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Abstract—In recent years, face recognition has become one
of the hottest research topics aimed at biometric
applications. Comparing with other biometrics recognition,
face recognition provides more natural means for
perceptual interface. However, face recognition algorithms
weakly perform under some common conditions, which
include the variation of facial expressions or lightening
conditions, the occlusion of faces like wearing glasses or
mask, the low resolution or noises of input images, and the
like. The other problem is the recognition efficiency,
especially when the facial database is tremendous. This
paper presents all common subsequences (ACS) as the
kernel function (similarity method) to solve the time series
problem. Experiments on 4 public face databases: Caltech,
Jaffe, Orl and Yale databases, demonstrate that ACS can
achieve higher recognition accuracy than some classic face
recognition methods, e.g. 2DPCA and 2DLDA.These
instructions give you basic guidelines for preparing camera-
ready papers for conference proceedings.

Index Terms—All common subsequences (ACS), Face
recognition, KNN, SVM, 2DPCA, 2DLDA

L INTRODUCTION

Face recognition is one of the hottest research topics
aimed at biometric applications such as robotics, visual
surveillance, human-computer interfaces etc. Comparing
with other biometrics recognition, e.g. fingerprint, eye iris
recognition, face recognition provides more natural means
for perceptual interface without special requirements for
user actions while only makes use of a wide range of
inexpensive consumer cameras. However, the face
recognition technic for consumer applications still remains
a difficult problem. The main problem is that most of face
recognition algorithms weakly perform under the some
common conditions, which include the variation of facial
expressions or lightening conditions, the occlusion of
faces like wearing glasses or mask, the low resolution or
noises of input images, and the like. The other problem is
the recognition efficiency, especially when the facial
database is tremendous. A good recognition algorithm
should react in real time. Thereby, it is a great challenge
for a face recognition algorithm to achieve high
robustness and computational efficiency. Currently, main
methods for face recognition include Linear Subspace
Method (e.g., PCA , LDA etc.), Nonlinear Subspace
Method, i.e. Kernel Method (e.g., Kernel PCA etc.),
Elastic Graph Matching (e.g., DLA etc.), Neural Network-
Based Method (e.g., CNN etc.), Hidden Markov Model
and so on. In this work we firstly present a novel kernel
method - all common subsequences (ACS) - for face
recognition. ACS [1] was designed for solving the time
series problem. The main concept of ACS is to measure
the similarity of two sequences by counting the number of
all common subsequences of these two sequences. For the
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use of ACS for images, we need to translate images to sets
of sequences, and then individually use ACS for each
pairs of sequences to compute the similarity, in the end
average the results as the similarity between images.

II.  ALL COMMON SUBSEQUENCES

All common subsequences was firstly proposed in [1]
for the purpose of measuring the similarity of time series.
Then it was extensively studied in [2] as a problem of
computer science. Later ACS was proved to be a valid
kernel [3], thereby ACS could also be studied in kernel
machine.

Let ), be a finite alphabet. An n-long sequence t is an
ordered set {ty, -+, t,}, where t; € ¥ is the i-th element in
sequence t, 1 < i < n. An empty sequence is denoted by &,
whose length is 0. Let u be a sequence. If there exist
indices i= (iy,-,ijy) , with 1 <y <. <ip <|t],
such thatu; = ti;. forj=1,-,|u|, then we say u is a

subsequence of t ( denoted by u < toru=t(i)). We
denote by }." the set of all finite sequences of length n,
and by Y* the set of all sequences

Formally, ACS could be described as
Definition 1: [All common subsequences] Let 1 be a
feature (subsequence) space of sequences set S, lets, t be
sequences, let

1 Hitu=s@®} >0,uel
0 otherwise.

bu(s) = {

Then, ACS can be defined as an inner product of vectors

of ¢, (s):
acs(s,t) = (dy(s), (D)) = Lyer du(s)dyu (V)

Dynamic approach is adopted for calculating the
number of ACS. Lemma 1 implies quadratic operations.
Lemma 1: Let s and t be finite, nonempty sequences over
Y. with lengths |s| = m and |t| = n, respectively. For each
p €Y, letr(s,p) := max{i:s; = p} with 1(s, b) = 0 if
p > s. For brevity, we set s! := s(1:1), rg := r(s™ %, s,,)
and r == r(t"1,t,). Then

(1
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acs(s,t) =
acs(s™ L, t) + acs(s, t" 1) —acs(s™ 1,77 1)
if sy # to,
acs(s™ 1, t""1)x2 — acs(s's71, ¢t 1) )

ifsy =t,0<rg<mand0 <r; <n,
acs(s™~1 t"~1)x 2 otherwise.

All Common Subsequences for Images: The visual
appearance of objects in computing science is represented
by digital images, which have a finite set of digital values,
called pixels. Let I be an image with mxn pixels. Since
each pixel of the image carries a single integer value (0 1
for binary and 0 255 for grayscale image), the image could
be described by an matrix with integer value entries,
denoted also by I.

Let R, CJ be the i-th row, j-th column of the image I,
respectively. Then I could be deemed as the orderly
combination of its rows I = [R};R%;---;R™] or the
orderly combination of its columnsI = [C%; C?;---; C"],
where each row is a sequence with length [R| = n and each
column with length |C| = m. Thereby we transformed an
image to a set of sequences:
I =>{R',R?-,R™ C} C? -, C"}. For convenience, we
denote Rl by I,i=1--m, and denote C/by I™",j =
1---n. Then the sequences set of image I is

m+n

[=> U L.
i=1

Definition 2: The similarity of two images I, J with the
same size mxn is the sum of number of all common
subsequences of corresponding rows and columns of
images [ and J:

acsi(1,]) = X2+ acs(14, ).

Formally, ACS should be normalized:

igi
a/CT?l(I,]) — m+n acs(1°J7)

1
= T
m+n acs(ILhacs(JL,1h

The computational efficiency of ACS of two sequences
with length m and n is O(mn). So the computational
efficiency of ACS of two images with size m X n
isO(m?n + mn?) = O(max (m2n, mn?)).

III. FACE RECOGNITION EXPERIMENTS

Before calculating the value of ACS of images, the
original images should be preprocessed. Generally, image
preprocessing consists of the following procedures:

* Cropping - Some images may contain wide
background, which should be cropped off.

* Converting - Original images sometimes are color,
while ACS only concern the luminance of images. So
we need to convert color images to grayscale by
eliminating the hue and saturation information while
retaining the luminance.

Compensation and Equalization - Face under different
lightening conditions shows appearances with different or
unbalanced luminance values, while ACS directly
compares the gray value of images. So we should make
sure that the gray value of the same face under various
lightening conditions is invariant. In this work we
compensate the face illumination by the technic based on
wavelet transform[4], and equalize the pixels of each gray
value of images using histogram equalization.

Resizing - Images from datasets have high (spatial)
resolution (e.g. 256 x 256 or higher). But in experiments,
the time for computing ACS of images is proportionate to
the cubic of image size. So we should make the resolution
of images as low as possible.

Rescaling - Grayscale images often possess high gray-
level resolution (e.g. 8-bit), which may cause ACS not
robust, i.e. make ACS sensitive to the noise or slight
changes of luminance. Hence it is required to adjust high
gray-level resolution to lower. Experimental results
suggest that under 1-bit gray-level the recognition
performs best. For pixel with gray value p, we can
decrease the gray-level resolution in this way: p = [ﬁ],

where P is a new gray value and p € [100,140] is a
rescaling factor.

Rescaling factor p is a key parameter of ACS for face
recognition, for the value of significantly affects the
recognition accuracy. As for 2DPCA and 2DLDA, the
rescaling step is not demanded.

A. Face recognition on public databases

We use ACS with SVM [5] and kNN for face
recognition on 4 public databases: Caltech[6], Jaffe[7],
Orl [8] and Yale [9] face databases. In order to make the
experiments comparable, two classic face recognition

ethods are adopted in experiments: 2DPCA [10] and

DLDAJ11].

The penalty parameters of SVM is set to C = 10. The
parameter k of kNN is tuned to the value which makes the
recognition get the highest accuracy. The preprocessing

(4xteps, including cropping, converting, compensation,

equalization, resizing, rescaling, are orderly carried out if
necessary. The images are resized to 32 x 32. The
rescaling factor p is tuned carefully to achieve the best
recognition results. All experiments, if not specialized, are
performed with leave-one-out strategy.

From Caltech database we choose 395 images for face
recognition experiment, which consist of 19 subjects (each
one has 18 25 images). All images have various
backgrounds. So image preprocessing steps include
cropping, converting, equalization, resizing, rescaling.

Jaffe database contains 213 images of 7 facial
expressions (anger, disgust, fear, happiness, neutral,
sadness, surprise) posed by 10 Japanese female
expressers. Image preprocessing steps include cropping,
converting, equalization, resizing, rescaling.

Orl database consists of 40 distinct subjects, each of
which has ten different images. All the images were taken

http://www.i-joe.org
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against a dark homogeneous background with the subjects
in an upright, frontal position (with tolerance for slight
side movement). The image preprocessing steps only
include converting, resizing, rescaling.

Yale face database includes 15 subjects with 11 images
per subject: center-light, with glasses, happy, left-light,
without glasses, normal, right-light, sad, sleepy, surprised,
and winking. So the unbalanced light exists in this
database. Hence the image preprocessing steps include
cropping, converting, compensation, equalization,
resizing, rescaling.

Fig. 1, Fig. 2, Fig. 3, Fig. 4 depict some faces from
Caltech, Jaffe, Orl, Yale databases (the upper photos) and
the preprocessed ones (the nether photos), respectively.

The experimental results of face recognition are shown
on Table I. From the table we find that
* ACS with kNN outperforms other methods in most

cases;
¢ Algorithms with kNN in some cases perform better

than that with SVM.

In addition, we also made some robust tests, including
faces with various backgrounds, faces with Gaussian
noise, small training set, faces with partial occlusion.
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Figure 1. Some faces from Caltech database. Upper: raw faces;
Nether: preprocessed faces
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Figure 2. Some faces from Jaffe database. Upper: raw faces; Nether:
preprocessed faces
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Figure 3. Some faces from Orl database. Upper: raw faces; Nether:
preprocessed faces

Figure 4. Some faces from Yale database. Upper: raw faces; Nether:
preprocessed faces
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TABLE L.
FACE RECOGNITION ACCURACY (%) ON 4 DATABASES
Method Caltech Jaffe Orl Yale
acs_svm 99.24 100.0 100.0 96.97
2dpca_svm 99.75 100.0 98.25 97.58
2dlda_svm 99.49 100.0 98.5 98.18

acs_knn 98.99 100.0 100.0 99.39
2dpca_knn 97.97 99.06 98.25 98.18
2dlda_knn 98.99 100.0 97.5 96.97

Face with various backgrounds: The same as the
normal test, 395 images with various backgrounds from
Caltech database are used for robust test. In this case we
do not crop the faces from backgrounds, meanwhile we
add compensation step for the appearance of unbalanced
lights. So the image preprocessing steps include
converting, = compensation, equalization, resizing,
rescaling. Fig. 5 shows some faces (without cropping)
from Caltech databases (the upper photos) and the
preprocessed ones (the nether photos). The robust test
results are shown on Table II.

Figure 5. Some faces (without cropping) from Caltech database. Upper:
raw faces; Nether: preprocessed faces

TABLE II.
FACE RECOGNITION ACCURACY (%) ON CALTECH DATABASE (WITHOUT
CROPPING)
Method acs 2dpca 2dlda
svm 93.16 97.72 96.96
knn 84.30 88.35 91.14

Faces with Gaussian noise: We add Gaussian noise
N = (0,0?) to Jaffe faces, where ¢ = {25.5,51,102,204}
is a grayscale deviation. Fig. 6 shows some faces (with
Gaussian noise) from Jaffe databases (the upper photos)
and the preprocessed ones (the nether photos). We made
two robust tests: use the faces without noise for training
and the noisy faces for test (the test results shows on
Table III); both the training and test faces are noisy (the
test results shows on Table V).

Figure 6. Some faces (with Gaussian noise N = (0, 0%), 0 =
{0,25.5,51,102,204}) from Jaffe database. Upper: raw faces; Nether:
preprocessed faces
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TABLE III.
FACE RECOGNITION (ONLY TEST FACES ARE NOISY) ACCURACY (%)
ON JAFFE DATABASE (WITH GAUSSIAN NOISE N = (0, 22),
r = {0,25.5,51,102,204})

o (1} 25.5 51 102 204

Metho
acs_svm 100.0 99.06 98.59 97.18 96.71
2dpca_svm 100.0 100.0 99.53 98.59 99.06
2dlda_svm 100.0 99.53 99.53 99.06 99.53
acs_knn 100.0 100.0 100.0 100.0 93.90
2dpca_knn 99.06 98.59 99.53 98.59 96.24
2dlda_knn 99.53 99.53 99.53 98.12 97.65

TABLE IV.

FACE RECOGNITION (BOTH TRAINING AND TEST FACES ARE NOISY)
ACCURACY (%) ON JAFFE DATABASE (WITH GAUSSIAN NOISE
N = (0,22),x = {0,25.5,51,102,204})

o (1} 25.5 51 102 204

Method

acs_svm 100.0 100.0 99.06 90.14 61.50
2dpca_svm 100.0 100.0 100.0 93.43 76.53
2dlda_svm 100.0 99.53 99.06 95.77 78.40

acs_knn 100.0 100.0 99.53 98.59 88.73
2dpca_knn 99.06 98.59 99.53 99.06 96.24
2dlda_knn 99.53 99.06 99.06 97.18 88.26

Small training set: In database Orl, there are 40 subjects,
each of which has 10 images. In place of leave-one-out
strategy, we reduce the training images to make robust test.
We randomly choose k images from each subject, who has
10 images, and the rest 10 — k images are for test. The test
results are presented on Table V.

Faces with partial occlusion: We partially occlude Yale
faces by square blocks at random position of images with
random gray value. The area of square blocks is k%, k =0,
5, 10, 15, 25 of the area of images. Fig. 7 depicts some
faces (with square blocks) from Yale database (the upper
photos) and the preprocessed ones (the nether photos).
The robust test results are shown on Table VI.

TABLE V.
FACE RECOGNITION ACCURACY (%) ON ORL DATABASE (K IMAGES
OF EACH SUBJECT FOR TRAINING, THE REST 10—K FOR TEST)

| | () « 1
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Figure 7. Some faces (with square block whose area is k%, k=0, 5, 10,

15, 25 of the image) from Yale database. Upper: raw faces; Nether:
preprocessed faces.

TABLE VI
FACE RECOGNITION ON Y ALE DATABASE (WITH SQUARE BLOCK
WHOSE AREA IS K%, K =0, 5, 10, 15, 25 OF THE IMAGE)

k (1} 5 10 15 25

Metho

acs_svm 96.97 95.15 95.76 93.33 85.45
2dpca_svm 97.58 96.97 95.76 95.76 85.45
2dlda_svm 98.18 98.18 97.58 97.58 90.91
acs_knn 99.39 98.79 97.58 96.97 92.12
2dpca_knn 98.18 97.58 97.58 96.36 92.12
2dlda_knn 96.97 97.58 95.76 95.15 95.15

IV. CONCLUSIONS

This paper presents a sequence similarity, called all
common subsequences (ACS), for use with support
vector machine (SVM) and k-nearest neighbors (kNN) to
the face recognition problem. We first decompose face
images as row and column sequences. Then use ACS,
which compares two sequences by counting the number
of occurrence of common subsequences, to measure the
similarity of each pair of corresponding sequences in two
images and the average of similarity of all pairs of
sequences is proposed to be the similarity of two images.
Experiments on 4 public face databases: Caltech, Jaffe,
Orl and Yale databases, demonstrate that ACS can
achieve higher recognition accuracy than some classic
face recognition methods, e.g. 2DPCA and 2DLDA.
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