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Abstract—Emergency medical services are an essential element in the mod-
ern healthcare system. Health care services are the most important because they 
play an important role in saving people's lives and reducing rates of mortality and 
morbidity. Especially during the covid-19 pandemic and the new normal era 
makes this problem very interesting to discuss. For this reason, this study tries to 
overcome the problem location and allocation of Emergency Medical Services 
(EMS) by using a combination of metaheuristics and simulation. The approach 
taken to overcome these challenges is developing Symbiotic Organisms Search 
algorithm and then use the simulation method to validation the result. The tran-
sition of the ambulance system from a centralized to decentralized system by 
using the Modification of Symbiotic Organisms Searrch (Mod-SOS) algorithm, 
found that to shorten the response time to 9 minutes, need to combine the 5 core 
bases with about 12 potential bases. From the simulation scenarios tested, the 
total number of ambulances involved in the proposed system is 16 units. So it can 
be concluded that involving several potential bases can produce a short response 
time. 

Keywords—ambulance location and allocation, emergency medical services, 
simulation optimization, symbiotic organisms search 

1 Introduction 

Emergency Medical Services (EMS) are an essential element in the modern 
healthcare system [1]. Health services play a very important role because it is related 
to saving people's lives and has a great opportunity to reduce mortality and morbidity 
[2]. Emergency medical services are a very sensitive and complicated matter [3]. The 
importance and sensitivity of decision-making in the field of Emergency Medical Ser-
vices (EMS) has been extensively studied by researchers from operations research, 
EMS planning, and healthcare practitioners regarding the many problems that have 
arisen in the management of EMS systems since the 1960s [4]. The ability of EMS to 
save lives is highly dependent on the time it takes for an ambulance to arrive at an 
emergency scene after the emergency call they receive [5]. [6] Stating that time is very 
important in emergency situations and therefore it is important for vehicles to be at all 

158 http://www.i-joe.org

https://doi.org/10.3991/ijoe.v18i11.31055
mailto:muhammad.isnaini@uin-suska.ac.id


Paper—A Simulation Optimization for Location and Allocation of Emergency Medical Service 

centralized times so that they can ensure, see which coverage area is adequate to send 
an ambulance and the fastest response time. 

The main goal that became the core problem of EMS was to save the life of emer-
gency patients. The potential for improving EMS system performance is directly related 
to reduced response times [7]. The goal of EMS is to reduce mortality, disability, and 
suffering. EMS decision makers tackle the difficult task of finding ambulances to 
promptly and optimally serve emergency medical calls [8]. Especially for patients with 
urgent needs, response time determines mortality. One of the key factors in EMS per-
formance is the speed at which emergency vehicles can respond to incidents [9]. Proper 
analysis in predicting handling, will result in an increase in service quality [10]. 

In emergency medical services, response time is the time interval between the arrival 
of the emergency call and the arrival of the medical team at the location of the call. This 
is of major concern as this delay may cause the difference between life and death for 
the patient, depending on the seriousness of the medical condition. Many previous re-
searchers have conducted research on the minimization of the response time of EMS. 
Various approaches have been taken and can be grouped into 3 major approaches in-
cluding determining the optimal location of the ambulance, determining the optimal 
number that must be alerted at each ambulance base and determining how the scenario 
will be sent from the ambulance. 

Several studies that most initiated to overcome this problem were [11] which stated 
that switching the EMS system from centralized to decentralized reduced response time 
very significantly. Then this study also tries to involve consolidation between several 
small bases so as to form a wider cover area such as the future work suggested by [9]. 
Especially during the covid-19 pandemic and the new normal era makes this problem 
very interesting to discuss [12]. For this reason, this study tries to overcome the problem 
of location and EMS allocation by using a combination of metaheuristics and simula-
tion technique because calculations with the optimal approach are very complex. In the 
metaheuristic method, the location of the facility serves as a determination of the origin 
of the departing ambulance and other stations serving as the destination and determin-
ing the extent of the coverage area for each base. In this study, it is assumed that it is 
not necessarily a special ambulance belonging to a facility that must move from the 
origin and deliver it back to the facility. While the simulation approach serves as a 
determinant of the number of ambulances that must be allocated. 

2 Literature review 

The importance problem of determining location of a facility has actually begun to 
be discussed around 1909 but is still limited to the object of the warehouse. It was not 
until the 1960’s that the issue of determining the exact location for an ambulance began 
to be discussed. EMS planner must determine the best location for the ambulance they 
want and it must be delivered in a timely and efficient manner, this is known as the 
ambulance location problem. Decisions on ambulance location strategies can be used 
to increase the expected coverage area. Problem of ambulance location refers to the 
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assignment of a small number of ambulances to maximize coverage, given that the sys-
tem has a fixed number of potential locations and demand zones that are considered 
closed when the ambulance is within a predetermined time. [13] conducted a study to 
find the optimal location of the ambulance to reach patients in need with the shortest 
possible time and dispatching problems. Previous research has taken many approaches 
to this problem such as [14]–[16] but mostly done in a centralized system. This system 
has the characteristic that each ambulance fleet is required to be at the base location 
belonging to a certain health facility and perform pre-hospital actions (starting from 
picking up patients to delivering patients to the health facility unit). The weakness of 
such a system is that it requires a long response time.  

Schmid [17] conducted a study to find the optimal location of the ambulance to reach 
patients in need with the shortest possible time and dispatching problems. The method 
proposed to solve this problem is stochastic dynamic programming. The results ob-
tained are a decrease in the average time of 12.89% with a note that they have to relocate 
their current ambulance base. Still in the same year [18] apply Linear upper-bound un-
availability set covering models to overcome the problem of determining the optimal 
location of the ambulance with the case study used is the EMS problem in Iran. The 
model calculates the area of demand that can be fulfilled maximally by ambulance. 
With the proposed model, it shows a decrease in response time and the number of needs 
for ambulances by dividing into several locations. 

Zhen et al. [19] also conducted research on relocation and redeployment strategies. 
The challenge in making decisions in estimating the amount to be allocated is the ever-
changing demand at each different location. The approach taken to overcome these 
challenges is to use the simulation method with the aim of removing obstacles from 
stochastic demand. The results obtained are in the form of a strategy for placing ambu-
lance units and their scheduling based on demand forecasting and real-time dependent. 
Then this study also tries to involve consolidation between several small bases as dis-
closed [20], the advantage of consolidation is to form a wider cover area so that it can 
reduce response time. 

3 Proposed methodology 

The method that will be developed in this research is Symbiotic Organisms Search 
(SOS) which was first introduced by [21]. Symbiotic Organism Search Algorithm is a 
metaheuristic method inspired by the interactions seen among organisms in the uni-
verse. The natural trait possessed by organisms is that they cannot live alone so that one 
organism is very dependent on other organisms to maintain its survival. This depend-
ency-based relationship is known as symbiosis. There are several forms of symbiosis, 
namely mutualism symbiosis, commensalism symbiosis and parasitism symbiosis. The 
SOS algorithm is capable of being superior to other algorithms (this algorithm is com-
pared with several other metaheuristic methods such as Genetic Algorithm, Differential 
Evolution, Bee Algorithm, Particle Swarm Optimization and Particle Bee Algorithm 
using 26 Benchmark functions).  

160 http://www.i-joe.org



Paper—A Simulation Optimization for Location and Allocation of Emergency Medical Service 

Several previous studies on SOS, have shown that SOS has good accuracy and con-
vergent speed [22]. However, the obstacle faced in the application of the basic SOS 
algorithm to solve combinatorial problems is that in the parasitic phase the SOS algo-
rithm requires to create a parasitic organism using the dimensions of the objective func-
tion to be searched (continuous function), while the location and allocation problems 
do not have the dimensions of the objective function to Therefore, it is necessary to 
have another suitable mechanism to replace the mechanism in the parasitic phase. To 
make this SOS algorithm able to overcome the problem of location and allocation of 
ambulances, we propose a hybrid approach simulation optimization by combining SOS 
with a local Nearest Neighborhood (NN) search mechanism. Although, the weakness 
of NN is that the search can get stuck in a certain region of the search-space (if there is 
no change in the adjacent solution) but NN is able to guide the search steps towards the 
optimal solution very fast [23].  

3.1 Local search 

In this phase, a set of bases and potential bases involved will be calculated to calcu-
late the proximity between each base and the resulting demand. The local search func-
tion (NN) will guide the initial search of several bases that have the potential to pick up 
patients. Furthermore, some of these potential bases will be selected to be candidates 
in the Mutualism Phase of the SOS algorithm. For the calculating the distance between 
each base we use euclideance formula (1) and (2) for generate initial of ecosystem.  

 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝,𝑞𝑞) =  �[(𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑗𝑗)2 + (𝑞𝑞𝑖𝑖 − 𝑞𝑞𝑗𝑗)2]  (1) 

 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ×  ((𝑢𝑢𝑢𝑢 − 𝑙𝑙𝑙𝑙) + 𝑙𝑙𝑙𝑙)) (2) 

Where (p,q) is the coordinate longitude and latitude of each base then, the upper 
bound and lower bound of the searching area are ub dan lb.  

3.2 Mutualism phase 

This SOS phase mimics the mutualistic relationship between organisms in nature. 
SOS describes Xi as a matched organism, in this case is base of ambulance, with an 
ecosystem member. Another organism or base Xj is then randomly selected from the 
ecosystem to interact with Xi. Both bases engage in a mutualistic relationship with the 
aim of increasing the mutual benefit of survival in the ecosystem. The new candidate 
solutions for Xi and Xj are calculated based on the mutualistic symbiosis between or-
ganisms Xi and Xj, which is modeled in equations [3] and [4] below: 

𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋 =  𝑋𝑋𝑋𝑋 +  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (0,1) ∗  (𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋 −  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 ∗  𝐵𝐵𝐵𝐵1) (3) 

𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋 =  𝑋𝑋𝑋𝑋 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(0,1) ∗ (𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋 −𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ∗ 𝐵𝐵𝐵𝐵2) (4) 

 Mutual Vector =  Xi+Xj
2

 (5) 
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The proposed model of decentralized, call command center as the decision maker in 
the system, calculates the distance between the patient and each base that will be as-
sisted by the location of public health centers available in various areas so that they are 
more spread out in the hope of speeding up response time. Then after the ambulance 
delivers the patient to the health facility, the ambulance is positioned as new stock from 
the facility or can return to the initial base. The stage of local search aims to see the 
alternative or potential ambulances that can be sent to patient on the smallest travel 
time. Then the distance will be calculated by assuming an average speed of 50 km/h.  

• Step 1. Generate random point coordinates as request. 
• Step 2. The closest distance between the demand point and each available health 

unit will be calculated in this step. Then the distance will be divided by the ambu-
lance speed (assumed average speed is 50 km/h). The purpose is to see the response 
time.  

• Step 3. The facilities are capable of fulfilling the request will be sorted by the spec-
ified time limit parameters.  

• Step 4. With the local search (NN) selected facilities that have the potential as fleet 
delivery facilities.  

• Step 5. Through the mechanism of mutualism phase in SOS, the potential facility 
will be selected for ambulance delivery considering the availability of ambulances 
and the minimum of response time. 

By using ∝ of 5%, the value for 𝑡𝑡(0,025;4) of 2.7764, and the value of 𝑍𝑍∝
2�
 of 1.96, 

then the value of half width (6) and minimum number of replications (7) can be calcu-
lated as follows: 

 ℎ𝑤𝑤 = 𝑡𝑡(∝ 2;� 𝑛𝑛−1)
𝑆𝑆
√𝑛𝑛

 (6) 

 ℎ𝑤𝑤 = 2,7764 0,081907
√5

 = 0,1017 

So the minimum number of replications required is: 

 𝑛𝑛′ =  �
𝑍𝑍∝ 2�

 𝑆𝑆

ℎ𝑤𝑤
�
2
 (7) 

 𝑛𝑛′ =  �1,96 (0,081907)
0,1017

�
2

= 2,491828923 ≈ 3 times 

In this decentralized model, there are agents who play a role in the process of han-
dling medical emergency conditions, including callers, command center teams as dis-
patchers, hospitals, main bases and potential bases. The caller is a condition of demand 
for emergency needs, which is in fact not only related to EMS services, but also such 
as firefighters, police, etc. For this reason, in this system the command center team is 
tasked with separating the types of incoming requests from callers. This research fo-
cuses on requests for EMS so that all requests related to EMS will be forwarded to the 
dispatcher. The dispatcher is in charge of determining which base ambulance will be 
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sent with consideration of the short distance and in available condition. Number of fa-
cilities used in the centralized system is 5 and for decentralized system is 26 ambulances 
spread across the region from the city of Surabaya, Indonesia. Existing model has lim-
ited coverage locations and the number of available fleets, if the nearest ambulance is 
not available then the request will be added to the queue list. While in the proposed 
model, number of ambulance base locations will increase with involvement of potential 
health facilities so as to expand the coverage area and increase the number of available 
ambulance fleets. Then after the ambulance delivers the patient to the health facility, 
the ambulance is positioned as new stock from the facility or can return to the initial 
base. For a clearer view of the current system see Figure 1 and the interaction between 
agents in the decentralized sistem can be seen in Figure 2. The variables and parameters 
that will be used in the experiment can be seen in Table 1.  

Call Arrival Call Center Dispatch 
Amb.? Dispatch Amb. Avail.?

Queue of Calls

Travel to SceneServ. On 
SceneService on SceneGo to Hosp?Travel to Hospital

Delivery on 
Hospital

Travel Back to 
Base End Service

Yes

No

Yes

YesYes

No

BA

C C

No
No

 
Fig. 1. Existing system of EMS 
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2. Dispatch

Call Command Center

Main Base Potential Base

Send Request

4. Carry out Medical 
Treatment

3. Set Off

1. Send Request

Demand A
Demand B

5. Go Back To Base

 
Fig. 2. The interaction between agents in the decentralized system of EMS  

Table 1.  Variables and parameters 

Variables Description 
Potential base Number of all potential healthcare facilities  
Random demand  Longitude and latitude in one area as random demand 
Ambulance speed Average speed of ambulance 
Benefit factor Availiability of ambulance 
Travel time Travel time by the average speed 
Maximum eval Number of iteration  
Demand  Number demand of ambulance in time 
Time limit Threshold of ambulance time to pick up demand 

4 Experiment and results  

This research was conducted in the city of Surabaya, Indonesia. The Government of 
Surabaya has several potential bases that can be involved in the decentralization system. 
In building the discrete event simulation model of EMS, it is divided into 3 parts, start-
ing from the demand generation process, the process of determining the dispatch rules 
from the ambulance for pickup and the patient handling process. In the first stage, the 
demand generation process uses historical data to see how the distribution pattern of 
demand is, both the time between arrivals, the location of the demand and the type of 
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demand. In addition, the position of the ambulance post is also raised which is available 
as an ambulance supply. Existing conditions, the City of Surabaya has a call center 
known as Call Command Center 112. Callers who have an emergency will call 112 
then explain their personal data, address and type of need. Call Command Center acts 
as a dispatcher who will forward information to all existing base. The total number of 
base currently available are 5 that spread from Central, East, West, North and South. 
After the information is submitted to the nearest base from the caller, the team will 
immediately be assigned to the location according to the type of request. After the am-
bulance is at the patient's location, there are 2 alternative processes the process of han-
dling patients at the location and the process of handling further patients. After the pro-
cess is complete, the ambulance will return to their respective base.  

Calls for ambulances have a certain distribution in some areas, arrival rates may vary 
and are time dependent. Furthermore, the call data that has been recorded in the system 
will be analyzed to see the type of distribution of the geographical coordinates of the 
caller's location. The position of the ambulance base and hospital will also be translated 
in the form of geographic coordinates. The first stage begins by compiling an input 
model for the system which includes generating demand, location of command posts 
and health facilities. At the generate demand stage, a demand analysis is carried out 
which aims to see the distribution of the time between call arrivals, the location of the 
demand coordinates and the type of request. In addition, at this stage, the location of 
the ambulance post and health facilities was also carried out. To minimize the response 
time until approach the standard response time of 8,8 minutes, the model is developed 
by adding some potential bases, see Table 2. 

The scenario that will be used in this research is to test any potential bases that can 
provide services to all existing requests. Then the scenario of the number of requests 
that appear in the time interval will also be tested starting from the emergence of 1 
request to the extreme condition of 15 requests in the time interval. Another scenario is 
to test response time limits, the goal is that the system can meet international response 
time standards. Experiments for each parameter were carried out to see how the impact 
and amount of potential base involved in a decentralized system would be. Testing is 
done by varying the size of the ambulance time limit (maximum coverage) to the des-
tination and the number of requests from demand. The proposed algorithm can be seen 
in pseudocode, the algorithm written in MATLAB code on Intel(R) Core(TM) i3 pro-
cessor 2.27 GHz see Figure 3. The results of running the algorithm see in Table 3.  

Table 2.  Potential bases 

No Potential Base Coordinate 
1 PB-KR -7.321882 112.770713 
2 PB-KDG -7.225995 112.773592 
3 PB-KJR -7.232475 112.754415 
4 PB-RGH -7.238551 112.767876 
5 PB-TRJ -7.240576 112.756036 
6 PB-PCKG -7.240576 112.762196 
7 PB-MJO -7.265317 112.771434 
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8 PB-KLPS -7.279636 112.778363 
9 PB-KPT -7.288513 112.801748 
10 PB-MA -7.316576 112.793953 
11 PB-MNR -7.296776 112.764255 
12 PB-JGR -7.305243 112.757758 
13 PB-SWN -7.335739 112.737564 
14 PB-KD -7.258444 112.736790 
15 PB-SL -7.258730 112.727841 
16 PB-SM -7.257871 112.711096 
17 PB-DK -7.278491 112.711962 
18 PB-PS -7.286079 112.755556 
19 PB-NR -7.292957 112.748781 
20 PB-SS -7.306945 112.755696 
21 PB-WNKR -7.302729 112.730916 
22 PB-TGL -7.321586 112.761768 

 

Pseudocode Mod-SOS to Emergency Medical Service 
Input: Number of demand, Total of facility, speed of 

ambulance, Time limit  
Output: Facility Numb. and Response Time 
Process: 
        Generate set of random demand; 
        Calculate initial distance and travel time; 
        Threshold Time ≤ Time limit; 
             Generate neighbor set 
             Local search; 
         Set Max time, Random Demand; 
         for i = 1 to i < total time limit 
         Calculate mutual phase:  
         Conditions: 
         if ambulance (i) available then 
         if x(i) ≤ Max time; Average time = x(i) 
         Demand = index x(i) 
End 

Fig. 3. Pseudocode of Mod-SOS 
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Table 3.  Result of Mod-SOS under different parameter 

Numb. of demand Time limit Max. Iteration Potential Base Std. Dev 

1 

15 
10 10, 5, 11, 6, 19, 7, 16, 8, 13 0,625 

100 11, 5,10,6, 19, 7, 15,8, 14, 15,13,16 0,3125 
1000 10, 5, 11, 6, 15, 13, 7, 18, 8, 12 0,4375 

10 
10 12, 5, 11, 6, 14, 7, 10 0,5625 

100 13, 5, 11, 6, 16, 14, 8, 12, 14, 8, 12, 7 0,25 
1000 15,5,13,7,11,10,6,9,12 0,4375 

8.8 
10 15, 5, 13, 12, 11, 19, 7, 14 0,5 

100 17, 6, 15, 16, 14, 5, 13 0,5625 
1000 16, 6, 15, 13,18, 5 0,625 

 
In this experiment, a comparison will also be made between the centralized ambu-

lance system and decentralized system. A centralized ambulance system where the lo-
cations of ambulances are only in a few core areas while the decentralized system has 
ambulance positions spread out. Each parameter repeats 3 times running to see the per-
formance of the algorithm. Table 4 contain information on the results of running algo-
rithms with various parameters that were tested on a centralized and decentralized sys-
tem. Ambulance requests with a decentralized system are faster than a centralized sys-
tem. The result is when the timeout parameter is set to the international standard re-
sponse time, the average of response time decreases but the number of non-covered 
requests increases. Thus confirming the statement of (9) that decentralization will de-
creases response time but will increase investment and operational costs.  

Table 4.  Response time with time limit and number of demand parameters 

  Numb. of Demand 
  3 5 10 
  C D C D C D 

Average of re-
sponse time 
(minutes) 

Max. Covering 15 min 19.3 4.3 18.6 5.9 15.5 7.1 
Max. Covering 10 min 18.6 5.2 12.5 4.9 21.6 6.5 
Max. Covering 8.8 min 14.6 6.1 13.2 4.2 18.6 6.7 

C = Centralized System, D = Decentralized System 

Based on Table 5, the centralized system shows that there are several requests that 
cannot be fulfilled because the location of the requests is not in the coverage area. There 
are value exchanges where to satisfy all demands, a decentralized scenario or a combi-
nation of several potential bases is the best choice. As a consequence, the system must 
add new locations (involving potential bases) as many as 18 stations and if still use the 
centralized model, the system must add 10 - 13 ambulances. But, the limitation of this 
study is that it still needs development to take into account the costs that arise due to 
the implementation of the decentralized system. For further research, it would be more 
interesting if it involves calculating the costs that will arise as a result of implementing 
a decentralized system as well as how policies related to the coordination of each base 
involved. 
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Table 5.  Result of Mod-SOS centralized vs decentralized system of EMS 
 Centralized Decentralized 

Total Demand in Time 15 15 
Average response Time (minutes) 19.3 5.2 
Amount of ambulance can cover demand (unit) 1 4 
Demand out of treshold time 7 0 
Demand can not serve, ambulance out of stock 2 0 

Potential Bases Involved   - 16, 6, 2, 3, 21, 18, 13, 8, 11, 7, 4, 15, 5, 
10, 9, 1, 12, 19 

 
In this study, it is proposed to change the centralized system to a decentralized and 

also tries to involve consolidation between several small bases as disclosed [20]. The 
advantage of consolidation is to form a wider cover area so that it can reduce response 
time. The approach taken to overcome these challenges is to use the simulation optimi-
zation method with the aim of removing obstacles from stochastic demand. The existing 
model has the principle that each base must cover the demand in its own area. while the 
closest distance coverage model is that the request will be fulfilled by the base that has 
the shortest distance. This is what causes many differences in the results of the fulfill-
ment of requests on each basis which can be seen in Table 6. On the other hand, this 
model has a large impact on reducing the response time to an international standard 
response time of 8.8 minutes. When the timeout parameter is decreased to the interna-
tional standard response time.  

Table 6.  Comparison between historical data with the model 

Base Historical Data Output of Closest  Distance Model 
Center 86 196 
East 126 82 
West 47 49 
North 46 58 
South 142 62 
Total 447 447 

 
Figure 4. shows that the existing conditions at each base are still not optimal in meet-

ing demand quickly. The ones that need the most concentration of additional fleets are 
on the west and south bases of Figures 4 (c) and (e). the west base must have at least 4 
consolidated bases or ambulances involved, while the south base must have at least 6 
consolidated bases or ambulances involved in that base. This is due to the high demand 
for ambulances in these two areas.  
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(a) (c) 

  
(b) (d) 

 
(e) 

Fig. 4. Comparison of waiting time based on the numb. bases involved 
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5 Conclusion 

This paper discusses determining how many bases and ambulances should be allo-
cated to deal with the request of ambulance. From the experiment tested, to achieve a 
small response time or meet the international standards 8,8 minutes, then a decentral-
ized system is very appropriate to be applied with an increase in efficiency of about 
7.6%. Formation that can meet the problem of location and allocation, the result is  2 
units of ambulances will be applied at the central base, 2 units of east base, 4 units of 
west base, 6 units of south base and 2 units of north base so that the total number of 
ambulances involved in the proposed system is 16 units. 
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