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Abstract—This study focuses on LED bulbs where LEDs are typically 
mounted on a metal core printed circuit board. A sample of LED bulbs having 
base E27 and a power range between 3.5-11.5 W have been measured. A thermal 
model will be found using thermal transient testing, infrared thermal measure-
ments, and the Bayesian deconvolution. LED surface temperature will be mea-
sured without contact using a low-resolution IR imager. A test facility has been 
built which automatically switches power on and measures and records samples 
during the measurement cycle which typically lasts around one hour. This time 
duration was long enough for reaching the thermal steady-state condition. The 
procedure uses a measured thermal transient, first calculates the thermal imped-
ance Zth, then the time constant spectrum Rζ(z) using the Bayesian deconvolution. 
An equivalent thermal network model will be found in Foster-presentation. This 
can be transformed to Cauer-presentation. The model is a driving point model for 
thermal impedance and includes thermal resistances and thermal capacitances. 
FEM simulation gives more detailed information about heat transfer paths and 
internal temperatures of an LED bulb.

Keywords—LED bulb, thermal modelling, Foster and Cauer networks, 
 Bayesian deconvolution

1 Introduction

 Increasing light production and electrical power of LED luminaires set new chal-
lenges for heat management in luminaires. LED bulbs have been made for replace-
ments for incandescent bulbs having electric power up to 60 W or 75 W. Typical LED 
replacements have power from 9 W to 11.5 W. Cooling technologies can either be 
passive or active. Active technologies are liquid, jet impingement, electro-mechanical 
fan, microspray, ionic wind, piezoelectric fan [1], or thermoelectric cooling [2]. Passive 
cooling technologies are heat sinks, heat pipes [3], and thermal interface materials 
(TEM). Active cooling technologies have higher cooling capacity but they require exter-
nal energy to operate. Passive cooling technologies are more reliable and cost-effective. 
They are also the most commonly used ones. A typical solution for an LED bulb is a 
heatsink which either is metal or composite design [4]. In passive cooling, the structure 
of a bulb and orientation of LEDs can be optimized for maximum heat removal [5]. 
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For example, the so-called chimney structure [6] is an example of this kind of optimiza-
tion. It is also important to arrange equal thermal conditions for all LEDs and avoid hot 
spots in the structure [7]. In any case, the design target is to minimize the total thermal 
resistance from LED chip to ambient.

 There are methods to measure the thermal resistance of an LED bulb. Thermal 
resistance can be obtained in a steady-state condition. Electrical power is applied over 
a device that starts heating and finally settles all parts of the component to stable tem-
peratures. Thermal resistance is calculated by dividing the temperature difference by 
the applied electrical power. Thermal resistance calculated by this way is a measure for 
the hole component. This method does not give an idea what are the internal thermal 
resistances and capacitances [8]. To fully understand thermal conditions inside a com-
ponent a time-dependent model needs to be developed. Some methods can provide this 
information. In the following paragraph, the Bayesian deconvolution method is shortly 
presented.

 The target is to create a thermal model for an LED bulb that can be used to calculate 
LED surface or junction temperature as a function of time after a power-on transient. 
The model should include thermal impedances equivalent to time constants related 
to the physical structure and material characteristics of the LED bulb. Such a thermal 
model has an analogy to an electrical circuit. The analog is the following: Thermal 
resistance is equivalent to electrical resistance, heat capacitance to electrical capaci-
tance, heat flow to electrical current, and temperature to electrical voltage. Therefore, 
the model can be imported into an electric circuit simulator. Time-dependent simulation 
execution in a simulator results in node voltages that are equivalents to temperatures in 
the given locations.

2 Method—solving thermal resistance using deconvolution

 In the transient thermal method, a step like input power is initiated at time zero and 
the increasing temperature of LEDs are measured continuously. In this application, the 
surface temperature is measured over a relatively long period of time. In the beginning, 
the temperature is sampled as fast as possible to detect the fast time constants. Later 
the sampling speed will be lowered to avoid collecting a waste amount of data. It is 
beneficial to change to a logarithmic time base. In this study, it was chosen to record a 
constant number of samples per decade.

 The requirements for using the method are: heat path is one-dimensional and heat 
conducts from part to part through adiabatic surfaces and finally ends to an ideal heat-
sink. This is hardly ever the case as in normal cases heat spreads both horizontally and 
vertically in the structure through several concurrent paths. However, the method has 
been used in cases heat could have several paths to proceed. The other requirement is 
that thermal resistances and capacitances are constants within the temperature range. 
This means that temperature change is minor or moderate. [9] suggests that this condi-
tion exists if ΔTmax< 50°C. Principally not even the thermal conductivity is a constant in 
step like heat flow transitions [10].

The basic equation covering one-dimensional heat flow and showing the relationship 
between temperature change, thermal resistance, and thermal capacitance is:
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Integrating the equation above leads to the solution for T(t) in case there is a single 
time constant.
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The thermal impedance including the effect of thermal capacitance in case of power 
step input is:
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The measured heating curve has a form as shown in Figure 3. in logarithmic time 
base. There are several time constants which forms the curve. For the case of multiple 
time constants Zth(t) is:
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The discrete time constant spectrum is a presentation where each discrete peak rep-
resents specific Rth at a specific time. Total Rth is the sum of each Rthi

.
The spectrum can be changed to a continuous time constant spectrum (as Figure 7). 

In that case, the total thermal impedance is an integral equation.
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 ζ = ln (τ) (7)

It is a common practice to name Zth(t) = a. Calculating derivatives on both sides 
results in Equ. (8)
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Defining z, and choosing wz(z)

 z = ln (t) (9)
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This presents a convolution between the spectrum of thermal resistance and the 
weighting function.

 d
dz
a z R z w zz( ) ( ) ( )� ��  (12)

Rζ(z) can be solved using deconvolution.
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The deconvolution can be solved using iterative Richardson-Lucy algorithm. Typi-
cally, at least 1000 iterations will be needed [11]. The algorithm is available as a func-
tion in Matlab imaging processing toolbox.
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Rn+1(z) is the n:th iteration result for Rth, a′(z) is the gradient of temperature, wz(z) 
is the weighting function. ⊗ is the convolution operator, ⊕ is the correlation operator.

During the iterations the error reduces. It is also possible that after some number of 
iterations the error starts to increase. To end the iterations at the best moment, the error 
can be calculated at each iteration step.
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Thermal resistances are solved by integrating
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The total thermal resistance would be

 R R dth �
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�
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The algorithm is noise-sensitive. It is necessary to somehow filter a′(z). Moving 
average filtering is often used, although other methods exist. Noise is also enhanced by 
deconvolution. Generally, the accuracy is related to the half-width of wz(z) [9].

The algorithm results in thermal resistances of Foster network. The thermal capac-
itance can then be calculated using the time constant value. Using a transformation 
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widely used with electrical circuits, the Foster network can be transformed to Cauer 
network. The result is a driving point presentation for Zth and the components of Cauer 
network can be directly related to thermal resistances and capacitances of the structure 
and material parameters.

Fig. 1. Foster network presentation for a thermal impedance

Fig. 2. Cauer network presentation for a thermal impedance

[12] presents an improved algorithm to reduce noise superimposed in the measure-
ment signal. In their algorithm measured signal is first Fourier transformed (weighted 
DFT) and then filtered in a logarithmic frequency domain. Then an inverse DFT restores 
the signal in a time domain. Finally, Bayesian deconvolution is used to obtain the time 
constant spectrum. This algorithm does not use the moving average filtering which 
cannot fully eliminate noise which will be emphasized in calculating da(z)/dz.

3 Measurement device

 Figure 3 shows the schematic presentation of the developed measurement device. 
The device is based on a low-resolution IR-imager measuring through 7 mm hole in 
the LED bulb. The imager has a resolution of 32 × 24 pixels and a viewing angle of 
55° × 35°. The resolution is enhanced using interpolation. IR-imager features rela-
tively fast temperature measurements although the measurement accuracy is modest. 
Accuracy is affected on many parameters like frame sampling rate, calibration, sur-
face emissivity, etc. The frame sampling rate can be set low, in this application around 
4 frames per second, to reduce noise and reach maximum accuracy. The IR-imager 
is on a module including STM32 microcontroller. The imager communicates via I2C 
bus with the controller. The controller provides UART-bus and a limited but an easier 
to use interface to be operated externally. Python software is developed for PC. The 
software reads data from the IR-imager, set time base for the measurements, initiates 
and ends the measurement cycle, switch on and off LED-bulb power and finally write 
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data records into a file. Controlling the LED bulb power is based on an opto-isolated 
electro-mechanical switch. The switching time of such devices is around 5–15 ms. This 
is still less than a power-on time of LED-bulb drivers, estimated to be < 200 ms. Due to 
the switching delays time constants below 1 second cannot be resolved with this mea-
surement device. Attention has been paid to the longer time constants.

Fig. 3. The measurement device based on low-resolution IR-imaging. Image of a MPCB where 
there are 6 LEDs visible. The maximum frame rate (FPS) is around 4 images/s

4 Measured LED bulbs

All measured LED bulbs have a colour temperature of 2700 K. Their power range 
is from 3.5 W to 11.5 W. Bulbs 1–5 have dome sizes of 60 mm and bulb 6 of 77 mm. 
Bulb 3 has a bit heavier body with a thicker aluminium heatsink. Bulbs 1–2 have a full 
plastic body. LEDs are off course mounted on a metal substrate printed circuit board 
(MCPCB) and the base is round shaped steel. Bulbs 4–6 have a composite body, a thin 
aluminium layer (0.3 mm) enclosed with plastic.

Table 1 lists the bulbs with electrical powers, estimated heat powers of LEDs, and the 
measured LED surface temperatures. Figure 4 shows the heating curves of the bulbs. 
Figure 5 shows the weighting function wz(z) used in the deconvolution. Figure 6 shows 
the smoothed da(z)/dz for bulb no: 4. Figure 7 shows the continuous time constant 
spectrum for bulb no: 4. In Figure 8 the thermal model for bulb no: 4 is compared with 
the measured values. They match quite well and the steady-state value matches exactly. 
Using least-squared optimization for the model adjusting only capacitive values results 
in almost identical curves. Tables 2–5 list the component values of the models.

iJOE ‒ Vol. 18, No. 03, 2022 9



Paper—Thermal Modelling an LED Bulb using IR Thermography and Bayesian Deconvolution

Table 1. Electrical powers of the LED  bulbs and the measured LED 
surface temperatures. Ambient 25°C

LED Bulb P[W] Ph,LED[W] T[°C]

1 3.5 2.38 75

2 4.5 3.06 85

3 6.3 4.28 77

4 9.0 6.12 130

5 9.4 6.39 114

6 11.5 7.82 88

The main heat paths in an LED bulb are: from the LEDs to MCPCB, from MCPCB 
via the heatsink to ambient, from MCPCB via the bulb to ambient, from MCPCB via 
the heatsink and the base to ambient. As only the first path is in series and the others 
are in parallel, the elements of Cauer network cannot be matched to certain parts of the 
geometry. The sums of resolved thermal resistances match well for all the bulbs.

Fig. 4. The measured LED surface temperatures. LED bulbs no:1–6
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Fig. 5. The weighting function wz(z) used in the deconvolution

Fig. 6. The measured da/dz of LED bulb no:4
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Fig. 7. Time constant spectrum of LED bulb no: 4. Richardson-Lucy algorithm, 2700 iterations

Fig. 8. Surface temperature of LED bulb no:4 calculated  using model based on results of 
deconvolution (red) and  the measured temperature (blue)

12 http://www.i-joe.org



Paper—Thermal Modelling an LED Bulb using IR Thermography and Bayesian Deconvolution

Fig. 9. The least-squares optimized solution for LED bulb no:4 (red) and the measured 
temperature (blue)

Table 2. Thermal resistances in Foster network

Bulb R1 R2 R3 R4 R5 Rth

1 1.54 1.19 2.91 14.37 1.92 21.93

2 0.90 1.86 4.53 11.58 0.82 19.69

3 1.01 0.10 0.50 10.54 12.15

4 0.95 4.58 4.09  7.52 17.14

5 0.87 1.09 2.86  7.82 1.39 14.02

6 0.01 0.54 2.06  5.50  8.12

Table 3. Heat capacitances in Foster network

Bulb C1 C2 C3 C4 C5

1 1.10  21.56  16.83 17.76  540.74

2 1.86  5.55  20.31 24.02 1386.30

3 1.57 108.86 199.71 61.75

4 2.49  6.59  36.96 75.66

5 2.53  10.44  47.10 43.88  730.84

6 2.12  13.31  61.94 82.75
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Table 4. Thermal resistances in Cauer network

Bulb R1 R2 R3 R4 R5 Rth

1 2.14 7.97  6.29 4.61 0.93 21.93

2 1.93 3.45 10.16 3.78 0.38 19.69

3 1.11 1.10  5.47 4.48 12.15

4 2.01 6.15  5.93 3.04 17.14

5 1.52 1.91  7.92 2.24 0.43 14.02

6 0.01 1.01  4.85 2.24  8.12

Table 5. Heat capacitances in Cauer network

Bulb C1 C2 C3 C4 C5

1 0.94  5.60 12.34  17.89 1071.40

2 1.23  3.42  8.52  49.62  2893.60

3 1.49 34.66 15.48  46.58

4 1.68  4.27 29.30  130.15

5 1.87  7.56 15.88  108.64 2173.80

6 1.74  7.97 28.66  137.34

5 Simulation case

 The LED surface measurement cannot solve heat paths in an LED bulb. FEM model 
simulations can solve detailed information about the heat transferring in the structure. 
The designed FEM model matches the geometries and materials of bulb 3. The model 
has two main parts: The bulb itself and a simple luminaire outside the bulb. Figure 10 
shows the geometry. Its main parts are the base, the heatsink, the metal core printed 
circuit board MCPCB, the driver board, and the bulb. In some LED bulbs there is no 
separate driver board and all components are mounted on the MCPCB. In this model 
like in bulb 3, the heatsink has a form of a cone and thickness of 3–4 mm. The bulb has 
a diameter of 60 mm. Figure 11 shows the bulb and the luminaire.

 The model utilizes one plane symmetry (without the driver board) and therefore it is 
possible to include only half of the bulb and a luminaire is included in the model. The 
mesh has around 700 000 elements which still can be easily simulated using the avail-
able computing cluster. The model allows setting the thickness of the aluminium heat-
sink between 1–3 mm. The time-dependent simulation from the initial power step to 
the steady-state condition is around one hour. In the simulations, the bulb faces down-
wards while natural convection conditions prevail. The temperature of the base sets to 
38°C according to the measured temperatures of the luminaire. Ambient, in that case, 
is 20°C. In the measurements, the ambient was 25°C, and this should be kept in mind 
when comparing the measured and simulated values.
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Fig. 10. FEM-simulation model for an LED-bulb (exploded view). Parts: a bulb, MCPCB, 
a heatsink, a driver board and a base

Fig. 11. Simulated LED bulb with a luminaire and the thermal solution at t =1 h (slice view)

5.1 Simulation results

 The simulated heating curve is presented in Figure 12. This can be compared to 
the curve of bulb 3 in Figure 4. The thermal steady-state situation will be reach around 
one hour. LED packages and the heatsink set around 71°C when the ambient is 20°C. 
Figure 13 shows heat paths through the base, the heatsink, and the bulb. During approx-
imately the first 4 minutes, heat is conducted equally via the base and the heatsink. 
Later the flow via the heatsink dominates. In steady-state conditions, heat conducts 
mainly via the heatsink (56%), and the base (31%), and the bulb (13%). These results 
are for a heatsink with a thickness of 3 mm.
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Fig. 12. Simulated LED surface temperature for the LED  bulb resembling 
bulb no: 3. Ambient 20°C

Fig. 13. Simulated heat flows in the LED bulb resembling  bulb no: 3. Ambient 20°C
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6 Conclusions

 LED bulbs with electrical power consumption from 3.5 W to 11.5 W were mea-
sured. Some simplifications were made. It can be assumed that the efficiency of an 
LED driver is around 85 % and 20 % of the LED power transferred to light and the 
rest to heat. LED driver parts can be mounted on the same MCPCB as the LEDs or be 
located on a separate board. The major problem and the limitation of this study is that 
the driver also generates some heat. Should this heat be ignored or added to the LED 
power? In case the driver is on the same board and the heat is added to the LED power 
the calculated thermal resistance from the board to ambient is closer to reality. Using 
the Bayesian deconvolution method, the time constant spectrum for an LED bulb was 
calculated. From the spectrum, Foster-presentation for the thermal network was defined 
and using an algorithm converted to an equivalent Cauer-presentation. The solution 
was focused on using the least-squares optimization method. The model predicts LED 
surface temperature vs. time for the given LED heating power. Measurements show 
that there are large differences between the LED surface and hence the LED junction 
temperatures. During the past years, LED bulb heatsinks have become lighter with 
less metal inside and therefore the LEDs operate at a higher temperature. Among the 
studied LED bulbs there was no metal heatsink in those bulbs having electrical power 
under 5W. Ignoring the metal heatsink reduces manufacturing costs but also the life-
time of the bulbs. Measured LED surface steady-state temperatures range from 75°C to 
130°C (ambient 25°C). FEM simulations show that in an LED bulb approximately 56% 
of the heat conducts through the heatsink, 31 % through the base, and 13 % through the 
bulb. This result is for a simple luminaire and a case where the bulb is heading down-
wards in steady-state and external natural convection conditions.
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