
CONTROL AND ROBOTICS REMOTE LABORATORY FOR ENGINEERING EDUCATION

iJOE International Journal on Online Engineering - www.i-joe.org 1

Control and robotics remote laboratory for
engineering education

R. Šafarič, M. Truntič, D. Hercog and G. Pačnik

University of Maribor, Faculty of electrical engineering and computer science, Maribor, Slovenia

Abstract—The new tools for education of engineering
emerged and one of the most promising is a remote rapid
control prototyping (RRCP), which is very useful also for
control and robotics development in industry and in
education. Examples of introductory remote control and
simple robotics courses with integrated hands on
experiments are presented in the paper. The aim of
integration of remote hands on experiments into control
and/or robotics course is to minimize the gap between the
theory and practice to teach students the use of RRCP
and to decrease the education costs. Developed RRCP
experiments are based on MATLAB/Simulink, xPC
target, custom developed embedded target for DSP-2
controller and LabVIEW virtual instrument.

Index Terms—Education of control and robotics, rapid

prototyping, remote engineering

I. INTRODUCTION

Recently much attention has been focused on modern

control education in Engineering. A leading idea to all
educators was given in [1]: “Educators must have an
open attitude towards new technologies. They should
sensibly incorporate new technological development to
avoid the risk of teaching the students of today, how to
solve the problems of tomorrow, with the tools from
yesterday.” Nowadays, two new tools: the web
(Internet) and the rapid control prototyping have a great
impact on control and robotics systems used in industry
and education. The Web influences the industry because
it enables supervision and teleoperation of devices (cost
reduction). The rapid control prototyping (RCP)
influences the industry because it saves time needed for
a development of control approaches for different
devices and therefore reduces control development
costs for 30 to 40%.

Both mentioned tools also have a great impact on
control and robotics education. The impact of the Web
was extensively discussed in [1]. Different designs of
Web based control labs are presented in [2]. The Web
enables more flexible delivery of teaching materials,
distance education, new visualization possibilities,
interactivity and cost reduction. The impact of RCP is
more limited to control implementation. RCP frees
control implementation of particular implementation
details, like coding the controller algorithms in C
language for computers, and therefore speeds up
implementation of control approaches. This

performance makes RCP suitable for hands on
experimental learning of control.

In the paper, an example of a simple remote DC-
motor controller for teaching the basics of control for
students of Mechatronics specialization and more
complicated 6 D.o.F robot arm controller for teaching
of basics of robotics with integrated remote web based
and a real hands on intelligent teach pendant for
robotics arm remote experiments are presented. We
called it a remote rapid control prototyping. The
concept with the remote computer, internet, an
executive server and the lab is shown in the Fig. 1. The
integrated experiments are structural remote lab
exercises and are not a replacement for laboratory
exercises, nor the project based learning of students.

One of the first successful web based robotic projects
used predominantly for educational purposes were the
Mercury project [3], Telegarden project [4] and The
university of Western Australia's Telerobot experiment
[5] where users are required to manipulate objects in
the workspace of the robot arm. The users view of the
work-cell space is limited to a sequence of static
images captured by cameras located around the
workspace. Problems with the static picture can be
avoided by using video technology but it is clear that
such an approach needs a high speed network to
achieve on-line control of the robot arm. Data
transmission times across the WWW depend heavily
on the transient loading of the network, making direct
tele-operation (e.g. the use of cameras to obtain a robot
arm position feedback) unsuitable for time critical and
dangerous (e.g. collision between a robot arm and the
environment) interactions.

Rather than allowing the users to interact with the
physical resources directly, as in the previously
mentioned examples, our robotics experiment requires
users to configure the experiments using a simulated

User

Lab

Internet
Server

Figure 1. The concept of RRCP in the educational process

CONTROL AND ROBOTICS REMOTE LABORATORY FOR ENGINEERING EDUCATION

iJOE International Journal on Online Engineering - www.i-joe.org 2

representation (e.g. a virtual robot arm and its
environment) of the real-world apparatus where is also
done the check of the possible collision between the
robot arm and its static (predictable) environment [6].
This collision detection test is done by so called
Intelligence interface between the real and the virtual
world. The configuration data (only few bytes of
reference position for all axis) is then downloaded to
the real work-cell, for execution on the real device,
before returning the results to the user once the
experiment is complete (few bytes of actual position
for all axis).

 The virtual robot arm and environment model is
used, instead of cameras, to minimize the data
transmission time through the network, so network
speed is no longer a critical issue and solves the
problem of robot arm collision in the real world with a
predictable environment.

II. TELEOPERATION OF MECHATRONIC DEVICES

USING DSP-2 RCP SYSTEM

DSP-2 Rapid Control Prototyping (RCP) system is

based on two well-known commercially available
software packages i.e. MATLAB/Simulink and
LabVIEW and a custom-made hardware i.e. embedded
DSP based motor controller [7]. MATLAB, Simulink
and Real-Time Workshop (RTW) are used for control
algorithm development, simulation, offline analysis and
rapid executable code generation. While this code is
executing on the embedded DSP-2 controller and
through the analog and digital I/O lines drives the real
process, LabVIEW virtual instrument (VI), running on
the PC, is used as a user front end. LabVIEW VI
provides the ability for online parameter tuning, signal
monitoring, online analysis and via Remote Panels
technology also teleoperation.

A. Hardware and software components

DSP-2 roby system (Fig. 2) is composed of DSP-2
controller [8] and DSP-2 add-on robotic board. The key
components of DSP-2 controller are floating point
digital signal processor (DSP), used for control
algorithm execution, and the Xilinx FPGA, which
implements peripheral interfaces. DSP-2 roby system
contains all the necessary peripheral for 4 axes robot
control i.e. this system has 16 digital inputs, 8 digital
outputs, 4 analog inputs/outputs and 4 incremental
encoder interfaces.

 The “DSP-2 Library for Simulink” [8] is Simulink
add-on toolbox, which provides rapid control
prototyping (RCP) support for DSP-2 system (DSP-2
controller and DSP-2 roby system). DSP-2 library
contains a set of device driver’s blocks for all available
I/O ports of DSP-2 system including blocks for analog
I/O, digital I/O, incremental encoder and blocks for
communication between PC and DSP-2 system.
Simulink, Real-Time Workshop and the DSP-2 Library
for Simulink enable developers to model applications in
the Simulink block-diagram environment and, after
successful simulation, quickly verify designed
algorithm with the DSP-2 controller or DSP-2 roby
system on the real mechatronic device.

In addition to rapid code generation, a LabVIEW
virtual instrument (VI) named “ComVIEW” has been
developed to serve on the fly data visualization and
parameter tuning tasks for the DSP-2 system (DSP-2
system is connected to the PC using RS-232 serial
connection). When the DSP-2 target is selected in the
Simulink model, a LabVIEW virtual instrument is
automatically created from the ComVIEW template VI
during the binary code generation. A ComVIEW
template contains an empty front panel and a fully
functional block diagram. The block diagram
implements functions for VI initialization, executable
code download to the DSP-2 system, functions for
transmitting and receiving messages between the PC
and the DSP-2 system, and other functions. During VI
creation, numerical controls and indicators are
automatically added to the VI front panel template,
where the number of controls and indicators depends on
the number of DSP-2 communication blocks used in the
Simulink model. Links between DSP signals and VI
front panel objects are established programmatically
using the DSP Connection Manager window. This
window appears on the PC immediately after the
downloadable binary code starts executing on the DSP-
2 target. All information about the DSP-2 input signals,
DSP-2 parameters and DSP-2 output signals, as well as
all information about VI scalar controls and the
indicators of front panel window, appear in the afore
mentioned window. Using mouse clicks, the user can
create links between the VI front panel indicators and
the DSP-2 output signals, and links between the VI
front panel controls and the DSP-2 input signals or
DSP-2 parameters. When these links are set, a
communication link is established between the VI
running on the PC and a code executing on a DSP-2
controller. Whenever the controls on the VI front panel
are changed, LabVIEW automatically downloads them
via RS-232 serial connection to the DSP-2 controller.
At the same time, all arrived DSP-2 output signals are
read from the PC serial port and displayed in an
appropriate numerical indicator. In addition, ComVIEW
provides scope capabilities. In the scope mode, a small
portion of code running on the DSP-2 controller handles
data acquisition and storage management. The selected
DSP-2 signals are, firstly, captured and then stored in
the temporary controller memory. After that, the
captured data is transferred to the PC.

“Remote Panels” is a LabVIEW add-on toolkit
developed by National Instruments that enables viewing
and controlling of LabVIEW VI’s over the Internet.
Using this toolkit, the LabVIEW VI can be published

Figure 2. DSP-2 roby system

CONTROL AND ROBOTICS REMOTE LABORATORY FOR ENGINEERING EDUCATION

iJOE International Journal on Online Engineering - www.i-joe.org 3

on the internet with no additional programming.
Afterwards, the virtual instrument can be remotely
observed or controlled by using standard web browser.
The remote user can fully access the user interface that
appears in the web browser and consecutively has
complete control of the remote application. Other users
can point their web browser to the same URL to view a
remote experiment. To avoid confusion, only one client
can control the application at a time, but that control can
pass easily among the various clients at run-time.

B. Teleoperation of mechatronic device

The hardware and software components described in
the previous section provide an open framework for
remote rapid control experiment development. A
mechatronic set-up, composed of the DSP-2 roby
system, two axes mechanical mechanism with the DC
motor in each axe and the DC motors amplifier is
presented on the Fig. 3.

A DSP-2 roby system, connected to lab PC through
the serial port, implements a control algorithm
developed using Simulink (Fig. 4) and through the
analog and digital I/O signals, drives two axes
mechatronic device (Fig. 3). ComVIEW VI and the
LabVIEW server are run on the same lab PC for the
purpose of enabling teleoperation of described system.
ComVIEW VI performs communication between lab
PC and the DSP-2 system, online DSP-2 signals
monitoring and parameters tuning, while the LabVIEW
server enables remote operation of the ComVIEW VI.
Remote users, connected to the server through the
internet, must have a ‘LabVIEW Run-Time Engine’
installed on the personal computer, in order to perform
remote experiments.

During remote operation (Fig. 5), the remote user can
change position reference signal (constant, sine,
square), adjust PID position controller parameters for
each axe, observe internal DSP-2 signals in numerical
or graphical view, select which DSP-2 signals will be
captured and shown in a graph and select the trigger
parameters (trigger signal, trigger level, trigger slope,
number of pre-samples). The remote user can also send
teleoperation results via an email. The e-mail
attachment contains experimental results in a format
appropriate for further offline analysis in MATLAB.

III. REMOTE ROBOTICS LAB

 The remote laboratory approach is based on the
concept that it provides a working facility for off-line
programming of actual working robot in a remote
environment and hands-on training. It is desirable that
the robot simulation should be capable of being
executed through any standard WWW browser
application, e.g. Netscape Navigator, Microsoft’s
Internet Explorer etc. and VRML browser, e.g. Cortona
or Cosmo Player etc. Standard browsers for the VRML
97 language don't incorporate collision detection
between shapes in the virtual world. The physical test
equipment includes: a WWW network server, a
network layer, a robot workcell, and remote user
computers. Because the adopted control strategy does
not provide the remote user with immediate feedback
from the actual work-cell, it is desirable that some

kind of collision detection between the virtual robot
and the virtual environment is created to prevent, or to
predict, robot collisions in the real world. This

problem has been solved by building JAVA oriented
collision detection software [11] to assure platform
independent approach. It may be solved with a use of
the complete browser and collision detection software
[5] in the C++ language which has capability to
decrease the execution time of the complete software
and to increase animation speed as was done in [4] and
[5] but it loses the platform independence.

The physical test equipment includes: a WWW
network server, a network layer, a robot workcell, and
remote user computers (see Fig. 6).
 The robot work-cell allows Point to Point (PTP)
motion of the robot. The robot data and environment
are constant and are set in the VR software. The remote
motion data for the robot arm mechanism are
programmed and controlled, respectively, by the user.

Figure 3. Mechatronic set-up

Figure 4. Control algorithm for two axes mechatronic device

CONTROL AND ROBOTICS REMOTE LABORATORY FOR ENGINEERING EDUCATION

iJOE International Journal on Online Engineering - www.i-joe.org 4

 The work-cell, shown in Figure 7, includes the 6 axis
educational robotic arm, which has P-position
controllers written by MathWorks’ MATLAB (ver.6.1)
/ Simulink / Real-Time Workshop / xPC Target fast
prototyping software. The program is executed by xPC
operating software on the executive PC server.
 The WWW network server is responsible for
processing the requests done by an external WWW

browser installed on the user’s remote personal
computer, delivering on-line documents and providing
access to the robotic and control hardware.

IV. REMOTE RAPID ROBOT PROTOTYPING

Following the success of the earlier experiments [5]

and [6], the development of an improved human
computer interface, integrating the Java language and
VRML language within a non-immersive desktop
virtual reality environment, was undertaken in order to
help improve the realism and sense of presence the
user feels when programming the robot. This
simulation tool allows the kinematics behaviour of the

Figure 6. The robot interface between servers and a client

Figure 7. A robot arm

Figure 5. A remote experimental front panel in a classical web browser

CONTROL AND ROBOTICS REMOTE LABORATORY FOR ENGINEERING EDUCATION

iJOE International Journal on Online Engineering - www.i-joe.org 5

system to be studied, and permits research into task
planning, process synchronisation and the
communication issues involved with the control of
robotic manipulators. The additional processes which
are executed by the RLab server are shown in Figure 6.
Figure 10 illustrates the users view of the robot model
and it’s associated 'virtual' teach pendant.
The basis of a remote robot control presents a model
build in MATLAB/Simulink program. As a remote use
of the robot control model xPC target system is used.
xPC target system is a toolbox of MATLAB/Simulink
package and enables an execution of the application in
an external mode.

Application of a robot control model (Fig. 8) is first
created in Simulink on a host computer and
downloaded on the target PC to which the robot
hardware is connected. After creating the model, the
user can run simulations of-line. The model must be
compiled with the Real-Time Workshop and a C/C++
compiler to create executable code. The model has to
be downloaded to the target PC and then run with the
xPC Target real-time kernel, so the remote application
can be run and tested in a real time. These applications
are stand-alone applications and run on a target PC
independently from the host PC. This procedure is used
for rapid robot control prototyping. Functions of target
applications are: transfer of application on a target PC,
start and stop of application execution, change of
sample and stop time, detection of processor overload
and statistics of executing of the application.
Application can proceed on several host computers and
can be transferred on one target PC for a real-time
execution on a remote controlled system. The remote
running application can be accessed over MATLAB
command window, direct communication with a
Simulink model (external model) or with target’s
command web page interface. The model and the
parameters of the remote application can be modified
or updated with the use of MATLAB. Only the
parameters of running application can be altered with
the other two access point. The MATLAB interface
contains functions for adjusting the parameters on
target PC. By changing one or more parameters in
Simulink, these new values are transferred to the target
PC immediately and we can observe response of the
application.

The command web page interface (Fig. 9) enables
simple acquiring data from executive (target) PC
server. We can execute signal logging, so that all data
are stored from whole time of application execution.
Values are stored in RAM on a target PC server. After
the application is stopped the files can be transferred to
the host PC. Alternative to acquiring signals is tracking
the signals like digital scope. Data can be presented
numerically or graphically.

V. REMOTE ROBOT CONTROL WITH RLAB

RLab is a collection of web applications, which

represent a main part between a user and a robot. It is
divided in four parts. RLabClient represents a user
interface for guiding the robot with addition of VRML
model of the robot. RLabExecutiveProxy serves for
transferring data from RLabClient to the xPCproxy. On
the other side of the xPCproxy is the xPC Target, on
which the application for guiding the robot is loaded.
Application is first created in Simulink and then it is
loaded on xPC Target. xPCproxy has a web application
for administrating the projects. This application
enables loading, starting and deleting projects of xPC
Target computer
 The remote user is connected to RLab’s WWW site
to register the job using an on-line form. The user
details are processed by a CGI program running on the
server, to determine user authentication, access control
and job queue status experiment. If the robot is
currently in use then the users may decide to cancel
their job and try again later, otherwise the file is placed
in a queue for execution at a later date. In this case an
acknowledgement will be returned to the user and the
results stored in an on-line archive for retrieval at a
later date. Real time manipulator control is achieved
using a separate computer (PC) control system.
However, the existing controller requires that set points
for limb movement, motor drive characteristics,
process status, etc. are provided as a stream of
parameters from a host computer, in this case the
server, to the robot’s own control system, thus
necessitating the development of a replacement
command scheduling program written by MathWorks’
MATLAB (ver.6.1) / Simulink / Real-Time Workshop
/ xPC Target fast prototyping software.

VI. COLLISION DETECTION IN RLAB ENVIRONMENT

 In the real world, we have to pay attention to the
robots’ workspace, so that they do not have anything to
collide into. As fast as we start controlling the robots
remotely, the problem becomes even bigger, because
we do not receive immediate feedback information
about the collision. That is why the RLab environment
has an intelligent interface with a built-in collision
detection library in a virtual world of collision. Robot
models in the RLab environment can be sorted into
three worlds, which are closely connected. The first
world is an actual remotely controlled robot. Second,
the virtual – visualization world, controls the graphical
side of the controlled robot world and can be used as a
simulator. The third – virtual world of collision is
responsible for the collision detection between the
robot and the environment. All worlds together make a
concluded entity of remote controller, which as precise
as it can imitate and control the real robot. The
cooperation of the worlds is next: there is given a
command for the desired movement in the virtual -
visualization world which is checked in the virtual
world of collision. In the case that the desired
movement is collision free it is executed in the real
world.

Figure 8. The MATLAB/Simulink model

CONTROL AND ROBOTICS REMOTE LABORATORY FOR ENGINEERING EDUCATION

iJOE International Journal on Online Engineering - www.i-joe.org 6

Figure 9. Web interface for controlling the application

Figure 10. Virtual teach pendant and robot model

CONTROL AND ROBOTICS REMOTE LABORATORY FOR ENGINEERING EDUCATION

iJOE International Journal on Online Engineering - www.i-joe.org 7

 The library takes care of the collisions detection
between the robot and known static barriers in its
environment. Additionally, it takes care of the detection
of collisions with the robot itself. The library has to detect
a collision in the virtual model of the robot before we can
send the command to the real robot. The library checks
for possible collision with the whole robot before every
desired move of a separate axle. We get feedback about
the builders of the robot arm and the parts that are in
collision. The library for collision detection is
downloaded to the user computer at the start of the
experiment, where it is executed. This principle of
collision prediction in a virtual environment is used, to
achieve faster response of a detected collision.
 Preparation of the library for collision detection for
inclusion of a geometrical configuration of a robot and its
environment in the RLab environment is shown with the
following steps:
1. The program for constructing the library for collision
detection is opened.
2. The VRML robot model for which we want to make
the library is selected. All of the transformation joints are
automatically uploaded in a suitable hierarchic order in
the schematic tree. The example is shown on the figure
11. The joints named in the VRML code that influence
the change of the axes’ position are therefore easier to
find. The VRML node »JOINT1«, which controls a first
robot axis rotation, is shown in the example (Fig. 11).
3. The transformation joints which define the translation
and rotation of each robot axis and also define whether it
is translation or rotation are chosen in the schematic tree.
Defining the rotation joint of the first robot axis is shown
on the Figure 11. The chosen joints of the robot are
automatically linked to the buttons for manipulation of
different axes, while loading into the user interface.
4. The accuracy of the geometrical model for collision
detection is also defined. Two different choices of
accuracy exist in our environment. The first one is not the
best solution; however it works faster because of a simple
geometry. The second approach is more accurate, but it is
slower due to complex geometry. The slower detection
speed is the result of a better robot geometrical model and
additionally a larger number of triangles, which have to
be checked for collision [12].
5. It is necessary to define pairs of robot components for
which it is not necessary to detect the collision. Normally,
these are neighbouring axis, which are linked to each
other and never collide between themselves.
6. It is necessary to give the name of the library before its
construction. In this way, we can dynamically upload the
libraries for different robots. The library has to be
compiled and uploaded into a suitable folder on the RLab
server after the construction.
Basic program window for displaying the geometry and
parameters preparation for the library construction can be
seen on Figure 11. The »Transform JOINT1« robot node
is selected on the Figure11 and also defined the rotation
transformation in the lower right corner of the same
figure. Methods are generated for the parameters
controlling of the defined joints during the library
construction. For an example: the method is generated for
defining the axis rotation angle for “JOINT1”. A collision
detection working diagram of the RLab system is shown
on Figure 12. The name of the collision detection library
of the particular robot mechanism, which is uploaded on

the start-up, is written in the configuration parameters of
every robot. The verification of the collision is made by
every axis move command (rotation and translation). A
detailed description of working collision detection is
next:
1. The user executes the chosen axis movement in the
user interface of the RLab system.
2. The command is mediated to the collision detection
library, which verifies for possible collision between
robot and its environment components in the virtual
geometrical model.
a. In the case when collision is detected, the execution of
the position command is stopped and a warning for the
detected collision (3) is shown in the console window.
b. In the case when the collision has not been detected,
the execution of the command continues (4) and the
virtual model of the robot (5) moves as user decides.
3. The command, which doesn’t cause a collision, is
stored into a buffer to be executed on the RLab server.
When the user decides, the buffered commands are
downloaded to the server (6) where are executed one after
another. So, the collision protection in the real
environment is ensured.

VII. CONCLUSIONS

This paper introduces WWW based remote rapid

prototyping laboratories for control and robotics
engineering students, which provides users with on-line
access to the real-world hardware for remote
experimentation.

The control laboratory is based on the well known
MATLAB, Simulink and Real-Time Workshop (RTW)
which are used for control algorithm development,
simulation, offline analysis and rapid executable code
generation while the LabVIEW VI provides the ability for
online parameter tuning, signal monitoring, online
analysis and via Remote Panels technology also
teleoperation.

 The telerobotics approach requires the user to develop
tasks off-line, using their remote computing resources,
before submitting the experiment to the remote laboratory
server for execution on the actual device. The
advantageous of the RLab system are mainly the system
administration, from the system independent client
application and modular architecture of the RLab system
which allows relative simple and inexpensive extension of
the system with new mechatronics applications. The
disadvantageous of presented system concept are
communication delays and the execution time of some
processes, so the RLab system is not able to deal with the
completely real-time teleoperating applications in a case
of public internet use and poor communication connection
(slow modems and ADSL…) to the internet. The
communication delays should be decreased with the use of
simpler text transfer protocol instead of WEB service
communication technology.

REFERENCES

[1] S. Dormido, “Control Learning: Present and Future,” In Proc. 15th

IFAC World Congress on Automatic Control,Barcelona, Spain,
2002, pp. 314-319.

CONTROL AND ROBOTICS REMOTE LABORATORY FOR ENGINEERING EDUCATION

iJOE International Journal on Online Engineering - www.i-joe.org 8

ghgf

[2] C.Schmid, “Internet-basiertes Lernen,“
Automatisierungstechnik, vol. 51, No. 11, 2003, pp. 485-493.

[3] K. Goldberg, M. Maschna, S. Gentner, et al., “Desktop
Teleoperation Via The WWW,” Proc. of the IEEE
International Conf. on Robotics and Automation, 1995, pp.
654-659.

[4] http://telegarden.aec.at

[5] http://telerobot.mech.uwa.edu.au

[6] R. Šafarič, M. Debevc, R. M. Parkin, S. Uran, “Telerobotics
experiments via Internet,” IEEE transactions on industrial

electronics, 2001, vol. 48, no. 2, pp. 424-431.

[7] D. Hercog, M. Čurkovič, G. Edelbaher, E. Urlep,
“Programming of the DSP2 board with the
MATLAB/Simulink,” Proceedings IEEE ICIT 2003,
December 2003, pp. 709-713;

[8] DSP-2 web page: www.ro.feri.uni-mb.si/projekti/dsp2

[9] D. W. Calkin, R. M. Parkin, C. A. Czarnecki, “A PID Servo
Control System Conducted Remotely Via Internet, “
Mechatronics, 2002, Vol. 12, pp. 833-843.

[10] R. Šafarič, M. Debevc, R. M. Parkin, S. Uran, “Telerobotics
experiments via Internet,” IEEE transactions on industrial
electronics, 2001, vol. 48, no. 2, pp. 424-431.

[11] R. Šafarič, D. W. Calkin, R. M. Parkin, Czarnecki, “Virtual
environment for telerobotics,” Integrated. computer.-aided
engineering, 2001, vol. 8, no. 2, pp. 95-104.

[12] Šafarič, R.; Šinjur, S.; Žalik, B.; Parkin, R. M.: Control of
Robot Arm with Virtual Environment via Internet, Proc.
I.E.E.E., 2003, vol. 91, issue 3, pp. 422-429.

AUTHORS

R. Šafarič is with the University of Maribor, Faculty
of electrical engineering and computer science, Institute
for robotics, Smetanova 17, 2000 Maribor, Slovenia (e-
mail: riko.safaric@uni-mb.si).

M. Truntič is with the University of Maribor,
Faculty of electrical engineering and computer science,
Institute for robotics, Smetanova 17, 2000 Maribor,
Slovenia (e-mail: mitja.truntic@uni-mb.si).

D. Hercog is with the University of Maribor, Faculty
of electrical engineering and computer science, Institute
for robotics, Smetanova 17, 2000 Maribor, Slovenia (e-
mail: darko.hercog@uni-mb.si).

G. Pačnik is with the University of Maribor, Faculty
of electrical engineering and computer science, Institute
for robotics, Smetanova 17, 2000 Maribor, Slovenia (e-
mail: gregor.pacnik@uni-mb.si).

Manuscript received May 31, 2005.

Figure 11. Collision detection library generator
etection library

Figure 12. RLab system architecture

