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Abstract—In the past two years, the demand for the use of mobile networks 
has increased, due to what the world has been exposed to in the face of the 
COVID-19 pan-demic and the lack of communication between people. People 
resorted to using of mobile networks in light of the pandemic, and their impor-
tance has appeared in several aspects, such as automotives, media and enter-
tainment, and healthcare. This growing demand for the mobile network led to 
the actual development of the 4G network in terms of providing the speed of 
transmission and encryption data to maintain security. In this paper, a new mem-
ber of the SNOW 3G family was proposed, which is one of the fourth generation 
algorithms called SNOW 3G-M, which has a higher encryption speed in line with 
the capacity of modern CPUs and is expected to be a move to the fifth generation 
communication system in the future. The SNOW 3G-M keystream passes all of 
the tests for long key stream data, short key stream data, and initialization vector 
data sets.
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1 How to work with this template

For the time being, the security of communications has become an additional and 
important element at present to ensure the transmission of data over networks is secure 
[1, 2]. Sure, all of our daily transactions and communications in modern life are done 
through mobile networks [3, 4]. The 3G and 4G communications technologies that 
are becoming mobile emigrations of online applications such as Voice over IP (VoIP), 
video streaming, music download files, mobile communication, and so on are the Uni-
versal Mobile Telecommunications System (UMTS), Long Term Evolution (LTE) and 
LTE advanced standards use stream encryption algorithm such as the snow algorithm, 
which is the heart of mobile standards’ security and is the one viewed as the seed of the 
128-EEA1 confidentiality and 128-EIA1 integrity algorithms of 4G LTE security [5–8], 
which removes the f8 and f9 algorithms of UMTS security [9–11]. Following that, the 
Third Generation Partnership Project (3GPP) standardized two LTE kernel algorithms.

Snow 3G’s algorithm suffers from several weaknesses, the first of which is the short-
ness of the generated keystream that helps the attack [12], secondly, the cache-timing 
attack [13], which can recover the filled cipher state in a matter of seconds using 
empirical timing data: The attack takes advantage of the cipher by feeding the output 
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of one S-box into another S-box. The third is the fault attack on the Linear Feedback 
Shift Register (LFSR) that retrieves the secret key with only 22 error injec-tions: The 
attack model suggests that an attacker can change a 32-bit value of one LFSR state all 
through keystream generation, where i is selected by an attacker, but he does not have 
complete control over t [15]. Fourth, one such attack uses multiset collision attacks to 
investigate the SNOW3G resynchronization process. This method has been shown to 
be effective against AES [16–19]. Because SNOW3G’s Finite State Machine (FSM) 
is a 96-bit AES-like algorithm. Cipher in which the LFSR serves as a key-schedule, 
this technique can be used. The attacker sees only 32 bits of out-put at a time, while 
the internal process changes constantly [20]. Because there is feedback from the FSM 
to the LFSR during the initialization phase, and the attacker needs to accept 32 bits of 
output during the period, this attack is complex. In this paper, we developed SNOW3G 
to SNOW3G-M (M for multi-LFSR) with the use of two LFSRs (Linear Feedback 
Shift Registers) and a FSM (Finite State Machine) updated to best align with vectorized 
applications by increasing the total size to 64 bits for increased security by encrypting 
data. In the long run, this proposal provides perfect randomness, and the Snow3G-M 
algorithm has the strongest because the shortness of the generated keystream does 
not help the attack and increases the complexity of a cryptanalysis attack due to the 
failure of the uniform SNOW-3G cipher’s initialization method [10]. The remainder 
of this paper is structured as follows: Section 2: Explain the conventional SNOW3G 
architecture.Section3 shows the new design and step architecture of the SNOW3G-M.
Section 4 results, with evaluation and comparison with the SNOW3G standard. Section 
5 explains how the SNOW3G-M algorithm is important in medical use. Section 6 dis-
cussions about the proposed algorithm and section 7 conclusions of this paper.

1.1 Group of symbols

= Operator for assigning
Modulo addition of integers ⊕ Exclusive-OR bitwise operation

|| two operands are concatenated. <<_(n,t) n-bit register, t-bit left shift.

2 SNOW3G stream cipher traditional

It is one of the important encryption algorithms in the fourth generation that was 
developed by Thomas Johansson et al. at Lund University. In 2006, it was selection 
as the prime part of the second set of Universal Mobile Telecommunications System 
(UMTS) confidentiality and integrity algorithms. In 2008 Böhm using NIST statistical 
test wing as randomness test gadget with three kinds of test. SNOW3G Down the hold 
of the 128-bit Cipher Key and 128-bit Initialization Vector (IV), a 32-bit word key-
stream is created. It is divided into two layers, each of which is reactive [11].

The LFSR is the first layer that contain 16 stages of 32 bits every (S0, S1,….., S15).

s15 = k3 ⊕ IV0 s14 = k2 s13 = k1 s12 = k0 ⊕ IV1
s11 = k3 ⊕ 1 s10 = k2 ⊕ 1 ⊕ IV2 s9 = k1 ⊕ 1 ⊕ IV3 s8 = k0 ⊕ 1
s7 = k3 s6 = k2 s5 = k1 s4 = k0
s3 = k3 ⊕ 1 s2 = k2 ⊕ 1 s1 = k1 ⊕ 1 s0 = k0 ⊕ 1
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The FSM is the second layer that contain which three registers (R1, R2, R3) 32 bits 
per register and have two S-Boxes (〖 S〗_R, 〖 S〗_Q) 8 bit to 8 bit mapping. The infor-
mation is presented in hexadecimal format. Figures 1 and 2 depicts the SNOW-3G 
stream cipher’s architecture in detail.

Fig. 1. Throughout key initialization, the SNOW 3G algorithms are used [11]

Fig. 2. Throughout key generation, the SNOW 3G algorithms are used [11]

Given that the traditional SNOW 3G is vulnerable to shortened keystream data of set 
attacks [14], it is proposed to improve its statistical property and security level while main-
taining the standard by overcoming its flaws in the initialization and keystream modes.
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3 The new design of the SNOW3G-M algorithm

Snow 3G-M architecture has LFSR and FSM, but with a different design than tradi-
tional SNOW 3G, and we will explain its design in the steps below

3.1 LFSR (Linear Feedback Shift Register)

In the snow 3G-M algorithm, two LFSRs are used instead of one, called (LFSR-R, 
LFSR2), both of which have 16 stages, each stage consisting of 32 bits and represented 
in F(2^16). LFSR-R (r0, r1, r2,....., r14, r15) and LFSR-H (h0, h1, h2,...., h14, h15). The 
polynomial equation for LFSR-R is:

 R(x) = x16 + x12 + x3 + x1 + 1 (1)

The polynomial equation for LFSR-R is:

 H(x) = x16 + x12 + x4 + x2 + x1 + 1 (2)

Functions used in various components of the LFSR. The SNOW3G-M uses the 
same function as the SNOW3G traditional [11].

i. The function MUL α: MULα is a function that converts 8 bits to 32 bits. Allow for 
8-bit input values for V1 and C1. MUL x is then defined as follows:

If the leftmost (most significant) bit V Equals 1, Then

MULx (V1, C1) = (V1 <<8 1) ⊕ C1

Else

MULx (V1, C1) = V1 <<8 1

ii. The function DIVα: DIVα is a function that converts 8 bits to 32 bits. Allow for 
8-bit input values for V1 and C1. MUL x is then defined as follows:

If rightmost (lest significant) bit of V1 Equals 1, Then

DIVα (V1, C1) = (V1 <<8 1) ⊕ C1

Else

DIVx (V1, C1) = V1 <<8 1

iii. MULxPOW: MULxPOW is a function that converts 16 bits and a positive integer 
i1 to 8 bits. MULxPOW (V, i1, c) is recursively defined if V1 and C1 are 8-bit input 
values [11]:

If i1 Equals 0, Then

MULxPOW (V1, i1, C1) = V,
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Else

MULxPOW (V1, i1, C1) = MULx (MULxPOW (V1, i1–1, C1), C1).

3.2 FSM (Finite State Machine)

 – The FSM has three registers (R1, R2, and R3) each register have 64 bits.
 – The FSM has four substitution-boxes (S1, S2, S3, and S4) called SR1, SR2, SM1 

and SM2 respectively, that are used to update the R2 and R3 registers, as shown in 
Figure 3. In the SNOW 3G traditional algorithm, the Rijndael S-box-SR and the 
S-box-SQ were used, both of which used 32-bit input to a 32-bit output. As for 
the snow 3G-M algorithm, S1, S2, S3 and S4 were reconstructed according to the 
Permutation of Last Layer algorithms (PLL) algorithm to replace the place (per-
mutation) of the pieces generated from the Magic Cube and, instead of using static 
S-Boxes, this algorithm was used to build s-boxes that enjoyed high confusion. 
The PLL algorithm has the ability to generate two million S-Boxes when there is a 
change in the permutation of position by using permutation, but we adopted the use 
of only two, which are S-Box (SR1) and S-Box (SR2), which are shown in Tables 1 
and 2 below, where the tables were built in hexadecimal, which is a two-dimensional 
matrix. Each position in the matrix is 8 bits, but the SM1 and SM2 represent the 
inverse of the SR1 and SR2.

Table 1. S-box (SR1) produced by the PLL algorithm

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 FC 2B 6B 06 15 71 E7 79 1E BF 4D 80 88 41 B6 FE

1 5C 56 73 92 1B 7C 54 B1 A3 3E 91 E6 C3 3A 78 C6

2 6E 59 50 CB 58 26 E3 95 69 34 AC 6A EE EB 29 F9

3 00 42 6D 72 9F 37 C7 7A C4 CA 2C E8 0A 10 D5 FB

4 76 31 85 A1 B4 98 2F 9D 04 13 AD 74 DC 22 61 4E

5 DF 8D FF CF 07 16 65 9C 67 1F A5 4B 97 CE 47 FA

6 02 0D 77 C2 89 1C C5 53 B3 A7 48 AA F2 D3 35 F4

7 5A 19 F1 49 D6 A0 44 5E BC E4 38 B0 E5 D2 ED 2A

8 5B C9 45 75 7B A6 3C 93 86 82 E2 2D EA 05 14 E1

9 5D 94 32 7E A9 BA 87 30 83 08 17 90 8C F5 1D FD

A B5 F8 9B 27 CD 0B 11 C8 9E 60 1A D1 4C D7 81 3D

B 5F 01 0E 68 D0 7D 23 B9 52 99 AB 3F DE 8F C0 3B

C 57 AE 20 66 51 B7 D8 43 DD D4 C1 39 B8 DA 40 EF

D 4F 62 A2 46 8A 64 96 33 A4 BD D9 E9 2E E0 0C 18

E A8 F3 6C 36 84 8E 6F BB 25 EC 09 0F 7F 9A F7 24

F 55 70 8B 63 28 CC 03 12 BE AF B2 21 F0 4A F6 DB
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Table 2. S-box (SR2) produced by the PLL algorithm

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 06 0B 03 04 05 09 0A 02 01 0C 08 07 0D 11 0F 10

1 0E 12 13 17 15 16 14 18 1F 1A 1B 1C 23 22 21 1D

2 19 24 20 1E 2B 2C 27 28 29 30 25 26 2D 2E 2F 2A

3 31 38 39 3A 35 36 37 32 33 34 3B 3C 3D 41 3F 40

4 3E 46 43 44 45 42 47 48 49 4A 51 52 50 4E 4F 4D

5 4B 4C 53 54 5B 56 55 60 59 58 57 5C 5D 5E 5F 5A

6 61 68 63 64 6B 66 67 62 69 6A 65 6C 75 74 6D 78

7 71 72 73 77 6F 70 6E 76 79 7A 7B 7C 7D 82 81 83

8 7F 7E 80 84 85 86 8B 8A 89 8E 8D 8C 87 88 8F 90

9 99 92 97 96 95 94 93 98 91 9C 9B 9A 9D A7 9F A0

A 9E A2 A3 A4 A5 A6 A1 A8 AB AA A9 B4 B3 AE AF B0

B B1 B2 AD AC B5 B9 B7 B8 BF BA BB BC BD BE B6 C0

C C1 C2 C7 C6 CB C4 C3 C8 C9 CA C5 CC CD D7 CE D0

D D1 D6 D5 D4 D3 D2 CF D8 D9 DD DF DE DA DC DB E0

E El E2 E3 E4 ED E9 E5 F0 EF EA EB EC E7 E8 E6 EE

F FI F2 FA F9 F5 F6 F7 F8 F4 F3 F8 FC FF 00 FD FE

3.3 SNOW3G-M of operations

Initialization Operation. The SNOW3G-M algorithm has a key (K) and an initial 
vector (IV) length of 128 bits divided into four words. Every word has 32 bits.

K2=32bitsK3=32bits K0=32bitsK1=32bits

IV3=32bits IV1=32bits IV2=32bits IV0=32bits

W3 W2 W1 W0

We fill in the LFSR-R and LFSR-H assuming that the value of one is (0xffffffff).

LFSR-R:
r15 = K3 ⊕ IV0 r14= K2  r13 = K1 r12 = K0 ⊕ IV1
r11 = K3 ⊕ (0xffffffff) r10 = K2 ⊕ (0xffffffff) ⊕ IV2 r9 = K1 ⊕ (0xffffffff) ⊕ IV3
r8 = K0 ⊕ (0xffffffff) r7 = K3  r6 = K2 r5 = K1 r4 = K0
r3 = K3 ⊕ (0xffffffff) r2 = K2 ⊕ (0xffffffff) r1 = K1 ⊕ (0xffffffff)
r0 = K0 ⊕ (0xffffffff)

LFSR-H:
h15 = K3 ⊕ IV0 h14 = K3 h13 = K2 h12 = K1 h11 = K0
h10 = K3 ⊕ (0xffffffff) h9 = K2 ⊕ (0xffffffff) h8 = K1 ⊕ (0xffffffff)
h7 = K3 ⊕ (0xffffffff) h6 = K2 ⊕ (0xffffffff) ⊕ IV2 h5 = K1 ⊕ (0xffffffff) ⊕ IV3
h4 = K0 ⊕ (0xffffffff) h3 = K2 h2 = K1 h1 = K0 ⊕ IV1  h0 = K0 ⊕ (0xffffffff)
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The initialized Finite State Machine (FSM) to three registers is:

R1=R2=R3=0

The process of initializing the key takes 32 clocks and consists of two steps:

Step one:
The FSM has two input from LFSR2-H (h14||h15) and LFSR1-R (r0||r1) to produce F 

have 64 bits (two words), according to the equation below:

 x = (h14||h15) ⊞ R1 (3)

 F = x ⊕ R2 (4)

The registers are then updated. Calculate the intermediate value r according to the 
equation below:

 a = R3 ⊕ (r0||r1) (5)

 r= R2 ⊞ a (6)

Then, to update (R1, R2 and R3) by used S-Boxes built using the PLL algorithm 
(see 3.2). Follow as

 R1=r (7)

 R2= SR (R1) (8)

 R3= SM (R2) (9)

The S-Box is based on the Permutation of Last Layer algorithms (PLL). To generate 
values [0–255], they used permutation position to construct S-Box 16*16.

Look a 64-bit input w = w0 || w1 || w2 || w3. Each W0, W1, W2 and W3 has 16 bits. 
Hence Wi = wi0 || wi1 || wi2 || wi3 || wi4 || wi5 || wi6 || wi7 || wi8 || wi9 || wi10 || wi11 || wi12 || wi13 ||  
wi14 || wi15 with wi0 the most significant bit and wi15 the least significant bit. We will 
divide 16 bits into two bytes. Each byte enters SR1 and SR2 then the result is worked 
for concatenation by following the equation to the S-Boxes (SR1, SR2):

 Srw0 = SR1 (W0) || SR2 (W0) (10)

 Srw1 = SR1 (W1) || SR2 (W1)  (11)

 Srw2 = SR1 (W2) || SR2 (W2) (12)

 Srw3 = SR1 (W3) || SR2 (W3) (13)
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Then the output S1 (w) = r = r0 || r1 || r2 || r3 using these equations

r0 = (MULx(Srw0,0x1B1B) ⊕ (Srw1) ⊕ (Srw2) ⊕ (MULx(Srw3,0x1B1B)⊕(Srw3))) (14)

r1 = ((MULx (Srw0,0x1B1B) ⊕ (Srw0)) ⊕ MULx(Srw1,0x1B1B) ⊕ (Srw2) ⊕ (Srw3)) (15)

r2 = ((Srw0) ⊕ (MULx(Srw1,0x1B1B)⊕(Srw1)) ⊕ MULx(Srw2,0x1B1B) ⊕ (Srw3)) (16)

r3 = ((Srw0) ⊕ (Srw1)⊕(MULx(Srw2,0x1B1B) ⊕ (Srw2)) ⊕ MULx(Srw3,0x1B1B)) (17)

In the same way as above, the S-Box (SM1, SM2) used to update R3 can be calcu-
lated using the equation below.

 Smw0 = SM1 (W0) || SM2 (W0) (18)

 Smw1 = SM1 (W1) || SM2 (W1) (19)

 Smw2 = SM1 (W2) || SM2 (W2) (20)

 Smw3 = SM1 (W3) || SM2 (W3) (21)

r0 = (MULx(Smw0,0x6969) ⊕ (Smw1) ⊕ (Smw2) ⊕ (MULx(Smw3,0x6969) ⊕ (Smw3))) 
 (22)

r1 = ((MULx(Smw0,0x6969) ⊕ (Smw0)) ⊕ MULx(Smw1,0x6969) ⊕ (Smw2) ⊕ (Smw3)) 
 (23)

r2 = ((Smw0) ⊕ (MULx(Smw1,0x6969) ⊕ (Smw1)) ⊕ MULx(Smw2,0x6969) ⊕ (Smw3)) 
 (24)

r3 = ((Smw0) ⊕ (Smw1) ⊕ (MULx(Smw2,0x6969) ⊕ (Smw2)) ⊕ MULx(Smw3, 0x6969)) 
 (25)

Step two:
The output from the FSM represented by (F) with 64bits is input to LFSR1-R and 

LFSR2-H with 32 bits each. As in the two equations below:

V1 =  ((r0,1|| r0,2 || r0,3 || 0x00) ⊕ MULα (r0,0) ⊕ (r2) ⊕ (0x00 || r11,0|| r11,1 || r11,2)  
⊕ DIVα(r11,3) ⊕ F [0:32]) (26)

V2 =  ((h0,1|| h0,2 || h0,3 || 0x00) ⊕ MULα (h0,0) ⊕ (h1) ⊕ (h3) ⊕ (0x00 || h11,0|| h11,1|| h11,2 ||) 
⊕ DIVα (h11,3) ⊕ F [32:64]) (27)
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Through these two equations, each stage is updated in LFSR1-R and LFSR2-H, 
show that

LFSR1-R:
r0 = r1, r1 = r2, r2 = r3, r3 = r4, r4 = r5, r5 = r6, r6 = r7,
r7 = r8, r8 = r9, r9 = r10, r10 = r11, r11 = r12, r12 = r13, r13 = r14,
r14 = r15, r15 = v1.

LFSR1-H:
h0 = r1, h1 = h2, h2 = h3, h3 = h4, h4 = h5, h5 = h6, h6 = h7,
h7 = h8, h8 = h9, h9 = h10, h10 = h11, h11 = h12, h12 = h13, h13 = h14,
h14 = h15, h15 = v2.

Fig. 3. Initialization key in SNOW3G-M

Generation Keystreams Operation. After clock FSM to produce F then keystream 
generating of length 64 bits, as in the equation below:

 Z = (F ⊕ (r0||h0)) (28)

142 http://www.i-joe.org



Paper—A Novel SNOW3G-M Algorithm and Medical

When generating the keystream, there is no entry from FSM to LFSR. That is, there 
is no F as show Figure 4, so the equation V will be as follows:

V1 =  ((r0,1 || r0,2 || r0,3 || 0x00) ⊕ MULα (r0,0) ⊕ (r2) ⊕ (0x00 || r11,0 || r11,1 || r11,2) ⊕ 
DIVα(r11,3)) (29)

V2 =  ((h0,1 || h0,2 || h0,3 || 0x00) ⊕ MULα (h0,0) ⊕ (h1) ⊕ (h3) ⊕ (0x00 || h11,0|| h11,1|| h11,2||) 
⊕ DIVα (h11,3)) (30)

In the Keystream phase, the LFSR is clocked to update the LFSR-R and LFSR-H.

LFSR1-R:
r0 = r1, r1 = r2, r2 = r3, r3 = r4, r4 = r5, r5 = r6, r6 = r7,
r7 = r8, r8 = r9, r9 = r10, r10 = r11, r11 = r12, r12 = r13, r13 = r14,
r14 = r15, r15 = v1.

LFSR1-H:
h0 = r1, h1 = h2, h2 = h3, h3 = h4, h4 = h5, h5 = h6, h6 = h7,
h7 = h8, h8 = h9, h9 = h10, h10 = h11, h11 = h12, h12 = h13, h13 = h14,
h14 = h15, h15 = v2.

Fig. 4. Generation keystream in SNOW3G-M
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4 Results with statistical tests

Our proposed stream cipher plan is subjected to statistical analyses in order to 
demonstrate its robustness, such as randomness. NIST Test (National Institute of Stan-
dards and Technology) has a number of statistical trails that can be applied to assess 
the randomness of the series, including NIST [21–24], DIEH. [25] and NESS. [26]. 
The SNOW3G-M stream cipher is evaluated using NIST statistical tests. We iterate the 
3 statistical trials in [12] to evaluate a pass of the produced keystreams to demonstrate 
the importance of the proposed design.

We used the same sample size sequences and the same weighted importance level 
applied in the NIST trial [21] to compare the results with previous work [12]. As a 
result, the significance level in all of the samples was fixed at 300 sequences, and the 
size of the experiment was reduced to 0.01. The following are the definitions of the 
tests:

a. Long keystream set of data test: To obtain 300 sequences of 1048576 bits, generate 
bits for the entire 300 random key (put the initial vector to zero in all cases). The 
result sequences are then evaluated using the 15 NIST tests.

b. Short keystream set of data test: Generate bits for each of the 307200 random keys 
(in all cases, set the initial vector to zero). The concatenation of all the bit keystreams 
yields 300 sequences with a total length of 1048576 bits. The result sequences are 
then evaluated using the 15 NIST tests.

c. The initial vector set of data starts by generating 256 (4096 bits) sequences for 300 
random keys. It’s worth noting that each key’s first sequence is generated with IV 
put to zero. It is then increased to the next 255 sequences. As a result, we have 300 
sequences totaling 1048576 bits for NIST’s 15 tests to evaluate.

There are two accesses to interpreting the NIST test score, the ratio of sequences that 
pass in to a statistical test and allocation of P-value to examination for uniformity [4]. 
The domain of acceptable ratio is determined using the trust interval, defined as:

 


ˆ ˆP (1 P)P 3
S
−+  (31)

Let α = 0.01 P̂ = 1−0.01 S = 300
If the ratio does not fall within this range, the data is not random.
The uniformity of P-value is determined using the X2 goodness of fit test, which 

involves computing:

 
X

O E
Etest
i i

i
i

t2
1

�
�

��  (32)

The number of levels is represented by l, the key stream was tested to see if it was 
distributed uniformly. With a total of 300 keystreams, a minimum threshold ratio value 
of 0.97 is acceptable.
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When we implemented the SNOW3G-M algorithm, a keystream is random, as per 
Table 3, because P-values are distributed uniformly and the P-values ratio is accepted 
as shown in Table 4. Finally, the proposed SNOW3G-M algorithm was compared with 
the SNOW3G traditional algorithm in Table 5.

Table 3. P-values results by NIST-tests

No. 
Test NIST Test SNOW3G-M

Long- Keystream
SNOW3G-M

Short- Keystream
SNOW3G-M
IV- Keystream

1 Monobit-test(frequency) 0.501535 0.501496 0.501488

2 Frequency-within-block-test 0.500128 0.500138 0.500160

3 Runs-test 0.985206 0.498141 0.498116

4 Longest-run-ones-in-block-test 0.487928 0.487928 0.487864

5 Binary-matrix-rank-test 0.398332 0.524316 0.412435

6 Discrete fourier transform-test 0.477582 0.477565 0.477557

7 Non-overlapping-template-
matching-test

0.446077 0.445748 0.446222

8 Overlapping-template-matching-test 0.079792 0.628880 0.453612

9 Maurer-universal-test 0.994265 0.992731 0.994359

10 Linear-complexity-test 0.255588 0.311035 0.382952

11 Serial-test 0.500788 0.500777 0.500698

12 Approximate-entropy-test 0.495596 0.495587 0.495507

13 Cumulative-sums-test 0.520659 0.520631 0.520657

14 Random-excursion-test 0.458387 0.570036 0.317417

15 Random-excursion-variant-test 0.322805 0.879336 0.582429

Table 4. P-values ratio is acceptable by NIST-tests

No. 
Test NIST Test SNOW3G-M

Long- Keystream
SNOW3G-M

Short- Keystream
SNOW3G-M
IV- Keystream

1 Monobit-test(frequency) 0.985392 0.985392 0.985392

2 Frequency-within-block-test 0.986974 0.986974 0.986974

3 Runs-test 0.985206 0.985206 0.985206

4 Longest-run-ones-in-block-test 0.986509 0.986509 0.986509

5 Binary-matrix-rank-test 0.978444 0.975428 0.980444

6 Discrete fourier transform-test 0.982043 0.982043 0.982043

7 Non-overlapping-template-matching-test 0.970986 0.973312 0.975917

8 Overlapping-template-matching-test 1.0 1.0 1.0

9 Maurer-universal-test 1.0 1.0 1.0

10 Linear-complexity-test 1.0 1.0 1.0

11 Serial-test 0.978321 0.978321 0.978321

12 Approximate-entropy-test 0.985485 0.985485 0.985485

13 Cumulative-sums-test 0.983531 0.983531 0.983531

14 Random-excursion-test 1.0 0.0 1.0

15 Random-excursion-variant-test 1.0 1.0 1.0
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5 SNOW3G-M algorithm and medical uses

The proposed snow3G-M algorithm has several benefits, especially in medical uses, 
because of its speed in encrypting data, and this thus leads to a speedy transmission 
of data between the sender and recipient over the network, where the doctor monitors 
the patient’s condition and gives him instructions via phone call, in addition to using 
several applications to register to obtain vaccines against COVID-19 around the world 
[27–31].

6 Discussion

The proposed SNOW3G-M algorithm was designed using 2-LFSR (Two Linear 
Feedback Shift Register) to eliminate the fault attack vulnerability represented in the 
initialization process and to prevent the attacker from exploiting the previous weakness 
in LFSR, where it was possible to recover the secret key by injecting 22 injections into 
the LFSR. The new design prevents the attacker from modifying 64-bit during the key 
streaming generation process. Where the difficulty lies in controlling the LFSR as it is 
not possible to control t, represented by the time clock, and not control i, represented 
by the stage number of the linear. The proposed algorithm also used 4 S-Boxes cre-
ated with the permutation last-layer algorithm to prevent an attacker from exploiting 
the cipher by using the time of the exit from S-box 1 as an entrance to another S-box. 
When two boxes are worked on at the same time to prevent a cache-timing-attack. The 
process of feedback from FSM to LFSR during the initialization mode is 64 bits, as 32 
bits enter the LFSR1-R and the other 32 bits enter the LFSR2-H, which confuses the 
attacker in trying a multiset collision attack where all the LFSR and FSM are in a state 
of constant change.

7 Conclusion

The proposed SNOW3G-M algorithm was designed based on the basic structure of 
the traditional SNOW3G algorithm with an update in its work while maintaining the 
basic requirements of the hardware.as well as providing a perfect balance of high secu-
rity, high performance, and limited hardware resources.

The main purpose of using 2 LFSR and 4 S-boxes is to generate a keystream that 
is more powerful, more complex, and more random to increase the complexity of the 
cipher. In addition to eliminating the weakness of the setup process that led to the fail-
ure of NIST tests on the short data set. Both the initialization and generation stages in 
the proposed algorithm result in 64 bits (2 words). Both the initialization and generation 
stages in the proposed algorithm result in 64 bits, which speeds up the encryption pro-
cess and reduces the attack.

Based on our findings, we conclude that the SNOW 3G-M keystream passes all of 
the tests for long key stream data, short key stream data, and initialization vector data 
sets. SNOW3G-M stream cipher architecture was proposed in this paper that was used 
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as the foundation for the UMTS and LTE standards’ confidentiality and integrity algo-
rithms.as well as in the fifth generation.
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