
Paper—Dynamic Background Subtraction in Video Surveillance Using Color-Histogram and Fuzzy…

Dynamic Background Subtraction in Video Surveillance 
Using Color-Histogram and Fuzzy C-Means Algorithm 

with Cosine Similarity

https://doi.org/10.3991/ijoe.v18i09.30775

Maryam A. Yasir1(), Yossra Hussain Ali2

1University of Baghdad, Baghdad, Iraq
2University of Technology, Baghdad, Iraq
maryam.a@sc.uobaghdad.edu.iq

Abstract—The background subtraction is a leading technique adopted for 
detecting the moving objects in video surveillance systems. Various background 
subtraction models have been applied to tackle different challenges in many 
surveillance environments. In this paper, we propose a model of pixel-based 
color-histogram and Fuzzy C-means (FCM) to obtain the background model 
using cosine similarity (CS) to measure the closeness between the current pixel 
and the background model and eventually determine the background and fore-
ground pixel according to a tuned threshold. The performance of this model is  
benchmarked on CDnet 2014 dynamic scenes dataset using statistical metrics. 
The results show a better performance against the state-of the art background 
subtraction models.
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1	 Introduction

In computer vision, detecting moving objects is one of the prominent areas due to 
the rapid increasing of security demands along with the wide spread of CCTV (Closed-
Circuit Television Cameras) and sensors [1][2]. Foreground extraction can be applied 
in different real time applications and in various environment where there is a region 
of interest to be devoted for anomaly detection, synopsis and tracking [3]. There are 
several approaches to detect the moving objects, like frame differencing, optical flow, 
and background subtraction approach in which it is known for easy implementation in 
video surveillance systems [4]. Different environments of video surveillance system 
like human activities surveillance, Nature surveillance and transportation surveillance 
all come with a variety of challenges in the detection of moving objects [5]. In general, 
background subtraction approach is going through three pipelined stages, the Back-
ground initialization where the first background scene is generated from a number of 
video frames. Background modelling is the stage of demonstrating a representative 
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scene to be compared with the current frame. Background maintenance is the stage of 
updating the background model upon frequent changes, the update is applied using the 
prior scene, foreground mask and the current scene. Foreground detection is the final 
stage, where a pixel classification is done, it is either foreground or background pixel 
according to the comparison between the background model and the current scene.  
In addition, some possible pre-processing and post-processing steps can be done like 
color space changing or video framing. On the other hand a post-processing steps 
might be taken to overcome a particular challenge [6]. Figure 1 depicts the outline of 
background subtraction stages. 

Fig. 1. The overview of background subtraction stages [7]
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2	 Related work

Through decades background subtraction methods have been developed and 
applied  in many surveillances real time applications. Basic models like median [8], 
histogram [9] and mean [10] are examined earlier in the literature, they simply use 
threshold difference between the current scene and the obtained model to classify 
a pixel as background or foreground [11]. Mathematical models on the other hand 
are either parametrical or non-parametric, Gaussian Mixture Model (GMM) [12], 
Substance Sensitivity Segmenter (SuBSENSE) algorithm and Visual Background 
extractor (ViBe) [13] are examples of the parametrical models [14]. While, Pixel-Based 
Adaptive Segmenter (PBAS) [15] and kernel density estimation (KDE) [16] are exam-
ples of non-parametrical models. Clustering models are identifying a pixel as fore-
ground by using the value of the color intensity for that pixel. Usually, two clusters are 
used for background and foreground pixels. Different algorithms have been applied 
in this model like Codebook model [17] and K-means algorithm [18]. Filter models 
predict the pixel value according to its history intensity [5], there are many examples 
of filters like Wiener filter [19], Tchebychev filter [20], Correntropy filter [21], optical 
flow [22] and Kalman filter [23].

More recently and due to the massive development of hardware processing and 
dataset availability, Machine learning models become the cutting edge models which 
encompass a variety methods like, support vector machines (SVM) [24], deep learning, 
neural network [25][26] and convolutional neural network (CCN) [27]. However, these 
models are still not preferable with real time applications in terms of the excessive 
processing time consumed [28]. Although, many studies have been done to design a 
background subtraction model, there is no single model can tackle all the challenges 
of background subtraction. Fusion of more than one model is another approach for 
enhancing the performance. 

In background subtraction, a hard computation classification has been widely used, 
in which a pixel is binary classified into background or foreground. Consequently, any 
inaccurate classification for the pixel will critically affect the robustness of the back-
ground model after a number of iterations. Thus, the Fuzzy model [29] has broadly 
invited as a soft computing classification technique to address the uncertainty of a pixel 
value and come up with a better results performance in dynamic scenes, shadows and 
illumination changes [30].

Histogram as a conventional method has been used to calculate the pixel density dis-
tribution however, it is affected by the number of intervals and data noise. Though using 
fuzzy histogram can tackle these problems and has a valuable enhanced results [31]. 
Therefore, in this paper we propose FCM-CS using the algorithm of fuzzy c-means 
(FCM) to initiate the background model from fuzzy color histogram by computing 
each pixel membership to each histogram interval intensity. Cosine similarity (CS) 
were applied to measure the closeness between a membership of a current pixel and a 
background model to decide whether a pixel belongs to a foreground or background 
using tunned threshold. 
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3	 The proposed FCM-CS 

In this proposed algorithm FCM-CS, RGB color space is used, where fuzzy histo-
gram for each pixel value in separate three channels (Red, Green, Blue) are computed. 
Each pixel membership to the FCM cluster center is calculated using Eq. (1),
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Mxy is the pixel membership value, B is the total number of bins (histogram inter-
vals), vx is the cluster centre according to FCM where median value is used as a center 
and c is the fuzzification coefficient number.

The memberships are accumulated to form the fuzzy histogram background model 
(BGM) in Eq. (2),
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Where M is the pixel membership value from Eq. (1), N is the total number of 
training frames. Then cosine similarity is used to compute the closeness between each 
pixel membership value and the fuzzy histogram background model using Eq. (3), for 
cosine similarity.
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Detecting the foreground and background pixels is done using the following Eq. (4),
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Where, Rp is the result of pixel p whether it’s foreground or background according to 
cosine similarity between membership pixel (Mp) and the histogram background model 
(BGM), threshold of 0.045 is used as a result of extensive trails. Background model is 
updated adaptively according to Eq. (5) 
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Where k = 1, 2, …, N, Rf is the final output, the background model is only updated 
when the final output is not foreground, the update will be according to the background 
model, the current membership value and the updating rate α which is set to 0.011 
based on large scale testing.

The overall steps of the proposed model FCM-CS are illustrated in the Algorithm 1: 
and the experiment parameters for FCM-CS is listed in the following Table 1.
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Table 1. FCM-CS experimental parameters

Parameters Value Parameters Value

Total number of training frames (N) 100 Final result of pixel Rf {0,1}

Threshold used for detection 0.045 Histogram bins (B) 16

Background model update rate (α) 0.011 Fuzzification coefficient (c) 2

Algorithm 1: FCM-CS
Input:

VFch
h,w,n is the video frame image:

w = 1, 2, … W: width of the video frame
h = 1, 2, … H: height of the video frame
n = 1, 2, … N: frame number of the video frame
ch = The color channel.

Output:
Rf = the final result of video frame

1.  Initialization
	 •	 Divide the S level histogram values to B histogram intervals.
	 •	 Calculate the central values vi i = 1, 2, … B.
	 •	 Calculate the membership matrix M = {Mxy | x = 1, 2, … B, y = 1, 2, … S} using Eq. (1)

2.  Modeling
	 •	� Using the frame image and Eq. (2) to model the fuzzy background histograms  

BGM of the RGB color channels.

3. Foreground Detection
	 •	� Fetch the membership vector MP for the pixel value p. And use Eq. (3) to calculate the cosine 

similarity CS (MP, BGM) between the current pixel membership and the background model.
	 •	 The Pixel result obtained using Eq. (4)

4. Maintenance
	 •	� Update the histogram background using the final output Rf value and the background model update 

rate (α) using Eq. (5)

5. Post Processing
	 •	 Apply median blurring filter to the final output Rf

6. Return to 3

4	 Experiments and analysis 

In this article we compare the proposed algorithm against the cutting age background 
subtraction algorithms (GMM, KNN and ViBe). The models are tested using the CDnet 
2014 [32] benchmark dataset considering the dynamic background challenge videos.

 CDnet 2014 were chosen as the most well-known and preferable dataset due to pro-
viding a wide range of videos with several challenges as well as providing the ground-
truth scenes which help in statistical evaluation. In these experiments we applied the 
model on dynamic background challenge scenes illustrated in Table 2 below.
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Table 2. Dynamic background videos from CDnet 2014

Videos Dynamic Challenge Description Total Frames Region of Interest Frames

Overpass Large moving tree on the side of the frame 3000 1000–3000

Fall Large moving tree in the center of the frame 4000 1000–4000

Boats Moving water surface 7999 1900–7999

Canoe Moving water surface 1189 800–1189

Fountain1 Random water movement 1184 400–1184

Fountain2 Random water movement 1499 500–1499

We are comparing the background subtraction image with the correspondent 
ground-truth image to evaluate the performance of each method in respect to quantita-
tive evaluation metrics at the pixel level, and the background subtraction method clas-
sifies the pixels into background or foreground. Precision, recall and F-measures (F1) 
metrics are used for the performance evaluation according to the following formulas:

	 Accuracy TP TN
TP FN TN FN

�
�
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�
�

	 (7)

	 Recall(sensitivity) �
�

TP
TP FN

	 (8)

	 F Measures(F ) Precision Recall
Precision Recall

� �
� �

�
1 2 	 (9)

	 FPR FP
FP TN

�
�

	 (10)

	 FNR FN
TP FN

�
�

	 (11)

	 FP FNError rate(PWC) 100
TP FN TN FP

+= ×
+ + +

	 (12)

Where, TP is the number of foreground pixels correctly classified, TN is the num-
ber of background pixels correctly classified, FP is the number of background pixels 
incorrectly classified as foreground pixels, and FN is the number of foreground pixels 
incorrectly classified as background pixels.

Accuracy Eq. (6) indicates the correct classification for a pixel whether it is a fore-
ground or a background pixel, Precision Eq. (7), indicates the proportion of truly 
detected foreground pixels to the number of all pixels classified as foreground pixels, 
recall Eq. (8), indicates the number of pixels that are correctly classified as a fore-
ground of all the foreground pixels and the F-measure Eq. (9), is the harmonic mean of 
recall and precision. On the other hand, we have the metrics: (False Positive Rate) FPR 
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Eq. (10), is the ratio of background pixels that are misclassified as foreground pixels 
to the total actual number of background pixels, (False Negative Rate) FNR Eq. (11), 
is the ratio of foreground pixels that are misclassified as background pixels to the total 
actual number of foreground pixels, and (percentage weight loss) PWC Eq. (12), indi-
cates the error rate which is the percentage of misclassified pixels to the original pixels. 

Normally, we measure the relevance by recall and precision. A low recall is an indi-
cation of over segmentation of the foreground objects, where a low precision is an 
indication of under segmentation of the foreground objects. High F-measures is an 
indication of a robust background subtraction algorithm.

In the following Tables 3–6 the analytical metrics results of applying the GMM [33], 
KNN [9], ViBe [34] and the proposed FCM-CS models respectively on the CDnet 2014 
dynamic background videos dataset are illustrated.

Table 3. Performance metrics results of applying GMM on CDnet 2014 dataset

Video Accuracy Precession Recall F1 FPR FNR PWC

Overpass 0.987 0.151 0.512 0.423 0.008 0.488 1.302

Fall 0.979 0.146 0.781 0.461 0.018 0.219 2.097

Boats 0.993 0.134 0.271 0.371 0.003 0.729 0.698

Canoe 0.968 0.297 0.402 0.407 0.014 0.598 3.245

Fountain1 0.987 0.027 0.631 0.209 0.013 0.369 1.307

Fountain2 0.996 0.095 0.663 0.508 0.004 0.337 0.427

Table 4. Performance metrics results of applying KNN on CDnet 2014 dataset

Video Accuracy Precession Recall F1 FPR FNR PWC

Overpass 0.988 0.173 0.703 0.549 0.008 0.297 1.180

Fall 0.968 0.119 0.699 0.377 0.029 0.301 3.210

Boats 0.995 0.142 0.318 0.426 0.002 0.682 0.528

Canoe 0.980 0.375 0.615 0.585 0.011 0.385 1.983

Fountain1 0.987 0.023 0.497 0.180 0.013 0.503 1.296

Fountain2 0.997 0.109 0.587 0.531 0.002 0.413 0.306

Table 5. Performance metrics results of applying ViBe on CDnet 2014 dataset

Video Accuracy Precession Recall F1  FPR  FNR  PWC
Overpass 0.989 0.164 0.564 0.157 0.006 0.436 0.111

Fall 0.967 0.125 0.570 0.129 0.026 0.430 3.311

Boats 0.992 0.129 0.371 0.088 0.004 0.629 0.824

Canoe 0.975 0.455 0.512 0.360 0.007 0.482 2.516

Fountain1 0.991 0.055 0.750 0.079 0.009 0.250 0.899

Fountain2 0.996 0.126 0.780 0.133 0.003 0.220 0.355
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Table 6. Performance metrics results of applying FCM-CS on CDnet 2014 dataset

Video Accuracy Precession Recall F1  FPR FNR PWC
Overpass 0.997 0.256 0.924 0.847 0.002 0.076 0.301

Fall 0.918 0.096 0.928 0.354 0.083 0.072 8.187

Boats 0.999 0.340 0.851 0.889 0.001 0.149 0.124

Canoe 0.997 0.676 0.947 0.958 0.001 0.053 0.298

Fountain1 0.986 0.043 0.881 0.318 0.014 0.118 1.429

Fountain2 0.989 0.094 0.986 0.614 0.010 0.014 1.066

Table 7. Average performance metrics results of applying background  
subtraction models on CDnet 

Model Accuracy Precession Recall F1 FPR FNR PWC 

GMM [33] 0.985 0.141 0.543 0.396 0.010 0.456 1.512

KNN [9] 0.986 0.156 0.569 0.441 0.011 0.430 1.417

ViBe [34] 0.985 0.175 0.591 0.157 0.009 0.407 1.336

FCM-CS 0.981 0.251 0.919 0.663 0.018 0.080 1.901

Tables 3–6 shows a statistical result where, each model is applied individually on 
each dynamic background video available on CDnet 2014 dataset, the best performance 
is marked in bold. Proposed FCM-CS performs the best in almost all videos. Precession 
and recall are always the best and eventually F-measure (F1) results surpasses all other 
models results. However, FCM-CS relatively suffers from high but affordable FP pixels 
which increase the FPR and eventually the PWC results. Normally F-measure (F1) is 
one the most important metric to evaluate the model performance and assess the detec-
tion robustness. In this context we noticed that proposed FCM-CS on average surpasses 
all other models in quantitative evaluation as shown in Table 7.

Moreover, Figure 2 depicts the visual results comparison of the foreground results of 
applying the background subtraction models on the CDnet 2014 dynamic background 
scenes. Where (a) is the original scene, (b) is the ground-truth provided by the dataset, 
(c) is the foreground mask created by GMM model, (d) is the foreground mask cre-
ated by KNN model, (e) is the foreground mask created by ViBe model and (f) is the 
foreground mask created by the proposed model FCM-CS. Looking at Figure 2 where 
qualitative evaluation is illustrated; one can see that the results generated by FCM-CS 
is visually the closest to the ground-truth frame. 
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(a) Original scene (b) Ground-truth scene (c) GMM detection  (d) KNN detection (e) ViBe detection (f) FCM-CS detection

Fig. 2. Comparison of foreground detection results

5	 Conclusion 

In this paper, we built a novel and robust background subtraction model FCM-CS 
for video surveillance systems. The CDnet 2014 dataset was employed as a benchmark 
focusing on the dynamic background scenes. The fuzzy color histogram is computed 
to construct the background model and cosine similarity is applied to measure the 
closeness between the current pixel and the background histogram model to determine 
whether a pixel belongs to a background or foreground according to a tuned threshold. 
The background model is maintained adaptively to enhance the background subtrac-
tion process. Eventually a post-processing technique was applied to improve the final 
results. The model is compared against the state-of-the-art models using different eval-
uation metrics like accuracy, precession, recall, the harmonic means of precision and 
recall (F1), FPR, FNR and PWC to measure the accuracy of each model. The analysis 
showed that, FCM-CS algorithm is reliable and showed a robust performance in the 
dynamic background scenes. 
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