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Abstract—A new fast public key cryptosystem is proposed, which is based 
on two dissimilar number-theoretic hard problems, namely the simultaneous cha-
otic maps (CM) problem and quadratic residue (QR) problem. The adversary has 
to solve the two hard problems simultaneously to recover the plaintext according 
to their knowledge about the public keys and the cipher-text. Cryptographic 
quadratic residue and chaotic system are employed to enhance the security of our 
cryptosystem scheme. The encryption, and decryption are discussed in details. 
Several security attacks are proposed to illustrate the system shield through cha-
otic maps and quadratic residue problems. The performance analysis of the pro-
posed scheme show a much improved performance over existing techniques. 

Keywords—public key cryptography, quadratic residue, chaotic maps, cryp-
tosystem 

1 Introduction 

Diffie and Hellman (1976) [1] were the first to propose the idea of transmitting secret 
message between two communicating parties; a sender and a receiver in an insecure 
channel (with the presence of attackers). Their idea (is called cryptosystem) consists of 
these following properties: 

• The sender first encrypts the message using receiver’s public key and sends the en-
crypted message to the receiver  

• The receiver who possesses the secret key can decrypt and read the original message 
• The security of the system is depends on the underlying hard problems in computa-

tional number theory 
• Knowing only the public key of receiver, the attacker is not able to read the message 

since he has no information about the corresponding secret key unfortunately, they 
did not develop any such system. The first realization was developed by Rivest et al. 
(1978) [2] and is called RSA cryptosystem after their first names. The security of 
RSA is based on the hardness of solving factoring problem (FAC). Informally, if the 
attacker manages to solve FAC, the underlying system will no longer be secure. With 
the proper selection of parameters, no one is able to break the novel RSA system. 
Rabin (1979) [3] designed a new cryptosystem whose security is depends heavily on 
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residuosity problem (RES). His system relies on the difficulty of finding prime divi-
sors of a given large composite integer as in RSA. However, no concrete relationship 
between the hardness of solving FAC and RES is found. Six years later, Elgamal 
(1985) [4] proposed his new cryptosystem based on Discrete Logarithm Problem 
(DLP). Later, Koblitz (1987) [5] and Miller (1986) [6] independently proposed the 
use of elliptic curve in cryptosystems. Their security lies on the so-called Elliptic 
Curve Discrete Logarithm Problem (ECDLP). Their systems are more efficient than 
previous systems since the size of the main parameter is only 160-bits. Many such 
systems were then been developed [7, 8]. One common feature of these schemes is 
that the security of the systems is based on a single hard problem. If one day in a 
near future an attacker solves the hard problem, the underlying system will no longer 
be secure. Thus to overcome this disadvantage, many designers are proposing cryp-
tosystems based on two hard problems [9-11]. If the attacker find a solution to one 
of these hard problem the system stays secure as the problem is still hard to solve. It 
is impossible for the attacker to solve the two problem simultaneously.  

A chaotic map-based image encryption algorithm was originally suggested in 1989 
[12]. Lately, there has been an expanding activity in this field as a few methods were 
presented within the research art [13-17]. The chaotic map-based public cryptosystems 
require least computational complexity in comparison with that is needed by public 
cryptosystems that rely on modular exponential computing, or scalar multiplication on 
elliptic curves. Therefore, in this study, we created a new hybrid mode based cryptosys-
tem using chaotic map and quadratic residue problems. With the greater level of secu-
rity confirmed, we showed that the performance of the scheme requires a few time 
complexity unit operations in both encryption and decryption algorithms, which makes 
the system implementable for real world applications. 

The remainder of this paper is organized as follows. We provide the necessary theory 
and properties of the extended chaotic maps and some notation in Section 2.Then, we 
propose new chaotic maps cryptosystem with quadratic residue problem in Section 3. 
In Section 4, security analysis and performance analysis are discussed, followed by 
numerical simulation are discussed in Section 5. Finally, we draw our conclusion in 
Section 6. 

2 Preliminaries 

In this section, we briefly introduce the basic concept of Chebyshev chaotic map [13, 
17-24] and the factorization problem [3] and its related mathematical properties. 

2.1 Chebyshev chaotic map 

The structure of the Chebyshev polynomials is reviewed in Figure 1[25].  
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Fig. 1. Chebyshev polynomials structure 

Let 𝑛 be an integer and 𝑥 be a variable with the interval [−1,1]. The Chebyshev pol-
ynomial 𝑇!(𝑥) ∶ [−1,1] ⟶ [−1,1] is defined as:  

 𝑇!(𝑥) = cos(𝑛 cos"#(𝑥)) (1) 

and the Chebyshev polynomial map	𝑇!(𝑥) ∶ ℝ ⟶ ℝ of degree 𝑛 is defined by the 
recurrent relation: 

 𝑇!(𝑥) = 2𝑥𝑇!"#(𝑥) − 𝑇!"$(𝑥)	; 	𝑛 ≥ 2 (2) 

where 	𝑇%(𝑥) = 1, 𝑇#(𝑥) = 𝑥. Some Chebyshev polynomials are 𝑇$(𝑥) = 2𝑥$ − 1, 
𝑇&(𝑥) = 4𝑥& − 3𝑥, 𝑇'(𝑥) = 8𝑥' − 8𝑥$ + 1 and 𝑇((𝑥) = 16𝑥( − 20𝑥& + 5𝑥.  

From (2), we get a matrix equation: 

 >
𝑇)(𝑥)
𝑇)*#(𝑥)

? = @ 0 1
−1 2𝑥A	>

𝑇)"#(𝑥)
𝑇)(𝑥)

? (3) 

and by manipulating the index, we obtain: 

 >
𝑇)"#(𝑥)
𝑇)(𝑥)

? = 	 @ 0 1
−1 2𝑥A >

𝑇)"$(𝑥)
𝑇)"#(𝑥)

? (4) 

Combining the above equations, we next get 

 >
𝑇)(𝑥)
𝑇)*#(𝑥)

? = 	 @ 0 1
−1 2𝑥A

)
	>
𝑇%(𝑥)
𝑇#(𝑥)

? (5) 

Where 	𝑇%(𝑥) = 1, 𝑇#(𝑥) = 𝑥. 
The Chebyshev polynomial also has the following two interesting properties: 

• The semi-group property 

 𝑇+B𝑇,(𝑥)C = 𝑐𝑜𝑠B𝑟𝑐𝑜𝑠(𝑠	𝑐𝑜𝑠"#(𝑥))C  
 = cos	(𝑟𝑠𝑐𝑜𝑠"#(𝑥))  
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 = 𝑇,+(𝑥)  
 = 	𝑇,B𝑇+(𝑥)C (7) 

where 𝑟 and 𝑠 are positive integers and 𝑥 ∈ [−1,1]. 

• The chaotic property 

The Chebyshev map 𝑇)(𝑥);	I−1,1 ⟶ [−1,1]J of degree 𝑎 > 1 is a chaotic map 
with invariant density 𝑓∗(𝑥) = #

./#"0!
 for positive Lyapunov exponent 𝜆 = 𝐿𝑛(𝑎) >

0. The Chebyshev map, for, 𝑝=2,	reduces to the familiar logistic map.  
An immediate consequence of this property is that Chebyshev polynomials commute 

under composition: 

 𝑇+B𝑇,(𝑥)C = 𝑇,(𝑇+(𝑥))  

In order to improve the security of Chebyshev polynomials, Zhang [21] proved that 
the semi-group property holds for Chebyshev polynomials defined on the interval 
(−∞,∞). The enhanced Chebyshev polynomials are expressed in the following form; 

 𝑇!(𝑥) = B2𝑥𝑇!"#(𝑥) − 𝑇!"$(𝑥)C	(mod	𝑝) (8) 

where 𝑛 ≥ 2, 𝑥 ∈ (−∞,∞), and 𝑝 is a large prime number. Obviously, one has: 

 𝑇+,(𝑥) = 𝑇+B𝑇,(𝑥)C = 𝑇,B𝑇+(𝑥)C(mod	𝑝) (9) 

Theorem 1. [13] Let 𝑓(𝑀) = 𝑡$ − 2𝑀𝑡 + 1 and 𝛼, 𝛽	 be two roots of		𝑓(𝑀). If 
𝑀 = #

$
(𝛼 + 𝛽), in this case, the number of possible solutions is met by: 

 𝑇)(𝑀) =
12*/2!"#3

"
*12"/2!"#3

"

$
(mod	𝑝) (10) 

Theorem 2. [13] If 𝑎 and 𝑏 are two positive integers and 𝑎 > 𝑏 , then we obtain 
that: 

 2𝑇)(𝑀). 𝑇4(𝑀) = 𝑇)*4(𝑀) + 𝑇)"4(𝑀) (11) 

Theorem 3. [13] If 𝑎 = 𝑏 + 𝑐	and 𝑝 is a prime (i.e., large number), we obtain that: 

[𝑇)(𝑀)]$ + [𝑇4(𝑀)]$+[𝑇5(𝑀)]$= 2𝑇)(𝑀)𝑇4(𝑀)𝑇5(𝑀) + 1(mod	𝑝) (12) 

Lemma 1. [13] Let the elements of a finite field are 𝑔 and ℎ , i.e. if 𝑔 + 𝑔"# = ℎ +
ℎ"#then 𝑔 = ℎ or 𝑔 = ℎ"#. 

Lemma 2. [13] For any 𝑔 ∈ 𝐺𝐹(𝑝) and 𝑦 = 𝑔6 for some integer 𝑡, we can find an 
integer 𝑀 ∈ 𝐺𝐹(𝑝) and then construct a chaotic maps sequence {𝑇)(𝑀)}, in polyno-
mial time such that: 

 #
$
(𝑦 + 𝑦"#) = 𝑇6(𝑀) ∈ 𝑇)(𝑀) (13) 
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Lemma 3. [13] Let 𝑝, 𝑛 and 𝛼 are the same as earlier; and G is the group formed by 
the combination of these three. To obtain the value of 𝑣  such that 𝑎 =
𝑇7!(9:;	!)(𝛼)	𝑚𝑜𝑑	𝑝	, where 𝑎 is given and 𝑎 ∈ 𝐺, one must solve both the chaotic 
maps problem in 𝐺 and the factorization of 𝑛. 

Theorem 4. The discrete logarithm problem over 𝐺𝐹(𝑝) can be solved in polyno-
mial time if a method AL can be used to solve the chaotic mapping problem over𝐺𝐹(𝑝). 

2.2 The factorization problem  

The factorization problem is how to find two large numbers p and q given a coposite 
number n that is the product of the two numbers p and q. While finding large prime 
numbers is a relatively easy task, the problem of factoring the product of two such 
numbers is considered to be computationally difficult if the primes are carefully se-
lected. Rivest et al. [2] developed the RSA public-key cryptosystem based on the diffi-
culty of this problem. While the factorization problem has received some attention over 
many years from many mathematicians, it is only in the past 20 years that significant 
progress has been made towards its resolution. Since, the invention of the RSA cryp-
tosystem in 1978 inspired many mathematicians to study the problem. Additionally, 
high-speed computers became available for the implementation and testing of sophis-
ticated algorithms. The RSA Problem is now more than a quarter century old [28]. The 
robust simplicity of the problem has led to several observations over the years, some 
yielding attacks, others avoiding them. Digital signature and Public-key encryption 
schemes have been developed whose power is derived from the RSA Problem. The 
question now is how much the security of the RSA Problem depends on factoring, and 
as with any hard problem in cryptography, whether any methods more robust than those 
currently available for solving the problem will ever be found. 

─ Definition 1: (FAC problem) Let n be a large composite integer with 𝑛 = 𝑟𝑠 where 
𝑟 and 𝑠 are two large strong primes of 512-bits. Then find the primes 𝑟 or 𝑠.  

─ Definition 2: (QR problem) Let 𝑝, 𝑞	are two strong primes of large size and 𝛾 is an 
integer. Then, compute 𝛾 such that 𝛾 ≡ 𝛽$ mod 𝑝𝑞. 

2.3 Computational problem 

To prove the security of our proposed cryptosystem, we present some important 
mathematical properties of Chebyshev chaotic maps as follows. 

a) Semi-group property: Given 𝑥 ∈ [−1,1], 

𝑇!"𝑇"(𝑥)& = cos +𝑟	cos#$"𝑠	cos#$(𝑥)&/ = cos	"𝑟𝑠	cos#$(𝑥)& = 	𝑇"!(𝑥) = 𝑇"(𝑇!(𝑥)) 

b) Chaotic maps problem: If two elements 𝑥 and 𝑦 are given, the task of the discrete 
logarithm problem is to find integers 𝑠, such that 𝑇,(𝑥) = 𝑦. 

c) If three elements 𝑥 , 𝑇+(𝑥), and 𝑇,(𝑥), are given, the task of the Diffie-Hellman 
problem is to compute elements 𝑇+,(𝑥). 
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3 The new cryptosystem 

Let us recall first the following notations and parameters we will use before intro-
ducing the new scheme.  

• Let p be a large prime and n is a factor of p−1 that is the product of two safe primes 
	𝑝f  and 𝑞g, i.e., 𝑛 = �̅�	𝑞g. 

• Let 𝛼	is an element in 𝐺𝐹(𝑝)	and the order of 𝛼 is 𝑛, and 𝐺	is the multiplicative 
group generated by	𝛼. Note that the two large primes 	𝑝f  and 𝑞g, are kept secret for all 
users in the system. 

3.1 Key generation phase 

• Choose randomly an integer 𝑥 < 𝑛 such that gcd(𝑥, 𝑛) = 1 
• Compute the number  

 𝑦 = 𝑇0(𝛼) m (𝑚𝑜𝑑	𝑝) (14) 

The public key is given by 𝑦	and can be accessed in the public directory and the 
secret key is given by 𝑥	and only known to the legal receiver. Also only the receiver 
knows the primes factorization of 𝑛. 

3.2 Algorithm for encryption  

Get the original message, 𝑚	 ∈ [0, 𝑛 − 1]. The sender encrypts his message as fol-
lows before sends receiver a pair (𝑣#, 𝑣$). 

• Select a random an integer 1 < 𝑟 < 𝑛 such that gcd(𝑟, 𝑛) = 1 
• Compute 

 𝑣# ≡ (𝑚$	. 𝑇+(𝑦)	𝑚𝑜𝑑	𝑝)	𝑚𝑜𝑑	𝑛 (15) 

• Evaluate 

 𝑣$ 	≡ 𝑇+(𝛼) mod 𝑝 (16) 

In the original ElGamal, (1985) cryptosystem we compute the number 𝑣#	in Eq. 1a 
without squaring the original message. In our scheme, we need this as we implementing 
the Rabin, (1979) cryptosystem for QR-like scheme. 

3.3 Algorithm for decryption 

The receiver decrypts the obtained encrypted message (𝑣#, 𝑣$) as below: 

• Compute the following 

 	𝑣#	(𝑇0(𝑣$)	𝑚𝑜𝑑	𝑝)"# ≡ 𝑚$	𝑚𝑜𝑑	𝑛 (17) 
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• The receiver uses the known technique (Rabin, 1979) to extract the original message 
𝑚 from 𝑚$	and this can be done since he knows the prime factorization of 𝑛. 

Theorem 1. If the algorithms of initialization and encryption run smoothly then the 
decryption of the encrypted message in decryption is correct. 

Proof: equation (17) in decryption is true for all encrypted messages (𝑣#, 𝑣$) since: 

 𝑣#	(𝑇0(𝑣$)	𝑚𝑜𝑑	𝑝)"# =
7#

>$(7!)
  

 = ?9!	.>%(A)	9:;	BC	9:;	!
>$(>%(D))

  

 = 9!	.>%	>$(D)
>$%(D)

  

 = 9!	>$%(D)
>$%(D)

  
 = 𝑚$	𝑚𝑜𝑑	𝑛  

4 Security analysis and performance analysis 

In this section, we will prove that the security of our proposed cryptosystem is com-
putationally related to quadratic residue and chaotic maps assumption. In addition, we 
demonstrate that the proposed scheme is sound and correct. Some possible attack are 
discussed to show that the proposed technique is secure. Finally, the performance is 
evaluated and compared with some other related works. 

4.1 Security analysis  

We show that our scheme is heuristically secure by considering the following three 
most common attacks. 

Direct attack. Adv wishes to obtain all secret keys using all information available 
from the system. 

Particularly, he wants to find the 3-tuples (𝑥, �̅�, 𝑞g). In this case, Adv needs to solve 
QR and chaotic map . For QR, he needs to find the primes of n and the best way to 
factorize the modulus 𝑛 = �̅�𝑞g is by using the number field sieve method (Lenstra et al., 
1993). However, this method is just dependent on the size of modulus n and it is com-
putationally infeasible to factor an integer of size 1024-bit and above. The primes p and 
q also must be well-chosen that they are must be strong primes (Gordon, 1984). This 
could resist the scheme from the special-purpose factorization algorithms attack. For 
chaotic maps, to resist various attacks, one should maintain the same security level for 
the chaotic maps over primes. 

Quadratic residue attack. Assume that the Adv has successfully solves the QR 
assumption so that he knows the primes 𝑝	and	𝑞. He also learns the following equation: 

 𝑣# ≡ 𝑚$	. 𝑇+(𝑦) ≡ 𝑚$𝑇0+(𝛼)  
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From the equation, to recover the original message, 𝑚 he has to remove the term 
𝑇0+(𝛼) from 𝑣#. he needs to find 𝑟𝑥 which is the assumption of the computational cha-
otic maps and this is computationally infeasible 

Chaotic maps attack. Assume that the Adv is able to solve the chaotic map problem 
and thus obtain the secret integer 𝑥. He then knows that 𝑇0(𝑣$) = 𝑇+0(𝛼)	𝑚𝑜𝑑	𝑝 and 
tries to recover the original message 𝑚	from the equation 𝑣# ≡ 𝑚$	. 𝑇+(𝑦) = 𝑣# ≡
𝑚$	. 𝑇+0(𝛼). Upon knowing the secret 𝑥, he manages to remove the term 𝑇+0(𝛼) from 
𝑣#	to obtain 𝑚$ . Unfortunately, to get 𝑚	from	𝑚$  he must know the secret primes 
𝑝	and 𝑞but this is impossible since the FAC is computationally infeasible.  

Efficiency performance. Compared to RSA and ECC, Chebyshev polynomial com-
putation problem offers smaller key sizes, and faster computation, as well as saving in 
memory, energy and bandwidth. In our proposed protocol, no modular exponentiation 
and scalar multiplication on elliptic curves are needed. However, Wang [22] proposed 
several methods to solve the Chebyshev polynomial computation problem. For conven-
ience, some notations for operations involved and their equivalent in seconds are given 
and defined as follows [24-27]. 

• 𝑇E0B  is the time in seconds for executing a modular exponentiation operation, 
1𝑇E0B ≈ 5.37𝑠 

• 𝑇9FG	is the time for modular multiplication operation, 1𝑇9FG ≈ 0.00207𝑠 
• 𝑇5H is the time for executing a Chebyshev chaotic map operation, 1𝑇5H ≈ 0.172	 
• 𝑇I!7 is the time complexity for evaluating a modular inverse computation, 𝑇I!7 ≈
10𝑇9FG ≈ 0.0207𝑠. 

We next compare in Table 1, our proposal with the schemes based on hybrid prob-
lems (Abdoul and Ahmed, 2013; Ismail and Hijazi, 2011). In Table 1, the total compu-
tational complexity required by the proposed scheme is 6𝑇9FG + 3𝑇5H + 𝑇I!7 which is 
equivalent to merely 0:54912s and is far better than what other schemes have to offer. 

Thus, we conclude that the proposed scheme based on chaotic maps and factoring 
problems is more efficient than the schemes based on DLP, QR and FAC problems. 

Table 1.  Comparison of two schemes in term of computational complexity 

Scheme Encryption Decryption Total (in seconds) Hard problems 
Ismail et al. (2011) 2𝑇!"# + 2𝑇$%& 𝑇!"# + 4𝑇$%& 16.12242 DLP ,QR 
Abdoul and Ahmed 
(2013) 2𝑇!"# + 7𝑇$%& 𝑇!"# + 5𝑇$%& + 𝑇'() 16.14105 DLP, FAC 

Our scheme 3𝑇$%& + 2𝑇*+ 3𝑇$%& + 𝑇*+ + 𝑇'() 0.54912 Chaotic map, QR 

5 Numerical simulation of the cryptosystem 

Suppose we want to cipher a message 𝑚 = 442	with our scheme. Let’s consider  
�̅� = 23, 𝑞g = 31 and 𝑝 = 1427, the modulus 𝑛 = �̅�	𝑞g = 713 and 𝑛 is a factor of 𝑝 − 1. 
We choose the numbers 𝑥 = 113  and 𝛼 = 12  with order 713 such that 12J#& =
1	(mod	1427), then compute the public key, 
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 𝑦 = 𝑇0(𝛼) = 𝑇##&(12) = 1354(mod	1427) 

Thus our public key and secret key of the scheme are (713,12,1354)  and 
(23,31,113) respectively. To encrypt the message	𝑚 = 442, the sender selects 𝑟 =
137 and computes and sends the receiver. 

 𝑣# = 𝑚$	. 𝑇+(𝑦) ≡ 442$(	𝑇#&J(1354)	mod	1427) 
 ≡ 2 × 683	(mod	713) 
 ≡ 653	(mod	713)	and 

 𝑣$ = 𝑇#&J(12) = 500	(mod	1427) 

The receiver recovers the original message as below: 

 𝑣#	(𝑇0(𝑣$)	𝑚𝑜𝑑	𝑝)"# ≡ 𝑚$	mod	𝑛 

𝑣#	(𝑇0(𝑣$)	mod	𝑝)"#mod	𝑛 ≡ 653	(𝑇##&(500)	mod	1427)"#	 
 ≡ 653	(683)"#	mod	713 
 ≡ 653 × 404	mod	713 
 ≡ 2	mod713 

 𝑚$	mod	𝑛 ≡ 442$	mod	713 ≡ 2	mod	713 

The receiver extract the original message 𝑚 from 𝑚$ ≡ 2	mod	713.	 

 𝑚 ≡ (2)
#
!	mod	713 ≡ 442 

6 Conclusion 

In this paper, a new cryptosystem based on chaotic maps and quadratic residue prob-
lems has been proposed. The cryptosystem based on multiple cryptographic assump-
tions offers a greater security level than that schemes based on a single cryptographic 
assumption. By the introducing chaotic maps into the field, the proposed scheme prom-
ises to bring in far better performance than cryptosystems based on DL and FAC prob-
lems. Compared with previous schemes, the proposed scheme demands a much lower 
computation cost, providing excellent security, reliability, and efficiency. 
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