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Abstract—Our brain is our body’s control centre and is essential for proper 
functioning of the body. Alzheimer’s disease is a chronic neurodegenerative dis-
ease that affects the cerebral cortex of the brain and causes memory loss and loss 
of cognitive thinking. EEG (Electroencephalography) is a method of recording 
neurological electrical activity with electrodes. It was chosen as it is a simple, 
painless procedure. This paper suggests an automated and accurate algorithm 
for the detection of Alzheimer’s Disease using EEG signals with a combination 
of Signal processing and Deep Learning Methods. Concepts like Butterworth 
filters, DWT, statistical parameters, Data Augmentation and CNN were used in 
order to achieve a classification algorithm with high accuracy. A total highest  
system  accuracy of 97.61% was achieved.

Keywords—electroencephalography, Alzheimer’s disease, filters, discrete 
wavelet transform, statistical features, conditional generative adversarial 
 network, convolutional neural network, long short-term memory

1 Introduction

In modern medicine, EEG is one of the most common diagnostic tests for brain 
disorders. EEG is defined as the recording of the brain’s electrical activity. Voltage 
fluctuations in different regions of the brain are measured with the help of adhesive 
electrodes placed on the scalp at predetermined positions.

The use of EEG signals has proved advantageous, mainly since the method is 
non-invasive in nature. EEG also provides a high temporal resolution, typically in the 
order of milliseconds. Radiation risks posed by typical diagnostic methods like MRI’s and 
CT-Scans and the invasive nature of clinical methods have popularized the use of EEG.

Alzheimer’s disease (AD) is a chronic neurodegenerative disease. It is the most 
common type of dementia prevalent in older people. It affects one in fifteen people over 
the age of 65. The cause of AD is still unclear but it is known that it is caused due to 
extreme shrinkage in the Cerebral Cortex and Hippocampus regions of the brain. Early 
detection of AD is crucial in order to reduce or delay further progression of the disease.

Alzheimer’s disease research with EEG can be understood in terms of the type of 
features used. Typically, the features, or Biomarkers, can broadly be classified into  
3 types: Time Domain Feature, Frequency domain features and Time-Frequency 
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domain features. Other methods include using Classical Machine Learning or Neural 
Network models for classification of raw EEG signals. Since EEG is a non-stationary 
signal, it is more appropriate to use time-frequency based approaches like DWT (Dis-
crete Wavelet Transform), for feature extraction. Once these features are obtained, the 
dataset can be used to train a classifier to classify the signal as an AD patient or normal. 
In the proposed work, a CNN algorithm was used.

The main motivation for this work is based of existing research conducted by 
 Yasmeen et al [1]. The work proposes the use of EEG signals and feed forward neural 
networks for the diagnosis of Seizures. The paper proposes the use of features like DWT 
as time-frequency biomarkers in classification. It also suggests the use of  classical ML 
algorithms to determine the most optimum channels of the EEG dataset with the help 
of statistical features like mean, variance, standard deviation, kurtosis and skewness.  
With the help of 2 datasets at different sampling frequencies, an ANN algorithm was 
trained, which achieved an average classification accuracy of 95%.

This work aims to build on any existing research in the field of EEG signal analysis 
and automated Disease detection algorithms using Neural Networks.

2 Review

An extensive literature survey indicates that automated diagnosis of brain disorders 
using EEG signals is being researched extensively globally.

Gao Wei Xu et al [2] suggest an algorithm for detection for epileptic seizures for 
both binary and 5-class problems. The paper suggests the use of a 1-D CNN-LSTM 
Model. Since CNN’s cannot retain memory of previous time series patterns, this paper 
suggests the use of a hybrid CNN model. The model utilises an LSTM block, which is 
traditionally used in RNN algorithms, in order to serve as a memory unit. The method 
is established as more effective, providing a classification accuracy of 99.39% for the 
binary classifier and 82% for five classes.

A technical review performed by Bibina et al [3] on signal processing methods for 
Diagnosing Alzheimer’s Disease using EEG gives a comparative study of different 
time, frequency and time-frequency biomarkers used in analysis. It highlights the ben-
efits of using time-frequency features for classification. The paper also suggests that 
SVM and ANN algorithms are important for ECG classification tasks.

Applications and comparisons of classification algorithms for recognition of Alzhei-
mer’s Disease by Lehmann et al [4] suggests the use of absolute and relative spectral 
power biomarkers calculated from recording of rested eyes closed EEG signals taken 
from healthy, mild and moderate cases of AD. It also suggests the use of algorithms like 
forest classification, SVM and neural networks for classification achieving accuracies 
as high as 91% for Severe AD vs Normal classifications. 

Mike Cohen [5] provides a definitive pre-processing pipeline and segmentation 
methods for EEG signals. His work also provides solutions to reject channel noise.

Lei Xu et al [6] suggested a method to sample tabular data and generate synthetic 
data samples of high fidelity. The proposed CTGAN algorithm is designed to train-by-
sampling, which helps to overcome imbalanced columns of data. It uses mode-specific 
normalization to overcome non-gaussian and multimodal distributions. CTGAN was 
used as a data augmentation method.
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A review performed by Cassani et al [7] is a comprehensive study of EEG data.  
It suggests that the ideal number of electrodes to record EEG data is 17–32 electrodes. 
It also highlights the use of pre-processing filters and notch filters to remove noise and 
power-grid interference in EEG signals. 

3 Methodology

Block diagram of the proposed method for detection of AD has been shown in 
Figure 1. It includes data acquisition, preprocessing, feature extraction channel selec-
tion followed by data augmentation and classification. Each block of the diagram is 
explained in brief.

Fig. 1. Block diagram

The raw EEG signal acquired was initially given for pre-processing. Filtering per-
formed on the signal included the use of a Butterworth Band-Pass filter in order to 
obtain the ideal EEG Signal range (0 Hz–60 Hz). Also, in order to remove power-line 
interference, a notch filter was used at 50 Hz. 

After denoising, the signal was further segmented using a window size of 60 sec. 
From each sample of data, 6 segments from the middle were extracted and sent for fea-
ture extraction. Daubechies DWT is applied to the resultant dataset in order to obtain 
the different sub-bands of EEG such as gamma (>32 Hz), beta (16–31 Hz), alpha 
(8–15 Hz), theta (4–7 Hz) and delta (<4 Hz). 

Statistical features are calculated for each sub-band obtained from DWT. Features 
like mean, variance, standard deviation, skewness and kurtosis are calculated for each 
channel. Classical ML algorithms, like SVM and KNN were trained channel-wise, in 
order to compare classification accuracies between AD and Normal. The higher the 
classification accuracy, the more optimal the channel for AD classification. 

The initial 28 channels were shortlisted to 10 channels and these 10 channels were 
passed through a CTGAN data augmentation function. This step is performed in order 
to have more samples by generating synthetic data using Generative Adversarial Net-
work Models. More data samples are needed for a more robust and accurate Classifier.
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Once the final data augmented dataset is obtained, a 1-D Convolutional Neural Net-
work with Long Short-Term Memory module is trained as a classifier to classify the 
signal as AD or Normal.

4 Implementation

In the proposed work, a dataset was obtained from the Department of Neuroscience, 
Ramaiah Memorial Hospital. The data was recorded using an EEG electrode cap fol-
lowing the standard 10–20 system of electrode placement. In this system, electrodes are 
placed at every 10% of total front-back distance and 20% of the total left-right distance 
of the scalp. A total of 28 channels are present in the dataset. The dataset was sampled at 
128 Hz and was handled as Comma Separated (.csv) files. The simulation environment 
used in this paper is Python (version 3.7.11).

4.1 Pre-processing

Pre-processing is required for EEG signals in order to remove any discrepancies in 
the signal. Eye-blink artefacts, power-line noise and other noises can all be removed 
using signal processing techniques.

The signal in the range of 0–60 Hz is the only part of the signal that contains the 
sub-band’s in EEG signals, the rest is classified as noise. Hence, a bandpass filter from 
0–60 Hz was designed to attenuate unwanted frequencies. The bandpass was con-
structed as a combination of 6th order high-pass and low-pass Butterworth filter. Fur-
thermore, to remove power-line artefacts, an IIR notch filter is implemented at 50 Hz. 
The signal which is passed through the combination of these filters has a higher signal-
to-noise ratio.

This denoised signal is segmented into segments of 60 sec each. With a sampling 
frequency of 128 Hz, we can conclude that there are 7860 samples of data per segment. 
Out of the 18–22 segments obtained per sample, we consider only the middle six seg-
ments from each sample. This is done in order to remove any biases in the data based on 
subjects restlessness or eye-blinks. A final total of 155 segments of data were obtained.

4.2 Feature extraction

Discrete wavelet transform. Initially the Power Spectral Density biomarker was 
considered for analysis. However, PSD cannot represent the abrupt changes present 
in the EEG signal efficiently. Since EEG is a non-stationary signal, it is more advanta-
geous to use a time-frequency domain-based biomarker. Wavelets are oscillations like 
waves, and have features like scaling and shifting. Since it works on a multi-scale basis 
it allows for decomposition of EEG signals. 

The type of wavelet transform plays an important role as it is crucial in obtaining 
the correct frequency bands. Daubechies wavelets are a family of orthogonal wavelets 
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which have a smoothing feature. The sub-bands can be effectively extracted using a db4  
wavelet transform algorithm. A total of five decomposition levels are obtained 
from the EEG signal, namely, detail coefficients D1 (64–128 Hz), D2 (32–64 Hz),  
D3 (16–32 Hz), D4 (8–16 Hz), D5 (4–8 Hz) and approximation coefficient A5 (0–4 Hz) 
are obtained. Figure 2 represents a plot of the sub-bands extracted from the dataset, 
using Discrete Wavelet Transform.

Fig. 2. Decomposition of EEG signal

The Table 1 shows the various decomposition levels and their corresponding sub-
bands. Therefore D2, D3, D4, D5 and A5 were used for further statistical feature 
extraction.

Table 1. Wavelet transform and sub-bands

Sub-Bands Frequency Bands Decomposition Level

Noise 64–128 Hz D1

Gamma 32–64 Hz D2

Beta 16–32 Hz D3

Alpha 8–16 Hz D4

Theta 4–8 Hz D5

Delta 0–4 Hz A5

The DWT features extracted represent the distribution of the energy of the signal on 
a time-frequency scale. Since we are aware that not all the channels contain data that 
defines AD, we must reduce the channels in the data to only those which are useful. The 
main aim is to obtain the 10 best channels for AD classification.
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Statistical features. In order to reduce the dimensionality of the problem, we calcu-
late statistical parameters for these DWT features. As per previous literature, we have 
considered the statistical moments up to 4th order, i.e., mean, variance, skewness and 
kurtosis. We have also considered standard deviation, for this work.

In order to reduce the dimensionality of the problem, we calculate statistical parame-
ters for these DWT features. As per previous literature, we have considered the statisti-
cal moments up to 4th order, i.e., mean, variance, skewness and kurtosis. We have also 
considered standard deviation, for this work.

•	 Mean: Mean is considered as first statistical moment, around zero. Mean calculate 
the value around which centrally clustering occurs.
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•	 Standard Deviation: Standard deviation measures dispersion or width of the distri-
bution. It can also be termed as the square root of variance.
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•	 Skewness: The third moment defines the skewness of distribution. It shows the 
asymmetry of distribution around its mean. A positive value signifies the tail of dis-
tribution extends towards more positive and negative values signifies tail towards 
more negative of x.
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•	 Kurtosis: It is a non-dimensional quantity which measures the flatness or the peak-
ed-ness of distribution. A positive kurtosis value is termed as leptokurtic, and nega-
tive kurtosis is termed as platykurtic.
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The calculation was done sub-band wise for each channel of data. The final feature 
set can be defined as follows, for each sample of data: 25 Parameters/Per channel. When 
we consider the whole statistical feature set, we have 1050 Data Values per Channel.

4.3 Channel determination

The final feature set obtained cannot be analysed by mere manual observations. 
To get a better understanding of the channels, we use classical Machine Learning 
 algorithms. In this work, we have used Support Vector Machine (SVM) and K Nearest 
Neighbours (KNN) algorithms. 

SVM’s are supervised learning models which are mainly used in classification prob-
lems. It is a linear classifier where the data point is considered as a p-dimensional vec-
tor. The algorithm develops a (p-1) – dimensional hyperplane. For this implementation, 
an SVM with ‘rbf’ kernel function was chosen.

KNN algorithms are supervised and non-parametric methods used for classification. 
The data is used to train the model and the K value denotes the K nearest data points to 
the test point. The most frequent class value in the K points is the class assigned to the 
test data. The best results are observed with ‘6’ Nearest Neighbours for KNN classifier.

A channel-wise comparison is done using these models, in order to ascertain the best 
10 channels for further work. Table 2 represent the 10 best channels obtained and the 
corresponding accuracy scores for both SVM and KNN models.

Table 2. SVM and KNN accuracies

Channel Name SVM Accuracy KNN Accuracy

EMG (Highest Accuracy) 69.64% 76.00%

Fp2 69.69% 64.00%

Fp1 70.21% 62.05%

EKG 68.92% 63.18%

A2 68.72% 61.38%

PG1 68.36% 61.13%

C4 67.64% 63.03%

T4 66.82% 62.66%

F7 68.36% 60.56%

F3 66.92% 61.33%

MK (Example of bad channel) 64.36% 56.82%

4.4 Data augmentation

Upon determining the 10 best channels, the overall dataset size was drastically 
reduced. Since the work uses a CNN algorithm, a large dataset is beneficial for the 
network. In order to eliminate the data discrepancy, data augmentation was used. Lit-
erature suggests Generative Adversarial Networks (GAN) to be best suited for this 
application.
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GAN Networks are deep-learning based generative models, consisting of a genera-
tor and discriminator sub-model. This work uses only the generator model, which uses 
an existing dataset to train the model and then creates synthetic clones.

CTGAN or conditional GAN architecture was chosen since it is a deep learning 
based synthetic data generator for single table data. CTGAN can produce clones with 
high fidelity with the use of features like mode-specific normalisation and performing 
training-by-sampling. It also overcomes problems like imbalanced columns of data. 
CTGAN network uses Adam optimization and was trained for 10 epochs.

The Figure 3 represents the architecture of CTGAN, in terms of its generator and 
critic model. In this work, the generator model was solely used.

Fig. 3. CTGAN architecture

4.5 CNN algorithm (classifier)

CNN models are a relatively newer and more accurate method for creating classifi-
cation models. This method makes use of Convolutional layers and the model is trained 
using data in Batches and Epochs. At each epoch, the model is more accurate and hence 
it can view patterns in data more easily. In recent research trends, CNN models are 
preferred over traditional RNN algorithms.

The proposed 1D CNN-LSTM model is composed of an input layer, one convo-
lutional layer, one pooling layer, one LSTM layer and a dense layer. The Figure 4 
 represents the detailed model architecture.

122 http://www.i-joe.org



Paper—Deep Neural Network Model for Automated Detection of Alzheimer’s Disease using EEG Signals

Fig. 4. 1-D CNN model with LSTM layer architecture

The input layer has a shape of (X, 7680, 10), where X represents the number of seg-
ments. This layer can extract abstract features from the signal. 

The input layer is then passed through to the 1-D convolutional layer. The input layer 
has a kernel size of 8 with 32 filters. A Rectified Linear Unit (ReLu) activation layer is 
used, which can introduce non-linearity to the model.

The feature maps generated in the input layer are sent to the Max-Pooling layer. In 
this layer, the size of the pooling window is 4 and the stride of the window is also 4. The 
max-pooling layer helps to reduce the dimensionality of the training and accelerates the 
training process.

After passing through the Max-Pooling layer, the feature maps are passed through 
to the LSTM layer. LSTM is an RNN based concept which is similar to a memory unit. 
The LSTM layer can preserve previous information and further improve the learning 
ability of the model from continuous EEG data. The layer used has a kernel size of 32 
with a Sigmoid recurrent activation function.

Finally, the features are passed to the Dense layer. This layer is responsible for the 
final classification of the data. It utilizes a Rectified Linear Unit (ReLu) activation 
layer, similar to the input layer. The final feature which is output is the class of the 
testing data.

5 Results and conclusion

In this study, a single dataset, sampled at 128 Hz was used. The dataset was first 
pre-processed to remove any noise. The signal passed through a Butterworth filter to 
obtain 0–60 Hz frequency range and an IIR notch filter was implemented at 50 Hz to 
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remove power-line noise. Segmentation was also performed on the dataset and the data 
was divided into segments of 60s each.

The signal was further decomposed into 5 levels (D1, D2, D3, D4, D5 and A5 con-
sisting of Noise, Gamma, Beta, Alpha, Theta and Delta sub-bands, respectively). Upon 
obtaining this information, statistical parameters were calculated for each wavelet sub-
band, which were further used as an input to two Machine Learning classifiers. The 
two classifiers were classical in nature and consisted of an SVM classifier with ‘rbf’ 
kernel function and a K-Nearest Neighbours classifier, choosing K value as 6. The 
classification was performed channel wise in order to determine the best ten channels 
for the final neural network model. Both models were trained with a subset of the orig-
inal dataset that consisted of single channel data. The models were then tested for their 
accuracy scores, using a standard training and testing split of 80:20. Average of ten 
accuracies was taken.

The best channels for Alzheimer’s Disease were: EMG, Fp2, Fp1, EKG, A2, PG1, 
C4, T4, F7, F3. This can be confirmed since Alzheimer’s disease is mainly prevalent 
in the frontal, temporal and parietal regions of the brain. These channels are mainly 
present in this region.

In order to combat the drastically smaller size of the new dataset, Data Augmenta-
tion was performed for the data from the best ten channels. A GAN network was trained 
using CTGAN architecture to generate synthetic clones of the dataset with high fidelity. 
Finally, a dataset which was effectively double in size was obtained.

The last stage of this study included the use of Neural Networks to classify Alz-
heimer’s data. A 1-D CNN model with an LSTM layer was chosen for this task. The 
CNN model used a ‘ReLu’ activation function and ‘Adam’ optimization algorithm. 
This architecture was trained using both datasets, i.e., before and after data augmenta-
tion. The model was trained using a 80:20 training to testing split. The model was also 
trained for different combinations of batch sizes and epochs, in order to determine the 
best possible accuracy. Model loss was calculated with the ‘Binary Cross Entropy’ 
parameter and accuracy was calculated using ‘Binary Accuracy’ metric. The final 
accuracy score was an average of ten predictions performed by the model.

Table 3. CNN model accuracy

Type of Dataset Batch Size Epochs Decomposition Level

Pre-CTGAN Dataset 10 150 87.64%

200 91.90%

300 86.30%

100 200 80.54%

Post-CTGAN Dataset 10 200 97.61%

In this paper, a non-invasive and accurate method is proposed for diagnosing Alz-
heimer’s Disease by using EEG signals. The proposed method suggests pre-processing 
using signal processing techniques, to remove noise from the signal. Further, segmenta-
tion and feature extraction were performed on the dataset using Discrete Wavelet Trans-
form and Statistical methods. Classical Machine Learning models of SVM and KNN 
were used to distinguish the different channels of the dataset and the 10 best channels 
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were chosen. CTGAN data augmentation was used in order to generate synthetic clones 
of the data, in order to effectively double the dataset. Finally, a 1-D CNN model with 
LSTM layer was used as a classifier. The model was trained for various parameters and 
it was observed that a batch size of 10 and epoch as 200 was ideal for training, without 
overfitting. It was also deduced that the dataset before data augmentation provides an 
accuracy of 91.9% whereas after data augmentation a highest accuracy of 97.61% 
was achieved. Table 3 summarizes all the accuracies achieved for the 1-D CNN LSTM 
model.

The main aim of this work: “To develop an accurate, inexpensive and non- invasive 
method to diagnose Alzheimer’s Disease” was achieved. The study can be further 
extended to diagnose other mental illnesses such as Seizures, Parkinson’s Disease etc. 
We hope this work acts as a stepping stone for further research with EEG Signals.
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