

required to ensure changes to the weights of each node. Even so, there are disad-

vantages to the use of a large epoch and a small learning rate in model training, 

wherein there is a risk of the model overfitting to the training data and reduced gener-

alization performance. Thus far, there is no rule of thumb exists for selecting epochs, 

hidden layers, learning rate and gradient value for optimal model training. However, 

this study identified a large epoch number and a small initial learning rate as prefera-

ble hyper parameters to ensure the proposed model is sufficiently trained. 

The validation accuracy decreased to the lowest mean of 3.60 ± 0.47 % for learn-

ing rate of 1 and epoch number 600. This might be due to the model converging too 

quickly to a suboptimal solution but failing to update the weight at each iteration 

point. This renders the model failing to extract useful temporal features from the data, 

resulting in lower accuracy on the validation set. We noticed epoch 400 and initial 

learning rate of 0.0001 in Table 2 as the optimal set, further increase in epoch was 

shown to reduce the classification performance. The same pattern is hypothesized to 

be true in the case of reduced learning rate. Limited dataset in model Figure 5(b) pro-
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duced considerably low validation accuracy of 40 %. The loss function showed a 

decreasing trend until 120 epochs, where significant variation in its value is observed. 

Due to the limited dataset in the process, the model failed to model the dataset, and 

recognition of patterns failed to exist. This shows the data augmentation strategy 

adopted herein is an acceptable approach for improving the classification performance 

of the model. In addition, the variation in the predictions in Table 2 is generally low, 

suggesting good consistency in the model evaluation process. 

A statistically significant difference (ρ < 0.05) was observed between the at rest 

and occlusion groups. This supports our hypothesis that the PA signal differs between 

rest and occlusion conditions. Conventional tissue oxygen measurement can be a 

tedious and demanding process because of the noisy, overlapped and almost indis-

cernible microcirculation signals. But our results in Figure 6 suggested feasibility of 

our method for the task of recognising microcirculation performance. We observed a 

considerable good accuracy of 97.6 % and sensitivity of 83.3% in this two-class clas-

sification problem. An investigation into the results showed the misclassified signal 

has considerably large amplitude values. Even though the signal is collected during at 

rest measurement, it has comparable pattern to those collected during the occlusion 

experiment. This work does not rule out the possibility that this observation is affect-

ed by skin pigmentation. The use of isosbestic wavelengths of hemoglobin may min-

imize the pigmentation effect while increasing phase contrast caused by hemodynam-

ic activity. 

Meanwhile a comparison with the state-of-the-art techniques in Table 3 showed 

superiority in the performance of our diagnostic method. Unlike the study in [23], our 

technique is unaffected to ambient light with the use of the high power laser source. 

In addition, SFDI is reported in [23] to suffer from limited imaging depth and require 

rigid control of technique. Our method is also considerably less (computational) ex-

pensive and straightforward approach when compared to [24], where a 3D CNN was 

used to predict blood flow in rat microvessel. The authors reported an accuracy of 83 

%, likely due to optical artefacts that are unrelated to blood flow, leading to misclassi-

fication of these noises as perfused vascular. Unlike the earlier works in [18-22] that 

considered 2D CNNs that have long been established, this work demonstrated the 

unprecedented use of 1D LSTM for this prediction task. Even though the performance 

of our method is comparable or superior to the existing methods, we do not preclude 

the possibility of motion artifacts during scanning, which might impact quality of the 

training and classification. We recognized that the latter are also influenced by the 

insufficiency of labelled data, leading to poor network generalization. The future of 

this work would be to gather more signals, and include more convolutional layers in 

the network for the task of evaluating microcirculation changes in patients.  

5 Conclusion  

This study demonstrated the use of the LSTM model and PA technique for classifi-

cation of skin microcirculatory status. It was found from our experiment that the pro-

posed model trained with a limited dataset produces a considerably good classifica-
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tion accuracy of 97.6 % using our augmentation strategy. But this study has also iden-

tified several limitations, such as limited number of labelled data on the classification 

results. In addition, insufficiency of the network layers to extract important features 

could have also compromised the model performance. Future works included modifi-

cation of the network architecture to include more convolutional layers to extract 

features required for classification. The improved classifier would be useful as a tool 

for rapid microcirculatory status classification in oxygen saturation research. 
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