
Paper—New Heart Features for More Effective Human Identification

New Heart Features for More Effective 
Human Identification

https://doi.org/10.3991/ijoe.v18i08.31317

Safie S.I
Malaysian Institute of Industrial Technology, Universiti Kuala Lumpur, Johor, Malaysia

sairulizwan@unikl.edu.my

Abstract—Biometric verification is a process to authenticate whether the 
subject is what it claims to be, based on the characteristics of the human body. 
These characteristics must meet seven (7) conditions to enable them to be used 
in a practical biometric system. These conditions are namely distinctiveness, per-
formance, collectability, acceptability, universality, circumvention, and perma-
nence. Electrocardiogram (ECG) is a human body characteristic measured from 
the heart that meets these seven conditions. Choosing the correct features from 
the ECG is important to get a high authentication rate. This paper proposed a new 
algorithm known as Bipolar Slope Feature (BSF) for ECG features selection. 
It is developed based on the relationship of slopes between several locations in a 
complete ECG cycle. The Receiver Operating Characteristic (ROC) curve is used 
to measure the effectiveness of this technique for the application of biometric 
verification.

Keywords—authentication, biometric, human identification, electrocardiogram, 
feature extraction

1 Introduction

A biometric system is a system that compares certain characteristics of a person, for 
recognition. It operates either in authentication or identification mode [1]. In authenti-
cation mode, first, the user will claim an identity stored in the database. The stored data 
is in the form of feature vectors. Next, the user will submit their respective biometric 
traits for feature vectors extraction. Both features (stored and newly submitted) are then 
compared to ensure that the claimed identity is valid [2]. As for the identification mode, 
the newly submitted feature vectors is compared to all feature vectors stored in the sys-
tem. Feature vectors with the highest similarity determines the identity of the user [3]. 

Human body biometric features can be classified into external body, behav-
ioral and internal body characteristics. Examples of external body characteristic are 
fingerprints [4], iris and facial [5], while examples of behavioral traits are voice [6] 
and signature [7]. Electrocardiogram (ECG) and electroencephalogram (EEG) are two 
examples of internal body features [8].

Recently, ECG has been the choice of researchers, for practical use in a biometric 
system. The characteristics of the human body must meet 7 conditions before it can be 
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used as the official feature for a practical biometric system [1]. First, it must be uni-
versal which means, this feature must be possessed by everyone. An ECG is a signal 
produced by heart. Since all living human beings must have a heart, ECG has met the 
first requirements to be considered as a feature for a practical biometric system.

ECG meets the second requirement to be practically considered as biometric fea-
tures, which is the distinctiveness. It means that the ECGs are different between indi-
viduals. Studies conducted in [9] prove that the distinctiveness of ECG are influenced 
by factors such as gender [10], age, blood mass-torso, torso-air conductivity [11], body 
shape, geometric shape of the heart and race [12].

The ECG is also invariant for a period of time [13, 14], which is the third criteria to 
be considered as biometric features. Furthermore, ECG can be measured quantitatively 
using the electrocardiograph machines, which is the fourth criteria [15]. The fifth, sixth 
and seventh criteria are circumvention, acceptability and performance [16]. The use 
of ECG as a feature in biometric systems is also difficult to be deceive. Since ECG 
signals are generated by the heart, it is impossible for scammers to accurately duplicate 
user ECG signals [17]. The ECG also have a similar problem faced by other biomet-
ric features, namely protecting the user privacy. ECG stores a large amount of health 
information for a subject. This information is sensitive to users and may not be shared 
without permission [18]. By ensuring that this information is not leaked, ECG has the 
potential to be used as a biometric feature. In terms of performance, ECG biometric 
system yields at least 80% of positive classification rate [19, 20, 21].

ECG represents the electrical activity generated from the heart. Its morphology is 
shown in Figure 1. As can be seen in Figure 1, a complete ECG cycle measured from 
a healthy individual, has 3 main waves namely P, QRS and T. Each of these waves has 
peaks and boundaries. Information such as amplitude, duration and slope measured 
between these points are usually selected as biometric features [22, 23].

Fig. 1. Typical ECG morphology 
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2 Objective

Features based on the slope of the pulse domain techniques have been introduced 
in [24]. In this paper, an extended version of the slope feature is presented. In [24], a 
slope feature equation is constructed based on the concept of superimposing a single 
triangular wave with the ECG signals. In this paper, two periodic triangular wave with 
an opposite polarity is used to construct a new equation of a slope feature. 

Be as it may, processing ECG signals for biometric purposes need to deal with 
2 issues, amplitude and heart rate variabilities. These two issues usually affects the 
recognition rate of a person [24, 25].

This paper focuses on overcoming these two problems. The outline of this paper 
begins by explaining the development of new feature techniques based on the slope of 
the pulse domain features in section 2. It is followed by the discussion on experimental 
setup and the performance results of the new proposed features, respectively in sections 
3 and 4 before section 5 concludes this paper.

3 Research method

3.1 Bipolar pulse active slope

Features based on the slope of the pulse domain techniques have been introduced 
in [24]. In this paper, an extended version of the slope feature is presented. In [24], a 
slope feature equation is constructed based on the concept of superimposing a single 
triangular wave with the ECG signals. In this paper, two periodic triangular wave with 
an opposite polarity is used to construct a new equation of a slope feature.

Figure 2 illustrates an ECG signal, yECG(t) from the peak of P to the peak of T. The 
duration between these two peaks is TECG. yECG(t) has a peak-to-peak amplitude of AECG 
and requires to be offset until its minimum value is zero. Two periodic triangular waves, 
yTri_1(t) and yTri_2(t), is first generated to be superimposed on yECG(t) [26]. The duration 
and peak-to-peak amplitude, for both triangular waves are TTri and ATri respectively. 

Fig. 2. Bipolar pulse active technique
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According to [13], the relationship between yECG(t) and a triangular wave can be 
define as integer modulation factor, mf and modulation index, mi and can mathemati-
cally formulated as:

 m
T
Tf
ECG

Tri

=  (1)

 m
A
Ai
Tri
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=  (2)

In general, for t = tA(2m – 1) between (m – 1)Ttri and ( )2 1
2
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− , let yb and ya represent 

the maximum and minimum point of the triangular wave yTri_1(t) respectively. Let xa 
and xb represent the starting and ending sampling points and let yc and xc represent the 
coordinate which the triangular wave intersects with y-axis, respectively. The positive 
slope for yTri_1(t) can be mathematically described as:
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By shifting yTri_1(t) so that its minimum value equal to zero (i.e ya = 0), we then 
normalizing the peak amplitude of yECG(t) to 1. By doing so, yb = mi and equation (3) 
become:
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From Figure 1, it is observed that xc = xa and yc = ya. Substituting equation (1) into 
(4) yields:
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The negative slope of yTri_2(t) can be obtained for t = tB(2m – 1) between (m – 1)Ttri and 
( )2 1
2
m TTri
−  by reversing the polarity of (5) as follows:
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In equations (5) and (6), m mf=1 2 3, ,  . tA(2m – 1) and tB(2m – 1) represent respectively the 

first intersection points for yTri_1(t) and yTri_2(t) intersecting the underlying ECG signal. 
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The slope, d2m – 1 of tA(2m – 1) and tB(2m – 1) between (m – 1)Ttri and ( )2 1
2
m TTri
−  is taken as 

features. This can be computed as follow:
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for m mf=1 2 3, ,  .

Similar procedure is performed from equations (3) to (6) to generate a general repre-

sentation of yTri_1(t) and yTri_2(t) for t = tA(2m) and t = tB(2m) between ( )2 1
2
m TTri
−  and mTtri 

respectively as follows:

 y t
m m t T m

TTri
i f A m ECG

ECG
_

( )( )
( )

1
22

�
� �

 (8)

 y t
m m t T m

TTri
i f B m ECG

ECG
_

( )( )
( )

2
22

�
�

 (9)

The value of m in equations (7) and (8) is also equal to 1 2 3, , , , mf . Thus, the slope, 

d2m of tA(2m) and tB(2m) between ( )2 1
2
m TTri
−  and mTtri is then taken as features and can be 

calculated as:
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3.2 Simulation setup

ECG lead refers to the tracing of the voltage between two points on the human body. 
It consists of two electrodes of opposite polarity or one electrode, and a reference point 
made up from a signal combination of other electrodes [27]. 

ECG was recorded from the fingers of both hands of our subjects. This recording 
method is referred to as lead-1 ECG configuration recording. It is the most practi-
cal ECG recording method for biometric applications [28]. MD100E handheld ECG 
machine as shown in Figure 3 is used to record the ECG signal in our study. A standard 
ECG signals recording using MD100E last for 30 seconds with sampling frequency 
of 250 Hz.
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Fig. 3. MD100E Handheld ECG recording process

To test the effectiveness of the proposed technique, we have recorded 1000 ECG 
recordings from 100 participants in developing the test and training databases. Each 
participant submitted 10 ECG recordings per week for these databases. The process of 
generating these databases is shown in Figure 4.

Fig. 4. Summary of setting up simulation setup

132 http://www.i-joe.org



Paper—New Heart Features for More Effective Human Identification

For every 30 seconds of the ECG recording, a quality inspection process will be 
performed on the signal. This is to ensure, only a complete and clear ECG cycles can 
be used for further process. A complete and clear ECG cycle we define as an ECG cycle 
that has a clear and complete morphology of P, QRS and T waves. The peaks of R for 
these quality ECG waves are then detected, aligned to this peak and averaged.

The minimum value of this average ECG is offset by its DC value until the mini-
mum value is zero. Then, the P and R peaks of this average signal are again detected, 
segmented before its unique features are extracted. These features are then set as the 
training or test databases.

The performance of the extracted features will be measured using two parameters, 
namely the Receiver Operating Characteristic (ROC) curves and Normalized Euclidean 
Distance score, ScoreED  [29]. Mathematically it can be explained as follows:

 Score
Score
ScoreED

ED

maxED

� �1  (11)

where ScoreED is the Euclidean Distance between the test and training features. 
ScoremaxED on the other hand, is the maximum Euclidean Distance for all features in the 
test and training databases.

4 Results and discussion

The proposed feature presented as in equation (7) and (10) are dependable to user 
defined values of mf and mi. In this section, example of generating the BSF is first dis-
cussed. It follows by the discussion on generating the ROC curves. Finally, the effect of 
changing the values of mf and mi is then explained.

4.1 Numerical example of biploar slope feature 

To illustrate the example of generating the BSF, we defined mf and mi as 2 and 1.5. 
The location of TECG is selected from the peak of P to the peak of T. Using this setting, 
yTri_1(t) and yTri_2(t) are generated and superimposed on yECG(t) as shown in Figure 5.
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Fig. 5. Example of dm features for ECG trace between P and T with mf = 2 and mi = 1.5 

The intersection location between these signals and the calculated value of the BSF 
from equations (7) and (10) is given in Table 1.

Table 1. Example of the intersection locations and the calculated BSF for Figure 5

m = 1 m = 2 

t(2m–1)A 0.0392 0.5430

t(2m–1)B 0.1784 0.7230

d(2m–1) 1.3966 1.0968

t(2m)A 0.4559 0.9622

t(2m)B 0.2580 0.7769

d(2m) –0.4505 0.3522

4.2 Generating ROC curves

In this subsection, a step-by-step example is shown, to produce the ROC curve. In 
this example, BSF is extracted from four different subjects, namely S1, S2, S3 and S4 
as in Table 2. In this example, all subjects send their ECG twice. The first ECG is to 
create a training database, while the second ECG is for the test database. We still use 
mf = 2 and mi = 1.2 in this example.

The feature vector for all subjects in the training database will be compared to all sub-
jects in the test database, to generate SCOREED. In this example, Normalize Euclidean 
Distance as in (11) is used as similarity measures. In our database, SCOREmaxED is cal-
culated as 25.775. Table 3 compares the SCOREED  of equation (11) for all 4 subjects.

As can be observed from Table 3, if the subjects from the training and test databases 
are the same, they produce a positive authentication (+) in the column AA. Otherwise; 
they generate negative authentication (–). There should be only 4 positive authentica-
tions and only 12 negative authentications for this example, as presented in Table 3.
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Table 2. Example of BSF from 4 different subject

Training

d1 d2 d3 d4

S1 –0.413 –6.267 0.027 1.109

S2 –0.404 –4.965 –0.115 0.262

S3 1.126 1.199 –0.462 0.373

S4 –1.325 –3.733 1.158 0.454

Test

d1 d2 d3 d4

S1 –0.226 –5.455 0.036 0.844

S2 –0.412 –4.813 –0.827 0.244

S3 0.985 1.179 –0.430 0.395

S4 –1.550 –4.883 1.133 0.309

The ROC curve is generated based on the selection of all thresholds in the system. 
These threshold values will be compared with SCOREED  in Table 3. The selected 
threshold values are between 0 and 1. In this paper, we only show the predicted authen-
tication result for 3 threshold values (ThA), namely 0.75, 0.85 and 0.95, as shown 
in Table 4.

Table 3. Example of SCOREED  as in (11) from 4 subjects

Train Test SCOREED AA

S1 S1 0.966 +

S2 0.926 –

S3 0.704 –

S4 0.913 –

S3 S1 0.735 –

S2 0.759 –

S3 0.994 +

S4 0.735 –

S2 S1 0.969 –

S2 0.972 +

S3 0.755 –

S4 0.934 –

S4 S1 0.9083 –

S2 0.9051 –

S3 0.7806 –

S4 0.9492 +

Note: AA defined as either actual positive authentication (+) or actual negative authentication (–) results.
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To facilitate this discussion, let’s examine the predicted authentication results, shown 
in the third column of Table 4, for threshold value (ThA) set at 0.75. The predicted 
authentication is made after the SCOREED  value is compared with the ThA value. 

Table 4. Prediction authentication based on threshold value equals to 0.2, 0.4 and 0.8

AA SCOREED ThA 0.75 ThA 0.85 ThA 0.95

+ 0.966 + + +

– 0.926 + + –

– 0.704 – – –

– 0.913 + + –

– 0.735 – – –

– 0.759 + – –

+ 0.994 + + +

– 0.735 – – –

– 0.969 + + +

+ 0.972 + + +

– 0.755 + – –

– 0.934 + + –

– 0.9083 + + –

– 0.9051 + + –

– 0.7806 + – –

+ 0.9492 + + –

If SCOREED  is greater than ThA, the system predicts that it is a positive authenti-
cation. Similarly, if SCOREED  is less than the ThA value, the system will predict it is 
a negative authentication. In the third column, there are 13 positive authentications and 
4 negative authentications. The summary of the predicted authentication for all three 
ThA values is shown in Table 5. For ThAs set to 0.85 and 0.95, the predicted positive 
authentications are 10 and 5 while the predicted negative authentications are 6 and 11.

Let’s observe at the prediction results for SCOREED  equal to 0.926 (in the second 
row of Table 4). Since SCOREED  is greater than the ThA values set to 0.75 and 0.85, 
the system predicts that both results are authenticated as a positive authentication. In 
actual fact, the system should predict a negative authentication. The wrongly classify 
predicted positive authentication results based on these two ThA values, is defined as 
‘False Acceptance’ (FA). 

Still in the same row, we can see that the value of SCOREED  is less than ThA value. 
Therefore, the system has predicted it as a negative confirmation. Since both real and 
predicted authentication is negative, this condition is defined as ‘True Rejection’ (TR). 
Let’s see another example, for SCOREED  equal to 0.9492 (in the last row of Table 4). 
The system predicted a positive authentication for ThAs set to 0.75 and 0.85. Since the 
actual and predicted authentication is positive, the system is said to generate a ‘True 
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Acceptance (TA)’ condition for these ThAs. However, for ThA set to 0.95, the ThA 
value is greater than SCOREED , hence the system predicted it as a negative authenti-
cation. This misclassification result (between actual and prediction) is defined as ‘False 
Rejection (FR)’. The comparison between actual and predicted authentication is given 
in Table 5.

Table 5. Calculation of True Acceptance Rate (TAR) and False Acceptance Rate (FAR)

Threshold
Total Total

TAR FAR
AA(+) AA(–) TA FA

0.75 4 12 4 9 1 0.75

0.85 4 12 4 6 1 0.50

0.95 4 12 3 1 0.75 0.08

The ROC curve plot, is a function of the decision threshold, which plots the rate of 
‘False Acceptance (FAR)’ (i.e. impostor accepted as genuine) on the x-axis, against 
‘True Acceptance Rate (TAR)’ (i.e. genuine accepted as genuine) on the y-axis. TAR 
and FAR in Table 5 can be calculated as follows:

 TAR True Acceptance
Actual Number of Positive Authenticatio

=
�

� � � � nn
 (12)

 FAR False Acceptance
Actual Number of Negative Authenticati

=
�

� � � � oon
 (13) 

FAR will be plotted against TAR for all ThA values to generate the ROC curves. 
Using more threshold values and number of subjects, a smoother ROC curve can be 
obtained as illustrated in Figure 6.

Fig. 6. Example of ROC curves

iJOE ‒ Vol. 18, No. 08, 2022 137



Paper—New Heart Features for More Effective Human Identification

5 Discussion

In order to quantitatively measure the comparison of multiple ROC curve perfor-
mances, the area under an ROC (AUR) and the Equal Error Rate (ERR) are used. The 
AUR calculates the area under each of the ROC curve. Its value ranges between 0 and 
1. The AUR has an important statistical property which is equivalent to an average of 
the overall performance of the biometric system when all threshold settings generating 
the ROC curves are considered. The EER is defined as the rate at which the FAR equals 
the 1-TAR. EER ranges between 0 and 1. A higher AUR value with a lower value of 
EER is desirable for practical systems. For the example shown in Figure 6, it is shown 
that the EER for the ROC curves is equal to 0.2913.

Equations (7) and (10) are closely related to mf and mi values. To evaluate the effec-
tiveness of selecting these values, in the next experiment, mi is set between 0.6 and 2 
while mf is set between 1 and 10. Figure 8 illustrates the performance of EER based 
on these ranges. It can be seen from Figure 7 that lower EER is obtained by selecting 
mf value of less than 2. It is also observed from Figure 7, the value of mi does not have 
much effect on the EER value.

Fig. 7. EER performance 

AUR performance when various values of mf and mi are used in equations (7) and 
(10) is shown in Figure 8. It is shown in this experiment that the AUC is higher when mf 
is set to less than 2. This figure also shows that when mi is set between 1 and 1.5, better 
authentication result can be obtained. From these two experiments, we can conclude 
that, the proposed BSF algorithm as in (7) and (10) should used mf value that is less than 
2 while mi should be set between 1 and 1.5.
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Fig. 8. AUR performance

6 Conclusion

This paper describes the development of novel algorithms known as the Bipolar 
Slope Feature (BSF), which is then used to extract the unique features of Electrocar-
diogram (ECG), for biometric authentication purposes. ECG is a recorded signal from 
the heart. BSF requires information such as the starting and ending points of the ECG 
signal, the modulation index (mi) and the modulation factor (mf), which determined by 
the user. In this work, the ECG is segmented between P and T peaks. The effects of 
using mi values from 0.6 to 2 and mf between 1 and 10 have been studied in this paper. 
100 participants were used to produce the training and test databases. The calculated 
BSF features using various mf and mi settings, have been used to generate the Receiver 
Operating Characteristic (ROC) curves. Based on the analysis of the ROC curves, it 
is shown that better authentication performance is obtained for mf less than 2 and mi 
between 1 and 1.5.
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