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Abstract—The new tools for education of engineering 
emerged and one of the most promising is a remote rapid 
control prototyping (RRCP), which is very useful also for 
control and robotics development in industry and in 
education.  Examples of introductory remote control and 
simple robotics courses with integrated hands on 
experiments are presented in the paper. The aim of 
integration of remote hands on experiments into control 
and/or robotics course is to minimize the gap between the 
theory and practice to teach students the use of RRCP 
and to decrease the education costs. Developed RRCP 
experiments are based on MATLAB/Simulink, xPC 
target, custom developed embedded target for DSP-2 
controller and LabVIEW virtual instrument. 

Index Terms—Education of control and robotics, rapid 

prototyping, remote engineering  

I. INTRODUCTION 

 
Recently much attention has been focused on modern 

control education in Engineering. A leading idea to all 
educators was given in [1]: “Educators must have an 
open attitude towards new technologies. They should 
sensibly incorporate new technological development to 
avoid the risk of teaching the students of today, how to 
solve the problems of tomorrow, with the tools from 
yesterday.” Nowadays, two new tools: the web 
(Internet) and the rapid control prototyping have a great 
impact on control and robotics systems used in industry 
and education. The Web influences the industry because 
it enables supervision and teleoperation of devices (cost 
reduction). The rapid control prototyping (RCP) 
influences the industry because it saves time needed for 
a development of control approaches for different 
devices and therefore reduces control development 
costs for 30 to 40%.  

Both mentioned tools also have a great impact on 
control and robotics education. The impact of the Web 
was extensively discussed in [1]. Different designs of 
Web based control labs are presented in [2]. The Web 
enables more flexible delivery of teaching materials, 
distance education, new visualization possibilities, 
interactivity and cost reduction. The impact of RCP is 
more limited to control implementation. RCP frees 
control implementation of particular implementation 
details, like coding the controller algorithms in C 
language for computers, and therefore speeds up 
implementation of control approaches. This 

performance makes RCP suitable for hands on 
experimental learning of control. 

In the paper, an example of a simple remote DC-
motor controller for teaching the basics of control for 
students of Mechatronics specialization and more 
complicated 6 D.o.F robot arm controller for teaching 
of basics of robotics with integrated remote web based 
and a real hands on intelligent teach pendant for 
robotics arm  remote experiments are presented. We 
called it a remote rapid control prototyping. The 
concept with the remote computer, internet, an 
executive server and the lab is shown in the Fig. 1. The 
integrated experiments are structural remote lab 
exercises and are not a replacement for laboratory 
exercises, nor the project based learning of students. 

 
 
 
 
 
 
 
 
 
 
 

One of the first successful web based robotic projects 
used predominantly for educational purposes were the 
Mercury project [3], Telegarden project [4] and The 
university of Western Australia's Telerobot experiment 
[5] where users are required to manipulate objects in 
the workspace of the robot arm.  The users view of the 
work-cell space is limited to a sequence of static 
images captured by cameras located around the 
workspace. Problems with the static picture can be 
avoided by using video technology but it is clear that 
such an approach needs a high speed network to 
achieve on-line control of the robot arm. Data 
transmission times across the WWW depend heavily 
on the transient loading of the network, making direct 
tele-operation (e.g. the use of cameras to obtain a robot 
arm position feedback) unsuitable for time critical and 
dangerous (e.g. collision between a robot arm and the 
environment) interactions.  

Rather than allowing the users to interact with the 
physical resources directly, as in the previously 
mentioned examples, our robotics experiment requires 
users to configure the experiments using a simulated 
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Figure 1. The concept of RRCP in the educational process 
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representation (e.g. a virtual robot arm and its 
environment) of the real-world apparatus where is also 
done the check of the possible collision between the 
robot arm and its static (predictable) environment [6]. 
This collision detection test is done by so called 
Intelligence interface between the real and the virtual 
world. The configuration data (only few bytes of 
reference position for all axis) is then downloaded to 
the real work-cell, for execution on the real device, 
before returning the results to the user once the 
experiment is complete (few bytes of actual position 
for all axis). 

   The virtual robot arm and environment model is 
used, instead of cameras, to minimize the data 
transmission time through the network, so network 
speed is no longer a critical issue and solves the 
problem of robot arm collision in the real world with a 
predictable environment. 

II. TELEOPERATION OF MECHATRONIC DEVICES 

USING DSP-2 RCP SYSTEM 

 
DSP-2 Rapid Control Prototyping (RCP) system is 

based on two well-known commercially available 
software packages i.e. MATLAB/Simulink and 
LabVIEW and a custom-made hardware i.e. embedded 
DSP based motor controller [7]. MATLAB, Simulink 
and Real-Time Workshop (RTW) are used for control 
algorithm development, simulation, offline analysis and 
rapid executable code generation. While this code is 
executing on the embedded DSP-2 controller and 
through the analog and digital I/O lines drives the real 
process, LabVIEW virtual instrument (VI), running on 
the PC, is used as a user front end. LabVIEW VI 
provides the ability for online parameter tuning, signal 
monitoring, online analysis and via Remote Panels 
technology also teleoperation.  

A. Hardware and software components 

DSP-2 roby system (Fig. 2) is composed of DSP-2 
controller [8] and DSP-2 add-on robotic board.  The key 
components of DSP-2 controller are floating point 
digital signal processor (DSP), used for control 
algorithm execution, and the Xilinx FPGA, which 
implements peripheral interfaces. DSP-2 roby system 
contains all the necessary peripheral for 4 axes robot 
control i.e. this system has 16 digital inputs, 8 digital 
outputs, 4 analog inputs/outputs and 4 incremental 
encoder interfaces. 

 
 
 

 
 
 

 
                     
 
 
 
 

    The “DSP-2 Library for Simulink” [8] is Simulink 
add-on toolbox, which provides rapid control 
prototyping (RCP) support for DSP-2 system (DSP-2 
controller and DSP-2 roby system). DSP-2 library 
contains a set of device driver’s blocks for all available 
I/O ports of DSP-2 system including blocks for analog 
I/O, digital I/O, incremental encoder and blocks for 
communication between PC and DSP-2 system. 
Simulink, Real-Time Workshop and the DSP-2 Library 
for Simulink enable developers to model applications in 
the Simulink block-diagram environment and, after 
successful simulation, quickly verify designed 
algorithm with the DSP-2 controller or DSP-2 roby 
system on the real mechatronic device.  

In addition to rapid code generation, a LabVIEW 
virtual instrument (VI) named “ComVIEW” has been 
developed to serve on the fly data visualization and 
parameter tuning tasks for the DSP-2 system (DSP-2 
system is connected to the PC using RS-232 serial 
connection). When the DSP-2 target is selected in the 
Simulink model, a LabVIEW virtual instrument is 
automatically created from the ComVIEW template VI 
during the binary code generation. A ComVIEW 
template contains an empty front panel and a fully 
functional block diagram. The block diagram 
implements functions for VI initialization, executable 
code download to the DSP-2 system, functions for 
transmitting and receiving messages between the PC 
and the DSP-2 system, and other functions. During VI 
creation, numerical controls and indicators are 
automatically added to the VI front panel template, 
where the number of controls and indicators depends on 
the number of DSP-2 communication blocks used in the 
Simulink model. Links between DSP signals and VI 
front panel objects are established programmatically 
using the DSP Connection Manager window. This 
window appears on the PC immediately after the 
downloadable binary code starts executing on the DSP-
2 target. All information about the DSP-2 input signals, 
DSP-2 parameters and DSP-2 output signals, as well as 
all information about VI scalar controls and the 
indicators of front panel window, appear in the afore 
mentioned window. Using mouse clicks, the user can 
create links between the VI front panel indicators and 
the DSP-2 output signals, and links between the VI 
front panel controls and the DSP-2 input signals or 
DSP-2 parameters. When these links are set, a 
communication link is established between the VI 
running on the PC and a code executing on a DSP-2 
controller. Whenever the controls on the VI front panel 
are changed, LabVIEW automatically downloads them 
via RS-232 serial connection to the DSP-2 controller. 
At the same time, all arrived DSP-2 output signals are 
read from the PC serial port and displayed in an 
appropriate numerical indicator. In addition, ComVIEW 
provides scope capabilities. In the scope mode, a small 
portion of code running on the DSP-2 controller handles 
data acquisition and storage management. The selected 
DSP-2 signals are, firstly, captured and then stored in 
the temporary controller memory. After that, the 
captured data is transferred to the PC.  

“Remote Panels” is a LabVIEW add-on toolkit 
developed by National Instruments that enables viewing 
and controlling of LabVIEW VI’s over the Internet. 
Using this toolkit, the LabVIEW VI can be published  

 
Figure 2.  DSP-2 roby system 
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on the internet with no additional programming. 
Afterwards, the virtual instrument can be remotely 
observed or controlled by using standard web browser. 
The remote user can fully access the user interface that 
appears in the web browser and consecutively has 
complete control of the remote application. Other users 
can point their web browser to the same URL to view a 
remote experiment. To avoid confusion, only one client 
can control the application at a time, but that control can 
pass easily among the various clients at run-time.  

B. Teleoperation of mechatronic device  

The hardware and software components described in 
the previous section provide an open framework for 
remote rapid control experiment development. A 
mechatronic set-up, composed of the DSP-2 roby 
system, two axes mechanical mechanism with the DC 
motor in each axe and the DC motors amplifier is 
presented on the Fig. 3.  

A DSP-2 roby system, connected to lab PC through 
the serial port, implements a control algorithm 
developed using Simulink (Fig. 4) and through the 
analog and digital I/O signals, drives two axes 
mechatronic device (Fig. 3). ComVIEW VI and the 
LabVIEW server are run on the same lab PC for the 
purpose of enabling teleoperation of described system. 
ComVIEW VI performs communication between lab 
PC and the DSP-2 system, online DSP-2 signals 
monitoring and parameters tuning, while the LabVIEW 
server enables remote operation of the ComVIEW VI. 
Remote users, connected to the server through the 
internet, must have a ‘LabVIEW Run-Time Engine’ 
installed on the personal computer, in order to perform 
remote experiments. 

During remote operation (Fig. 5), the remote user can 
change position reference signal (constant, sine, 
square), adjust PID position controller parameters for 
each axe, observe internal DSP-2 signals in numerical 
or graphical view, select which DSP-2 signals will be 
captured and shown in a graph and select the trigger 
parameters (trigger signal, trigger level, trigger slope, 
number of pre-samples). The remote user can also send 
teleoperation results via an email. The e-mail 
attachment contains experimental results in a format 
appropriate for further offline analysis in MATLAB.  

III. REMOTE  ROBOTICS LAB  

 
    The remote laboratory approach is based on the 
concept that it provides a working facility for off-line 
programming of actual working robot in a remote 
environment and hands-on training. It is desirable that 
the robot simulation should be capable of being 
executed through any standard WWW browser 
application, e.g. Netscape Navigator, Microsoft’s 
Internet Explorer etc. and VRML browser, e.g. Cortona 
or Cosmo Player etc. Standard browsers for the VRML 
97 language don't incorporate collision detection 
between shapes in the virtual world. The physical test 
equipment includes: a WWW network server, a 
network layer, a robot workcell, and remote user 
computers. Because the adopted control strategy does 
not provide the remote user with immediate feedback 
from the actual work-cell, it  is  desirable that some  

kind  of  collision  detection  between  the virtual robot 
and the virtual environment is created to prevent, or  to  
predict,    robot   collisions    in   the   real  world.  This  
 

 

 

 

 

 

 

 

 

 

 

 

             

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
problem has been solved by building JAVA oriented 
collision detection software [11] to assure platform 
independent approach. It may be solved with a use of 
the complete browser and collision detection software 
[5] in the C++ language which has capability to 
decrease the execution time of the complete software 
and to increase animation speed as was done in [4] and 
[5] but it loses the platform independence.   

The physical test equipment includes: a WWW 
network server, a network layer, a robot workcell, and 
remote user computers (see Fig. 6). 
    The robot work-cell allows Point to Point (PTP) 
motion of the robot. The robot data and environment 
are constant and are set in the VR software. The remote 
motion data for the robot arm mechanism are 
programmed and controlled, respectively, by the user. 

 
 

Figure 3. Mechatronic set-up 

 

Figure 4. Control algorithm for two axes mechatronic device  



CONTROL AND ROBOTICS REMOTE LABORATORY FOR ENGINEERING EDUCATION  

iJOE International Journal on Online Engineering -  www.i-joe.org 4 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
   The work-cell, shown in Figure 7, includes the 6 axis 
educational robotic arm, which has P-position 
controllers written by MathWorks’ MATLAB (ver.6.1) 
/ Simulink / Real-Time Workshop / xPC Target fast 
prototyping software. The program is executed by xPC 
operating software on the executive PC server. 
   The WWW network server is responsible for 
processing  the requests  done  by  an  external  WWW 

 
 
 
browser installed on the user’s remote personal 
computer, delivering on-line documents and providing 
access to the robotic and control hardware.   

IV. REMOTE RAPID ROBOT PROTOTYPING 

 
Following the success of the earlier experiments [5] 

and [6], the development of an improved human 
computer interface, integrating the Java language and 
VRML language within a non-immersive desktop 
virtual reality environment, was undertaken in order to 
help improve the realism and sense of presence the 
user feels when programming the robot. This 
simulation tool allows the kinematics behaviour of the 

 

 

Figure 6. The robot interface between servers and a client 

 
 

Figure 7.  A robot arm 
 

 
 

Figure 5.  A remote experimental front panel in a classical web browser 
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system to be studied, and permits research into task 
planning, process synchronisation and the 
communication issues involved with the control of 
robotic manipulators. The additional processes which 
are executed by the RLab server are shown in Figure 6. 
Figure 10 illustrates the users view of the robot model 
and it’s associated 'virtual' teach pendant. 
The basis of a remote robot control presents a model 
build in MATLAB/Simulink program. As a remote use 
of the robot control model xPC target system is used.  
xPC target system is a toolbox of MATLAB/Simulink 
package and enables an execution of the application in 
an external mode.  

Application of a robot control model (Fig. 8) is first 
created in Simulink on a host computer and 
downloaded on the target PC to which the robot 
hardware is connected. After creating the model, the 
user can run simulations of-line. The model must be 
compiled with the Real-Time Workshop and a C/C++ 
compiler to create executable code. The model has to 
be downloaded to the target PC and then run with the 
xPC Target real-time kernel, so the remote application 
can be run and tested in a real time. These applications 
are stand-alone applications and run on a target PC 
independently from the host PC. This procedure is used 
for rapid robot control prototyping.  Functions of target 
applications are: transfer of application on a target PC, 
start and stop of application execution, change of 
sample and stop time, detection of processor overload 
and statistics of executing of the application. 
Application can proceed on several host computers and  
can be transferred on one target PC for a real-time 
execution on a remote controlled system. The remote 
running application can be accessed over MATLAB 
command window, direct communication with a 
Simulink model (external model) or with target’s 
command web page interface. The model and the 
parameters of the remote application can be modified 
or updated with the use of MATLAB. Only the 
parameters of running application can be altered with 
the other two access point. The MATLAB interface 
contains functions for adjusting the parameters on 
target PC. By changing one or more parameters in 
Simulink, these new values are transferred to the target 
PC immediately and we can observe response of the 
application. 

The command web page interface (Fig. 9) enables 
simple acquiring data from executive (target) PC 
server. We can execute signal logging, so that all data 
are stored from whole time of application execution. 
Values are stored in RAM on a target PC server. After 
the application is stopped the files can be transferred to 
the host PC. Alternative to acquiring signals is tracking 
the signals like digital scope. Data can be presented 
numerically or graphically. 

 
 
 
 
 
 
 

 

V. REMOTE ROBOT CONTROL WITH RLAB 

 
RLab is a collection of web applications, which 

represent a main part between a user and a robot. It is 
divided in four parts. RLabClient represents a user 
interface for guiding the robot with addition of VRML 
model of the robot. RLabExecutiveProxy serves for 
transferring data from RLabClient to the xPCproxy. On 
the other side of the xPCproxy is the xPC Target, on 
which the application for guiding the robot is loaded. 
Application is first created in Simulink and then it is 
loaded on xPC Target. xPCproxy has a web application 
for administrating the projects. This application 
enables loading, starting and deleting projects of xPC 
Target computer 
   The remote user is connected to RLab’s WWW site 
to register the job using an on-line form. The user 
details are processed by a CGI program running on the 
server, to determine user authentication, access control 
and job queue status experiment. If the robot is 
currently in use then the users may decide to cancel 
their job and try again later, otherwise the file is placed 
in a queue for execution at a later date. In this case an 
acknowledgement will be returned to the user and the 
results stored in an on-line archive for retrieval at a 
later date. Real time manipulator control is achieved 
using a separate computer (PC) control system. 
However, the existing controller requires that set points 
for limb movement, motor drive characteristics, 
process status, etc. are provided as a stream of 
parameters from a host computer, in this case the 
server, to the robot’s own control system, thus 
necessitating the development of a replacement 
command scheduling program written by MathWorks’ 
MATLAB (ver.6.1) / Simulink / Real-Time Workshop 
/ xPC Target fast prototyping software. 

VI. COLLISION DETECTION IN RLAB ENVIRONMENT 

 
   In the real world, we have to pay attention to the 
robots’ workspace, so that they do not have anything to 
collide into. As fast as we start controlling the robots 
remotely, the problem becomes even bigger, because 
we do not receive immediate feedback information 
about the collision. That is why the RLab environment 
has an intelligent interface with a built-in collision 
detection library in a virtual world of collision. Robot 
models in the RLab environment can be sorted into 
three worlds, which are closely connected. The first 
world is an actual remotely controlled robot. Second, 
the virtual – visualization world, controls the graphical 
side of the controlled robot world and can be used as a 
simulator. The third – virtual world of collision is 
responsible for the collision detection between the 
robot and the environment. All worlds together make a 
concluded entity of remote controller, which as precise 
as it can imitate and control the real robot. The 
cooperation of the worlds is next: there is given a 
command for the desired movement in the virtual - 
visualization world which is checked in the virtual 
world of collision. In the case that the desired 
movement is collision free it is executed in the real 
world. 

Figure 8. The MATLAB/Simulink model 
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Figure 9. Web interface for controlling the application 

 

 
Figure 10. Virtual teach pendant and robot model 
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   The library takes care of the collisions detection 
between the robot and known static barriers in its 
environment. Additionally, it takes care of the detection 
of collisions with the robot itself. The library has to detect 
a collision in the virtual model of the robot before we can 
send the command to the real robot. The library checks 
for possible collision with the whole robot before every 
desired move of a separate axle. We get feedback about 
the builders of the robot arm and the parts that are in 
collision. The library for collision detection is 
downloaded to the user computer at the start of the 
experiment, where it is executed. This principle of 
collision prediction in a virtual environment is used, to 
achieve faster response of a detected collision. 
   Preparation of the library for collision detection for 
inclusion of a geometrical configuration of a robot and its 
environment in the RLab environment is shown with the 
following steps: 
1. The program for constructing the library for collision 
detection is opened. 
2. The VRML robot model for which we want to make 
the library is selected. All of the transformation joints are 
automatically uploaded in a suitable hierarchic order in 
the schematic tree. The example is shown on the figure 
11. The joints named in the VRML code that influence 
the change of the axes’ position are therefore easier to 
find. The VRML node »JOINT1«, which controls a first 
robot axis rotation, is shown in the example (Fig. 11). 
3. The transformation joints which define the translation 
and rotation of each robot axis and also define whether it 
is translation or rotation are chosen in the schematic tree. 
Defining the rotation joint of the first robot axis is shown 
on the Figure 11. The chosen joints of the robot are 
automatically linked to the buttons for manipulation of 
different axes, while loading into the user interface. 
4. The accuracy of the geometrical model for collision 
detection is also defined. Two different choices of 
accuracy exist in our environment. The first one is not the 
best solution; however it works faster because of a simple 
geometry. The second approach is more accurate, but it is 
slower due to complex geometry. The slower detection 
speed is the result of a better robot geometrical model and 
additionally a larger number of triangles, which have to 
be checked for collision [12]. 
5. It is necessary to define pairs of robot components for 
which it is not necessary to detect the collision. Normally, 
these are neighbouring axis, which are linked to each 
other and never collide between themselves. 
6. It is necessary to give the name of the library before its 
construction. In this way, we can dynamically upload the 
libraries for different robots. The library has to be 
compiled and uploaded into a suitable folder on the RLab 
server after the construction. 
Basic program window for displaying the geometry and 
parameters preparation for the library construction can be 
seen on Figure 11. The »Transform JOINT1« robot node 
is selected on the Figure11 and also defined the rotation 
transformation in the lower right corner of the same 
figure. Methods are generated for the parameters 
controlling of the defined joints during the library 
construction. For an example: the method is generated for 
defining the axis rotation angle for “JOINT1”. A collision 
detection working diagram of the RLab system is shown 
on Figure 12. The name of the collision detection library 
of the particular robot mechanism, which is uploaded on 

the start-up, is written in the configuration parameters of 
every robot. The verification of the collision is made by 
every axis move command (rotation and translation). A 
detailed description of working collision detection is 
next: 
1. The user executes the chosen axis movement in the 
user interface of the RLab system.  
2. The command is mediated to the collision detection 
library, which verifies for possible collision between 
robot and its environment components in the virtual 
geometrical model. 
a. In the case when collision is detected, the execution of 
the position command is stopped and a warning for the 
detected collision (3) is shown in the console window. 
b. In the case when the collision has not been detected, 
the execution of the command continues (4) and the 
virtual model of the robot (5) moves as user decides. 
3. The command, which doesn’t cause a collision, is 
stored into a buffer to be executed on the RLab server. 
When the user decides, the buffered commands are 
downloaded to the server (6) where are executed one after 
another. So, the collision protection in the real 
environment is ensured. 

VII. CONCLUSIONS 

 
This paper introduces WWW based remote rapid 

prototyping laboratories for control and robotics 
engineering students, which provides users with on-line 
access to the real-world hardware for remote 
experimentation.  

The control laboratory is based on the  well known 
MATLAB, Simulink and Real-Time Workshop (RTW) 
which are used for control algorithm development, 
simulation, offline analysis and rapid executable code 
generation while the LabVIEW VI provides the ability for 
online parameter tuning, signal monitoring, online 
analysis and via Remote Panels technology also 
teleoperation.  

 The telerobotics approach requires the user to develop 
tasks off-line, using their remote computing resources, 
before submitting the experiment to the remote laboratory 
server for execution on the actual device. The 
advantageous of the RLab system are mainly the system 
administration, from the system independent client 
application and modular architecture of the RLab system 
which allows relative simple and inexpensive extension of 
the system with new mechatronics applications. The 
disadvantageous of presented system concept are 
communication delays and the execution time of some 
processes, so the RLab system is not able to deal with the 
completely real-time teleoperating applications in a case 
of public internet use and poor communication connection 
(slow modems and ADSL…) to the internet. The 
communication delays should be decreased with the use of 
simpler text transfer protocol instead of WEB service 
communication technology. 
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Figure 11. Collision detection library generator 
etection library 

 

 
 

Figure 12. RLab system architecture 


