PAPER
MEMBERSHIP VERIFICATION IN AUTHENTICATING DYNAMIC SETS

Membership Verification in
Authenticating Dynamic Sets

http://dx.doi.org/10.3991/ijoe.v9i5.2973

ZK.Wei', H.Y. Kim', Y.K. Kim', J.H. Kim?

! ETRI, Daejeon, Korea
? YoungDong Univesity, Chungbuk, Korea

Abstract—A file system for cloud storage has to guarantee
integrity of its files. For this purpose, existing designs
mainly rely on hash tree and RSA tree. A new design based
on B+ tree construction is proposed in this paper. The new
design performs better in dynamic authentication for
integrity of file system and also relatively has low
computational cost.

Index Terms—B+ tree, dynamic authentication, membership
query

L INTRODUCTION

Cloud storage provides some popular on-line services
for archiving, backup, and even primary storage of files. It
gathers different kinds of storage devices to work in
cooperation by means of cluster application, grid
computing technology and distributed file system. Cloud-
storage providers offer users clean and simple file-system
interfaces, abstracting away the complexity of direct
hardware management. Amazon S3, IBM XIV and HP
EXD9100 are well known examples. Using these cloud
storage systems, users can rapidly deploy their data to the
cloud and the cloud storage provider has to guarantee the
security of their data. The security includes both
confidentiality and integrity. Confidentiality which refers
to identity authentication, data encryption and access
control means that data should not be access by illegal
users. Integrity means the data should not lose and be
tampered with. Moreover, users can authenticate the
integrity of their data which store in the cloud-storage
System. This paper mainly presents a new construction
which performs better when users want to authenticate the
integrity of their data in dynamic sets.

When discussing authentication method for data
integrity, making an abstract of the system and build the
system model is essential. Two-party model and three-
party model are the two kinds of system models in
common use. Three-party model is composed of user,
untrusted server and credible data source. In this model,
data source send a digest with time stamp to user. The
user issues query request and get data and proof for
integrity authentication from untrusted server. Update
operations perform in the data source which would send
data information after update. In two-party model, there is
not credible data source. Operations just occur between

user and untrusted server. Figures 1 shows the two models.

II.  RELATED WORK

Authentication of data integrity means that the data,
uploading from untrusted server by user, is valid and has
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not been tampered with. As known to all, traditional
authentication method for data integrity is MAC and data
signature, but it does not apply to cloud storage
environment. In cloud storage environment, the archived
files are very huge, so cloud-storage provider often
divides these files into small buckets. Each bucket is an
independent storage unit. When authenticating the data
integrity, users need only some pieces of blocks, not the
whole file. The archived file could be regarded in the
cloud as a structured data set . As a result, integrity
authentication actually could be taken as authenticating
membership of S. Furthermore, this kind of authentication
could implement through authenticated data structure,
such as hash tree, skip list and RSA tree. In the whole
paper, n denotes the current number of elements of the
data set.

A. Hash Tree

The hash tree scheme introduced by Merkle [1] which
supports the construction of the data structure followed by
query operations, but not updates operations (without
complete rebuilding). The definition of label f{v) at each
node v is as follows:

If v is a leaf, f(v) = x, where x is stored at v; Else, f(v)
= h(f(a), f(b)) where a and b are the left and right child of
v and A is a collision-resistant cryptographic hash function,
such as MD5 or SHAI.

Suppose a query for an element x: untrusted server
always returns the proof, consisting of nodes labels which
are along the path from x to the root together with all
sibling nodes labels in that path. Credible data source
returns the root label. The user recomputes the root label
by hashing the labels in the proof in the appropriate order.
If the value so obtained matches the one provided by the
credible data source, and then the data obtained from the
untrusted server is valid.
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Figure 1. Two kinds of System Models

http://www.i-joe.org



PAPER
MEMBERSHIP VERIFICATION IN AUTHENTICATING DYNAMIC SETS

AL ADA LA

Figure 2. RSA tree

aoudee

The hash tree scheme achieves O(logn) proof size,

query time, update time and verification time. The
disadvantages of this scheme are high computational cost
and does not support update operation (without complete
rebuilding).

B.  Skip List

Goodrich and Tamassia [2] have designed a data
structure based on skip lists. A skip list stores a set .S of
elements in a series of linked lists S, S,,...,S,.The label of

elements is computed by a commutative hashing .The
base list, Sy, stores all the elements of S in order, as well
as sentinels -o= and +e=. Each successive list S, for

i >=1, stores a sample of the elements from S;—;. To
define the sample from one level to the next, each element
of S;_; was chosen at random with probability 1/2 to be in
the list S;. The sentinel elements - and +<° are always
included in the next level. The top level contains only the
sentinels. This scheme possesses similar authentication
process to that of hash tree scheme, as well, has high
computational cost O(logn). Differently, skip list scheme

can support update operations but with high algorithm
complexity.

C. The RSA tree

The RSA tree scheme uses another cryptographic
primitive, namely one-way accumulator [3]. This scheme
based on RSA exponentiation function implements a
secure one-way function that satisfies quasi-com
mutativity [3]. Using the reference of solution to memory
consistency [4], the scheme based on RSA tree was
addressed in [5].

In this scheme, Let 0 <¢ < I be a constant and S = [el,
e2, ..., en] be the set of elements to authenticate. A tree

is built 7(¢) on top of S, which called the RSA tree of S,
such that: [5]

1. The leaves of the tree store the actual elements;
2. The tree consists of exactly [1/g]+1 levels;

3. Every node of the tree has O(na) children;

4. Level i in the tree contains O (nl—ig) nodes (the
leaves node of the tree lies in level 0).

Membership can be verified by using RSA accumulator
[6] summarized set S. The following figure 2 shows the
RSA tree.

The process of Integrity authentication based RSA tree
is similar to that of hash tree scheme. However, it is worth
highlighting that RSA tree scheme achieves O(1) proof
sizes, query time, and verification time. Unfortunately,
this scheme cannot still support update operations without
cyclical and complete rebuilding after a short time.

D. B+ Tree

The RSA tree scheme gains the lower time and space
complexity. In this paper, An efficient and practical data
structure, B+ tree, is introduced which factors away the
disadvantage of update operation in RSA tree scheme,
while maintaining some algorithms of that scheme and the
lower time and space complexity O(1).

A B+ tree in the form of a balanced tree is a type of tree
which represents sorted data in a way that allows for
efficient retrieval and update of records, each of which is
identified by a key. The order of B+ tree, measuring the
capacity of nodes, referred to here as b, a B+ tree has to
meet the following conditions:

1) The root which is not the single leaf is allowed to
have as few as two children.

2) The actual number of children for an internal node,

referred to here as m, is constrained for [b2]<m=b

3) An internal node, whose number of subtrees is n,
contains n keys and » pointers.

4) Leaf nodes which are always on the same level, have
no children, but are constrained so that the number of keys

must be at least |b/2 | and at most b — 1.

5) Leaf nodes are linked together to form a link list, so
that B+ tree can support fast process of range-search
queries.

6) The tree has two pointers: they point to the root and
the smallest leaf respectively.

The primary value of a B+ tree is in storing data for
efficient retrieval and graceful adjustment after updates in
particular, file systems. NTFS, ReiserFS, NSS, and JFS
file systems all use this type of tree.

The B+ tree structure is an efficient means for storing a
set .S of elements. It supports the following operations:

Search (key): determine whether key is in S. It supports
random search from the root and sequential search from
the smallest tree. The algorithm of random search is as
follows:

int search(key)
if (the tree is empty) return -1;

while (curlevel <tree_level - 1) {
int pointer = get_pointer(key, &rnode, &key _id);
read_btidx_block(&rnode, pointer, fidx);
curlevel++;

!

s

result = get_leaf pointer(key, &rnode, &key_id);

return result;

/* if found return the logical address of the record; if not found return -1 */

read_btidx_block(&rnode, bblock_hdr.root_bnum, fidx); /* read b+ tree root into rnode */

/* not reach the leaf level, still in the tree */

/* level down */

/* get address */
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Insert (key): insert key into S. the algorithm is as follows:

/* *key: key to be inserted;

* address: addr, point to the record block — */
void insert(key _t key, int address)
{ search();
if (key found)  return;
if (leaf has empty space) free_insert();
else { split_leaf node(); update_inside_node(); }
/

void update_inside_node(int *key, int block_id)

while (curlevel > 0) {
curlevel--;
get_pointer(*key, &node, &key_id);

if (node.d < KEY NUM) { /
free_insert_inside(*key, block_id, &node, key_i
return,

Jelse {
split_inside_node(key, block_id, key_id, &node,

}

}
if (curlevel == 0) {

}
}

/* update internal node when a key will be insert in this node */

/*not reach root */

/* do not have enough space, split */
/*split into node and new_node */

/* need new a root node */

* have enough space to insert */

d);

&new_node);

/* create the new root node */

Delete (key): remove key from §. the algorithm is as follows:

/* *key: key to be inserted;

* address: addr, point to the record block  */
void insert(key _t key, int address)
{ search();
if (key found)  return;
if (leaf has empty space) free_insert();
else { split_leaf node(); update_inside_node(); }
/

void update_inside_node(int *key, int block_id)

while (curlevel > 0) {
curlevel--;
get_pointer(*key, &node, &key_id);

if (node.d < KEY NUM) {

return,
Jelse {
split_inside_node(key, block_id, key_id, &nod.

}

}
if (curlevel == 0) {

}
}

/* update internal node when a key will be insert in this node */

free_insert_inside(*key, block_id, &node, key_

/*not reach root */

/* have enough space to insert */

id);

/* do not have enough space, split */
e, &new_node);
/*split into node and new_node */

/* need new a root node */
/* create the new root node */

E. Organization of the Paper

The following is the organization of this paper. In
Section 3, some necessary cryptographic and algorithmic
ideas needed for our construction is presented. In Section
4, our design goals are introduced and our construction is
developed. This paper proposes Authentication Method in
dynamic sets in Section 5. And in Section 6, it is the
conclusion of the paper.
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III.

Definition 1 (Hash Tables) [7]: Suppose n elements
from a universe U are stored in a data structure so that
constant look-up time can be expected. Set up a one-
dimensional table T/1 .. .mJ where m = O(n), fix a special
function h : U = {1, . . . ,m}, such that for any two
elements el, e2 € U, P[h(el) = h(e2)] < 1/m, and store
element e in slot T(h(e)). The probabilistic property that
holds for h, combined with the fact that A can be

PRELIMINARIES
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computed in O(1) time, leads to the conclusion that there
is always a constant expected number of elements that
map to the same slot i(1<i<n)and therefore, look-up
takes constant expected time.

Theorem 1 (Dynamic Hashing)[8]: For a set of size n,
dynamic hashing can be implemented to use O(n) space
and have O(1) expected query cost for membership
queries and O(1) expected amortized cost for insertions or
deletions.

Definition 2 (Two-Universal Hash Functions): Such
functions were first introduced by Carter and Wegman [9].
A family H = {h : A — B} of functions is two-universal if|
for all al,a2 € A4, “™% and for a randomly chosen

function h from H, PhEH{h(al) = h(a2)}$ 1/]B|.

Lemma 1 (Prime Representatives) [6]: Let H be a two-
. {0} fo1}t
universal family of functions from '™ to V) and h
k 3k
€ H. For any element eiE{O,l} , a prime i E{O’l} can
be computed so that h(xi)=e , by sampling O(k2) times

-1
from the set of inverses h (e" )

Definition 3 (Negligible Function) [6]: A real-valued
function v(k) over natural numbers is neg(k) if for any
nonzero polynomial p, there exists m such that
Vn>m,|v(n)|<1/ p(n)

Definition 4 (Strong RSA Assumption) [6]: Given an
RSA modulus &V and a random element x € ZN, it is hard
(it happens with probability neg(k)) for a computationally
bounded adversary 4 to find y>I and a such that ay = x
mod N.

Definition 5 (RSA accumulator) [6]: Suppose a set of k-

bit elements S={e1’ez,...,e” . Let N be a kK’ bit RSA
modulus (k’ >3k), namely N=pq, where p, q are strong
primes [9]. S can be efficiently represented with a k’ bit
integer, namely the integer f(S)= g @) mod N

where g EQRN [10] and is a 3k bit prime representative.
This representation has the property that any
computational bounded adversary A, that does not know
@ (N), cannot find another set of elements S’ ! = § such
that £ (S’ ) = f(S), unless A breaks the strong RSA
assumption.

IV. OUR CONSTRUCTION

A. Design Goals

The design of our construction should address the
following goals:

1) Low computational cost: It achieves O(1) proof
sizes, query time, verification time and linear update time.

2) Better performance on authenticating dynamic sets
(without compute rebuilding)

3) High security: the authenticity of the data should be
verifiable with a high degree of reliability.
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B. B+ Tree Constructions

The new authenticated data structure is built based on
B+ tree. Let 0<e¢<I be a constant and S ={e1’ez,...,e”} be
the set which we would like to authenticate. Firstly store
the elements of § in a hash table, referred to here as t, then

build B+ tree 7T(g) based on t, satisfying the following
additional conditions:

1) The leaf nodes store the prime representatives of
Hash value of elements in S;

2) The number of levels is [1/e]+1,;
3) The order of T(g) is ;
4) Every node has O(nE) children.

In this construction, RSA accumulator is used to
produce a short and computational proof to support the
membership verification. Let /=[1/¢] and leaf nodes lie
at level 0. given | RSA moduli NI,N2,...,NI, | two-
universal functions h1,h2,...,h] and

81,82,...,8l( g, E0Ry, ).
For every node v of T(g), digest y(v) is defined as
follow:

If v lies at level 0, y(w=e ; Else

]_! 7 (+(u))
x(v)=g " mod N, [5];

where N(v) is the set of children of v and rl(x(v)) isa

representative of y(v). [5];

In particular, y(s)= y(r), where s is the given set and r is
the root of T(g). Under the strong RSA assumption, the
probability that a computationally bounded adversary A,
knowing only the RSA moduli N, and g, I<i < [, can

find another set S, =S, such that x (§1) = X (§2) is
neg(k).

V.  AUTHENTICATING DYNAMIC SETS
In this section, how the B+ tree authentication structure
to verify membership in a dynamic set will be described.
Let S= {91 ez,...,en}, a B+ tree is built based on S. the RSA
moduli Ni and bases gi which are defined in section 3, 1<<
i <1, are public.

A. Queries and Verification

Suppose a query for an element x: untrusted server
always returns a sequence of proof stored at the nodes
which are along the path from the leaf containing the
element x to the root .The user stores only the set digest
d =y(S) which achieved from the credible data source
and recomputed y(S) with the proof in the appropriate
order . Let v,,v,,...,v; be the path from x to the root, r =v,.
Let B(v) be the set of siblings of node v .The proof was
defined as follow: s =(a,p,) (i=1../ )  where

I"(,\‘(lt))
a, =7 (x(v)) ® and =g mod N, . The

user verifies the membership by the following three
equations:

Iy (o) =x, M

65



PAPER
MEMBERSHIP VERIFICATION IN AUTHENTICATING DYNAMIC SETS

h (o) =B mod N, ,, 2)

d =p;" mod N,. 3)

If the three equations hold, the data obtained from the
untrusted server is valid. Suppose that query time is the
time to construct the proof and not the time to find for the
element, on account of that can be achieved with hash
table in O(1) time. Due to precomputed proof and

constant depth of the tree, both query time and verification
time take O(1). The size of proof is also O(1).

B. Updates

When update occurs, digests of the nodes along path
from the updated leaf to the root have to recompute.

In three-party model, updates performed at the data
source and the information pass on to the untrusted server
is as follows:

*  Operation performed (insertion/deletion).

* Element x involved.

e Signed statement consisting of a timestamp and
new digests in corresponding path.

Lemma 2 (O(n log n) Witness Updates) [11]. Let NV be
an RSA modulus. Given the elements x, x,,...,x,, N and g,

without the knowledge of @(N), A7.=1_[xj mod N, for
J=i

i=1,2,..,n can be computed in o(nlogn) time.

The process of update to T(g) can perform by means of
algorithms introduced in section 2. Update operations only
affect Concentrated part of T(g) and need not rebuild it
unless the increased leaf nodes or deleted leaf nodes are

more than 3n/4 respectively. The authenticated
information has size. Due to the constant depth of T(g),
O(nE logn)

the update time is also

In two-party model, the untrusted server has to perform
the update operation by itself. Suppose the user would like
to insert x into 7T(g): Instead of getting the new digest
d’=X(S’) from the untrusted server, the user should
compute it locally, then sends x to the untrusted server.
The untrusted server performs the insertion by means of
algorithms introduced in section 2 and also updates the
digests along the path from x to the root.

Subsequently, it sends the new digests, a,', along the
update path to the user. Then the user verifies the
correctness of the update: it issues a query for y and the
untrusted server returns y and its proof which defined in
the ‘Queries and Verification’ section. If the following
equations hold, the insertion is valid (i =1, 2,..., 1).

h(o))=x, (4)

h(o'y) =B mod N,, (5)
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h(o,) =B mod N,_,, (6)

d' =@ modN, . (7

Delete operations is similar to the insertion except for
replace equation 5 of /(o )= ﬁ?‘r(’x)_] mod N,. T(g) need

not rebuild it unless the increased leaf nodes or deleted
leaf nodes are more than 3n/4 respectively. The size of the
verification proof is O(1). Due to the constant depth of

T(¢), the update time is also O(nE logn) time as that in
the three-party model.

VI. CONCLUSION

In this paper, a new authentication construction for
membership verification is presented based on B+ tree and
RSA accumulator. Our construction performs better in
authenticating dynamic sets without frequently rebuilding
the data structure.
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