
PAPER
A NOVEL REAL-TIME VIDEO TRANSMISSION APPROACH FOR REMOTE LABORATORY DEVELOPMENT

A Novel Real-time Video Transmission
Approach for Remote Laboratory Development

http://dx.doi.org/10.3991/ijoe.v11i1.3167

Ning Wang1, Xuemin Chen1, Gangbing Song2 and Hamid Parsaei3
1Texas Southern University, Houston, USA;

2University of Houston, Houston, USA;
3Texas A&M University at Qatar, Doha, Qatar

Abstract—Remote laboratories are an inevitable necessity
for Internet enabled education in Science, Technology, En-
gineering, and Math (STEM) fields due to their effective-
ness, flexibility, cost savings, and the fact that they provide
many benefits to students, instructors and researchers.
Accordingly, real-time experiment live video streaming is an
essential part of remote experimentation operation. Never-
theless, in the development of real-time experiment video
transmission, it is a key and difficult issue that the video is
transferred across the network firewall in most of the cur-
rent remote laboratory solutions. To address the network
firewall issue, we developed a complete novel solution via
HTTP Live Streaming (HLS) protocol and FFMPEG that is
a powerful cross-platform command line video trans-
code/encoding software package on the server side. In this
paper, a novel, real-time video streaming transmission ap-
proach based on HLS for the remote laboratory develop-
ment is presented. With this new solution, the terminal users
can view the real-time experiment live video streaming on
any portable device without any firewall issues or the need
for a third party plug-in., This new solution also significant-
ly benefits remote laboratory development in the future.

Index Terms—Remote Laboratory; HTTP Live Streaming;
HLS; FFMPEG; Across Firewall.

I. INTRODUCTION
As the cost of setting up and maintaining the physical

equipment rises, engineering laboratories are becoming an
obstacle for school administrations. A good solution for
this is the use of remote laboratories that allow students to
perform real experiments over the Internet. Remote labor-
atories, also known under the name of online laboratories,
remote workbenches, etc., have found widespread ac-
ceptance during the last decade [1][2]. Over 20 years ago,
Stanford University introduced a new concept to learning:
the use of video for the distribution and broadcast of class-
room lectures [3]. Then, in the following few years, re-
mote control of experiments and equipment over the Web
was an idea that was being explored. Tools were also
becoming available for remote control of instrumentation
using network communication, and several demonstra-
tions of camera control and data acquisition, as well as
simple experiments have been made [4][5]. In the last
decade, with the fast improvement and development of
Internet technology, video broadcasting and the Web have
merged and remote experiments are now available over
the Internet to students, instructors and researchers any-
where and anytime. Consequently, the laboratory setting
has been globalized.

Remote laboratories offer a range of benefits that can
significantly improve pedagogical success: 1) they adapt
to the pace of each student; 2) an experiment may be con-
cluded from home if the time available at the lab was not
sufficient; 3) it can be repeated to clarify doubtful meas-
urements obtained at the lab; 4) the student may improve
the effectiveness of the time spent at the lab by rehearsing
the experiment beforehand; 5) safety and security are
improved as there is no risk of catastrophic failure [6].
Remote laboratories are often used in Control, Robotic
and Mechatronic education to illustrate theoretical princi-
ples and deployment methodologies [7]. Remote laborato-
ries can be of many kinds and our previous works mainly
focused on remote laboratories where the users accessed
physical equipment through the Internet for remote exper-
imentation purposes. From the point of view in the soft-
ware architectures, remote laboratories architects have no
choice but to build a middleware allowing remote clients
to connect to the local computer that handle the device.[8]
The novel unified framework was designed and developed
to allow the set up of a distributed network of online ex-
periments that works in any Internet browser without the
need of any extra plug-ins [9]. And then, we also deliver
the improved unified remote laboratory framework, which
uses a Comet solution via Node.js and its Socket.IO pack-
age to improve the control commands and experiment data
transmission performance. Nevertheless, real-time exper-
iment live video streaming is an essential function for
remote control experiment development, and normally it
is also a very important interface for the remote experi-
ment controllers and viewers [10].

Currently, among the many common solutions of the
remote laboratory, the real-time video transmission ap-
proach in remote laboratory implementation almost used
the special network port and Virtual Private Network
(VPN) to transfer the video streaming. Accordingly, there
is still an essential challenge of remote laboratory devel-
opment which is real-time video transmission across a
network firewall. Consequently, our improved solution for
the real-time experiment video transmission across a net-
work firewall is an essential improvement of the remote
laboratory development, which will extend into the future.

II. PREVIOUS WORKS AND METHODS SEARCH
In our previous works, we developed the unified remote

laboratory framework [10] and also resolved some chal-
lenges of developing a cross-browser and cross-device
Web user interface for improvement of the unified frame-
work [11]. This framework was used to implement the
remote control engineering experiments in the last year.
As an example, the new Smart Vibration Platform (SVP)

4 http://www.i-joe.org

PAPER
A NOVEL REAL-TIME VIDEO TRANSMISSION APPROACH FOR REMOTE LABORATORY DEVELOPMENT

remote experiment, which was used to teach students in
materials engineering courses, and this remote control
experimentation were aimed to offer students hands-on
experience through the Internet on structural vibration
control using Magneto-Rheological (MR) or Shape
Memory Alloy (SMA) braces under the novel unified
remote laboratory framework. In order to improve the
control commands and experiment data transmission per-
formance of the unified framework, a Comet solution via
Node.js and its Socket.IO package was implemented on
the server side, and a new Web socket protocol, which lets
the experiment communicate with Socket.IO was created
for the workstation [10]. With this improved unified
framework, the terminal users can remotely conduct the
experiment by using any portable device without installing
any plug-ins. However, we still faced an across the net-
work firewall issue and the real-time experiment video
was transferred via port 1026, which is the special net-
work port in this improved framework of the remote la-
boratory. In order to resolve this essential real-time exper-
imentation video transmission issue, we need to be look-
ing for a new approach to transfer the real-time video via
network port 80. Meanwhile, all Web contents of the
experimentation are also transferred to the terminal users
via the same network port. Therefore, the goal of this
novel approach is to solve the real-time experiment video
transmission across the network firewall issue and the
Flash plug-in in Web browser issue we faced in the re-
mote laboratory development.

Nowadays, with the fast development and improvement
of network technology, a novel, reliable and free video
steaming transmission protocol, HTTP Live Streaming
(HLS), is more and more popularly used for real-time
video transmission across a network firewall. HLS is an
HTTP-based media streaming communications draft pro-
tocol implemented by Apple Inc. Apple used this protocol
on September 1, 2010 to stream their iPod Keynote event
live over the Internet, and on October 20, 2010 to stream
their ‘Back to the Mac’ Keynote event live over the Inter-
net as part of their QuickTime and iOS software [12].
Currently, there are more and more giant software compa-
nies’ solutions to support HLS, such as Adobe Flash Me-
dia Server (Adobe FMS), Microsoft IIS Media Server,
Google Android Honeycomb, etc. Since it requests to use
only standard HTTP transaction, HLS is capable of trav-
ersing any firewall or proxy server that lets through stand-
ard HTTP traffic. Unlike UDP-based protocols (such
as Real-time Transport Protocol (RTP)), HLS also allows
content to be delivered over a widely available Content
Delivery Network (CDNs).

In this paper, we will present the detailed working pro-
cess and technical architecture regarding our novel real-
time video transmission approach proposed for the remote
laboratory development. There are three main parts in our
new solution. These are HLS protocol, FFMPEG, which is
a powerful cross-platform command line video trans-
code/encoding software package, is used as the video
encoder working for HLS to cut the real-time experiment
video into many little segments, and Segmenter software
package, which is the cost-free Video streaming segments
software package

III. PROPOSED APPROACH
The basic purpose of the new approach is to improve

the remote laboratory video transmission function. In

order to achieve this goal, we proposed the new real-time
video transmission solution via HTTP Live Streaming
protocol in combination with FFMPEG, which is a power-
ful cross platform command line video trans-code / encod-
ing software package. For addressing the network firewall
and flash plug-in issue, our new approach works by break-
ing the overall real-time experiment video stream into a
sequence of small HTTP-based file downloads. Each
download contains one short chunk of an overall poten-
tially unbounded transport stream. As the stream is
played, the client may select from a number of different
alternate streams containing the same material encoded at
a variety of data rates, allowing the streaming session to
adapt to the available data rate. Briefly, the client (normal-
ly proposed Web browser) loads a playlist file of these
video segments which was created following HLS proto-
col on the Web server (we proposed Apache Web Server).
The content of this playlist are short clips residing on a
Web server. In order to keep the real-time video transmis-
sion and playing smoothly, we regularly proposed 10
seconds for one short video clip. So for the server, we
need to create and maintain a playlist file and the short
segments of the real-time video stream. Therefore, the
sequence of small HTTP-based file downloads is trans-
ferred via HTTP Live Streaming protocol, and we used a
FFMPEG software package to break the overall real-time
experiment video stream into short segments. Finally, the
real-time experiment video segments are transferred via
HLS protocol through network port 80 and the real-time
video will be reassembled in the Web browser and shown
to the end users.

Network
Camera

Video Source

Media Server HTTP Server

Internet
(HTTP protocol)

Terminal Users

Real Time Video Streaming
collection and Process

Real Time Video Streaming
Segment, Enclosure, and

transmission

HTTP Live
Streaming
Protocol

FFMPEG Segmenter

Figure 1. The working process of the new real-time video transmission

approach

Figure 1 illustrates the working process of the novel re-
al-time experiment video transmission approach. It is very
clear that we not only need to setup the FFMPEG software
package in media server side, but we also need to compile
and install the Segmenter software package and configure
the Apache Web server in HTTP server side. We build up
the real-time experiment video processing and transmis-
sion environment, then the new solution will be imple-
mented to resolve the real-time video transmission prob-
lem mentioned above.

IV. ARCHITECTURE OF THE NOVEL SOLUTION
The novel real-time experiment video transmission ap-

proach has been developed on the novel, good and free
video steaming transmission protocol, HTTP Live Stream-
ing, which is a HTTP-based media streaming communica-
tions draft protocol implemented by Apple Inc. As depict-

iJOE ‒ Volume 11, Issue 1, 2015 5

PAPER
A NOVEL REAL-TIME VIDEO TRANSMISSION APPROACH FOR REMOTE LABORATORY DEVELOPMENT

ed in Figure 2, it consists of the following basic entities:
HTTP Live Streaming protocol (HLS), FFMPEG and
Segment software package.

A. Streaming protocol Selection and HTTP Live
Streaming protocol introduction

For the real-time experiment video transmission, we
need to select a stable transmission protocol that performs
well. Currently, there are three popular streaming trans-
mission protocols which are widely used, Real-time Mes-
sage Protocol (RTMP), HTTP Live Streaming (HLS) and
Real-time Streaming Protocol (RTSP). As depicted in
Table 1, we can know the detailed correlation between
these three main streaming transmission protocols. Based
on our requirements, we need to look for a real-time video
transmission protocol which is stable, free, and has good
capability across a network firewall. Consequently, after
comparing, it is the best selection for us that the HTTP
Live Streaming protocol (HLS) will be used in our new
solution.

HTTP Live Streaming is a way to send video and audio
over HTTP protocol from a Web server via network port
80 to client software (Web browsers and other client ap-
plications) on desktops, laptops or to other portable devic-
es (including IOS-based portable devices, Android-based
portable devices, Win8-based portable devices, Smart
phones, etc.). Accordingly, the HLS Protocol mainly con-
sists of three parts which are the server component, the
distribution component and the client software. The server
component is responsible for taking input streams of me-
dia and encoding them digitally, encapsulating them in a
format suitable for delivery, and then preparing the encap-
sulated media for distribution. The distribution compo-
nent consists of standard Web servers and they are respon-
sible for accepting client requests and delivering prepared
media and associated resources to the client. For large-
scale distribution, edge networks or other content delivery
networks can also be used. The client software is respon-
sible for determining the appropriate media to request,
downloading those resources, and then reassembling them
so that the media can be presented to the terminal users in
a continuous stream. The HLS protocol is also an Internet-
Draft protocol submitted by Apple, Inc to the Internet
Engineering Task Force (IETF), and the Internet-Drafts
are working documents of the IETF, its areas, and its
working groups [13].

Figure 3 shows the HLS protocol standardized basic
configuration, which was defined by Apple, Inc [13]. As
illustrated in Figure 3, there are four main critical parts of
the process, which are video and audio source collection,
video and audio streaming encoder module, media seg-
ment module and video and audio files distribution. In our
remote experiment development, the video source is the
real-time experiment video, which is input from the net-
work camera directly and is the H264 format video. Cur-
rently, we only need to collect the video streaming with-
out audio streaming to show the whole procedure of re-
mote experimentation for the terminal users. As it fulfills
our project requirements and is easy to maintain and im-
prove, we prefer to use the FFMPEG software package as
the encoder to process the experiment video, and we also
use an open source free segment software package to
break up the video into the little video clips. For the Web
server setup, there are some good Web server software
packages which are Nignx Web server and Apache Web

The real time
experiment

video receiver
Network
Camera

FFMPEG

Segmenter

HTTP

.m3u8 files

.ts files

H.264 codec

Web browsers in Various Terminal equipment

HTTP Live Streaming

Figure 2. The architecture of the novel real-time video transmission

solution.

TABLE I.
MAIN VIDEO STREAMING TRANSMISSION PROTOCOL COMPARISON

 RTMP HLS RTSP

Name
Real-time

Message Proto-
col

Http Live Stream
Real-time
Streaming
Protocol

Upper
Protocol TCP / HTTP HTTP RTP / RTCP

Mode C/S B/S C/S
Main Force Adobe Apple Microsoft

Client
request.

Flash supported
Browser

HTML5 sup-
ported Browser

HTML5 supported
Browser Players

Video
request. FLV, F4V MP4 NA

Server
Request.

FMS Serv-
er/Flash Serv-

er/Red 5
Normal HTTP Server RTSP Stream-

ing Server

Real-time
Live Re-

quest.

dedicate En-
coder

Flash Media
Encoder

a. media encoder(H.264
& AAC) into MPEG-2

streaming
b. streaming segmenter
from MPEG-2 stream-
ing to segments for live
c. file segmenter from
file into segments for

on-demand

related with
server

Play format
Request

FLV/F4V file
divided into

F4f media data
file

f4x index file

.Ts media data file,
.M3u8 index file

related with
server & player

Delay Dependence 5~30 sec < 2 sec

VCR Support with
high precision

Support with high
precision

Support with
normal preci-

sion
NAT

traversal Good Not Good Good

server. Because in our previous unified framework devel-
opment we used the Apache 2.0 Web server software
package on the server side, as an improvement of the
unified framework we implement the new video streaming
transmission approach based on the Apache 2.0 Web
server.

6 http://www.i-joe.org

PAPER
A NOVEL REAL-TIME VIDEO TRANSMISSION APPROACH FOR REMOTE LABORATORY DEVELOPMENT

Figure 3. HLS basic configuration.

B. The FFMPEG for the real-time video encoder
Normally, the encoder is used to produce a MPEG

transmission stream. For large audio and video producers
(such as television, radio, etc.), it isn’t a problem and they
usually have hardware-based encoders that output exactly
this. As there is a limited budget and the purpose of this
experiment is to provide an approach that is easily extend-
ed and maintained in future, we need to be looking for a
good and stable software solution. Consequently, a great
open source software solution will be our objective. With
this goal, we prefer to select the FFMPEG as the video
encoder in our solution.

FFMPEG is a complete, cross-platform command line
software package which can record, convert and stream
audio and video. It includes libav-codec which is the lead-
ing audio/video codec library, and it is also the leading
multimedia framework which is able to decode, encode,
trans-code, Mux, deMux, stream, filter and play video and
audio source files that humans and machines have created
and collected. The FFMPEG not only can encode the
streams in all required Codecs (such as HE-AAC, MP3,
MP4, etc.), but also output these elementary streams in
MPEG-TS. The FFMPEG software package is free soft-
ware licensed under the LGPL or GPL depending on your
choice of configuration options and it supports the most
obscure, ancient formats up to those that are cutting edge.
No matter if they were designed by some standards com-
mittee, the community or a corporation.

FFMPEG is a very fast video and audio converter that
can grab from a live video and audio source (such as a
network camera), and also can convert between arbitrary
sample rates and resize video on the fly with a high quali-
ty poly-phase filter. Normally, the FFMPEG software
reads from an arbitrary number of input files which can be
regular files, pipes, network streams, grabbing devices,
etc., and writes to an arbitrary number of output files
which are specified by a plain output filename. In princi-
ple, each input file or output file can contain any number
of streams as different types (such as video, audio, subti-
tle, attachment, data, etc.). The streams which were al-
lowed numbers and types can be limited by the container
format. Therefore, as a general rule, FFMPEG options are
applied to the next specified file. Consequently, when we
used the FFMPEG operation commands to process video,
it was very important that the FFMPEG operation com-
mands input must be ordered. And you can also have the
same option on the command line multiple times. Each
occurrence is then applied to the next input or output file.
As Figure 4 illustrates, we can know the detailed working
process of the FFMPEG software package

Input
Files

Encoded data
packets

Output
Files

Decoded
Frames

Encoded data
packets

demuxer decoder encoder muxer

Figure 4. FFMPEG Trans-Coding process.

FFMPEG calls upon the libavformat library (containing
deMuxers) to read input files (our input files are the real-
time experiment video streaming files) and get packets
containing encoded data from these files. When multiple
input files are coming, FFMPEG tries to keep them syn-
chronized by tracking the lowest timestamp on any active
input stream. Afterwards, Encoded packets are passed to
the decoder. The decoder produces uncompressed frames
(for example, raw video, PCM audio, etc.) which can be
processed further by filtering. After filtering, the frames
are passed to the encoder, which encodes them and out-
puts encoded packets again. Finally, those are passed to
the Muxer, which writes the encoded packets to the output
file.

Example 1 shows the command line which is one of the
FFMPEG commands that were used in our new video
transmission solution to collect the real-time video re-
source file from the network camera device

Previously, we used to output two video files and con-

stantly switch them to achieve the real-time monitor re-
mote experiment process. So we also developed an auto-
matically executing command file using shell in the Linux
server.

C. The real-time video segment Module Selection and
implementation

In the architecture of our new solution, we need to
segment the video which was output from the FFMPEG
software package to the short clips (regularly proposed 10
seconds). Therefore, we need to be looking for one soft-
ware package for this purpose. Currently, there are some
good segment software packages for selection, and the
Segmenter is a good candidate for us. The Segmenter is a
software package which splits a transmission stream into
chunks and then updates a playlist file with these chunk
files. Most Segmenters are not open source. Consequently,
they are difficult to improve and maintain in the future. As
an example, Apple's Segmenter is a good solution and a
cost-free Segmenter, but it is a binary program made for
the Mac and does not run very well on the Linux server. It
is not suitable for our new solution, since our approach
needs to implement the segment function on the Linux
server.

By the above description, the Free and Open Source
Segmenter solution which was written by Carson McDon-
ald, is the best selection for us up to date. It can run well
on a Linux server, and we can freely download the source
codes of this solution from his blog [14].

The segment software package, which is used in our
novel solution, is based on the open source Segmenter
solution and we modify some parts to match our require-
ments for the real-time experiment’s video transmission.
Figure 5 shows the detailed working process of the seg-
ment software packages in our new solution.

ffmpeg -i "rtsp://10.3.52.36/axis-media/media.amp?
videocodec =h264&streamprofile =svp" -vcodec libx264
-subq 1 -g 250 -qmin 10 -qmax 51 -i_qfactor 0.71
/var/www/html/Hls_Test /Record. mp4

Example 1: FFMPEG command line

iJOE ‒ Volume 11, Issue 1, 2015 7

PAPER
A NOVEL REAL-TIME VIDEO TRANSMISSION APPROACH FOR REMOTE LABORATORY DEVELOPMENT

Segment Software
Package

Index Files and
structure

FFMPEG Software
Package

Video Streaming
resource

.ts video
clip files

Segment software
create the relation
between Index file

with clip files

Segment Commands
input

Figure 5. Segment software package working process.

The Following command line is an example used to
create a stream from a video file created with the above
FFMPEG command split into 10 second intervals:

D. Web Server configuration and Video transmission

For the real-time video stream transmission via network
port 80, we need to configure the Web server that used the
Apache 2.0 HTTP server software package to match the
HTTP Live Streaming protocol requirement. Actually,
Apache is probably not the best choice for delivering files
via HLS protocol. However, our previous tasks were al-
ready finished on the Apache Web server and there’s a
low possibility that we can change the Web server for our
current project status. Therefore, we decided to go with
the very flexible and customizable Apache instead of the
Nginx or Lighty Web servers, which are better suited for
HLS.

At this point, we should have a set of files that represent

the stream and a stream definition file. Those files can be
uploaded to a Web server at this point, but there is another
important step to take that ensures they will be download-
ed correctly and that is setting up mime types. There are
two mime types that are important for the streaming con-
tent that needs to be added in the Web server configura-
tion files.

So we need to add the following two line content in the
Apache Server configuration file, httpd.conf, in order to
let the Apache Web server support the HLS protocol and
files.

We can create the corresponding folder to manage the
m2u8 files on the Web server side. Client side, we only
need to add the HTML code or use JWPlayer.js functions
in the Web pages, and then the real-time video will be
shown in the Web page for end users. Here, it is necessary
to point out that the browser must support HTML5, oth-
erwise we need to use the JWPlayer.js to support the HLS

video. So far, most of the popular newest browsers (such
as, Safari, Chrome, IE10, Firefox, etc.) almost support the
HTML5.

V. THE REALIZED NOVEL VIDEO TRANSMISSION
SOLUTION

A. The Realized real-time experimentation video live
streaming with HLS across network firewall

In order to achieve the purpose of the real-time experi-
mentation live video streaming with HLS protocol across
a network firewall, we create two video files in http server
side. We then write a short script to automate the run
command file, which runs in Linux server side to record
the video from the network camera, and then automatical-
ly switches to transfer these two video files with HLS
protocol to the end user. The switch time slot was set to 1
minute, which also means that one video file time slot is 1
minute.

Currently, there is an issue where we cannot achieve
continuous video playback through the smart phone be-
cause the hardware configuration is not high enough. And
when we used the low configuration smart phone to load
the video stream, the video playback is not smooth. How-
ever, this problem is not found in the IPhone and other
high configuration smart phones.

B. Technical Characteristics of the improved unified
remote laboratory framework

The architecture of the new video transmission solution,
which is described in the previous section, has been im-
plemented in the new Smart Vibration Platform (SVP)
remote experiment, which was developed based on the
improved unified remote laboratory framework. As the
improved unified framework based on the Web 2.0 Tech-
nology, we built the whole framework directly on top of
database, HyperText Markup Language (HTML), Cascad-
ing Style Sheets (CSS), and jQuery/jQuery-Mobile JavaS-
cript libraries. The PHP, which stands for Hypertext Pre-
processor and database driven data-streaming solution,
eliminated the need for the client side LabVIEW (Labora-
tory Virtual Instrumentation Engineering Workbench)
plug-in. For the whole improved unified remote laboratory
framework, we mainly use three technologies for the sys-
tem implementation, which are LabVIEW to Node.js
technology for experiment data transmission and experi-
ment equipment control commands, the novel video
transmission approach based on HLS protocol for real-
time system monitoring, and Mashup technology for user
interface implementation. Table II depicts the detailed
technical characteristics of the whole improved unified
remote laboratory framework.

C. Sample Paradigm of the new solution
Table III illustrates the comparison of the sample para-

digms, which show the terminal user interface, which was
developed under the improved unified frameworks in
different terminal devices.

This user interface can be run in any terminal equip-
ment without the installation of any plug-ins or software.
As an example, we used the remote Smart Vibration Plat-
form (SVP) experiment to depict the experiment operation
method from the user interface. When the switch on the
left corner of the Webpage is on, the user can move the
slide bar to control the motor rotation speed. The accel-

Segmenter Record.ts 10 Record Record.m3u8 http://vr-lab.
engineeringtech. tsu.edu/ Hls_Test/

Example 2: Segmenter command line

AddType application/x-mpegURL .m3u8
AddType video/MP2T .ts

.m3u8 application/x-mpegURL

.ts video/MP2T

8 http://www.i-joe.org

PAPER
A NOVEL REAL-TIME VIDEO TRANSMISSION APPROACH FOR REMOTE LABORATORY DEVELOPMENT

TABLE II.
MAIN VIDEO STREAMING TRANSMISSION PROTOCOL COMPARISON

Level Name Technology/Protocol/Software
package

Remark

1. Client – User Inter-
face

Mashup technology, JavaScript

2. Data Protocol Socket.io/Web socket
3. Real-time experi-

ment video Trans-
mission

HTTP Live Streaming Proto-
col/FFMPEG/Segmenter soft-

ware package

4. Server - Web Ser-
vice

Node.js (V0.8.8), JSON ,
MySQL

LtoN

5. Experiment Server LabVIEW (V8.6)

TABLE III.
SAMPLE PARADIGM OF THE NEW SOLUTION COMPARISON IN DIFFERENT

DEVICES

Sample Paradigm in Desktop Sample Paradigm
in IPhone

Sample Paradigm in
IPad

! ! !

erometer output, which indicates the platform vibration, is
shown in the middle of the Webpage. And the real-time
video is displayed on the top of the Webpage. With our
novel transmission solution, the real-time experiment
video can be transferred to different terminal interfaces
across the network firewall.

Obviously, the remote laboratory system based on the
improved unified framework is able to take full advantage
of the real hardware and real instrumentation utilization.
With the new real-time experimentation video transmis-
sion approach, the improved remote experiment provides
better control performance in a wider range of terminal
equipment.

VI. CONCLUSION
In this paper, we presented a new, real-time experiment

video transmission approach to solve the across network
firewall and flash plug-in issue, which were not solved in
the unified framework for remote laboratory development.
In our new solution, we not only introduced the current
popular stream transmission technology, HTTP Live
Streaming Protocol, to the remote laboratory develop-
ment, but also successfully used this new protocol to im-
prove a remote SVP experiment and solve the real-time
experiment video across network firewall issue. As an
example, we used this new solution in the improved re-
mote SVP experiment development. The end users can
view the remote SVP experiment by Web browsers, which
must support HTML5 anywhere through the HLS protocol
without any plug-in. Consequently, this novel real-time
experiment video transmission solution gives the unified
framework prodigious improvement.

REFERENCES
[1] Ma, J., Nickerson, J. V., “Hands-On, Simulated, and Remote

Laboratories: A Comparative Literature Review”, ACM Compu-
ting Surveys, Vol. 38, No. 3, Article 7, September 2006.

[2] Gille,. D., Nguyen, A. V., Rekik, Y., “Collaborative Web-Based
Experimentation in Flexible Engineering Education”, IEEE Trans-
actions on Education, Vol. 48, No. 4, November 2005.

[3] Gibbons, J.F. et al. "Tutored videotape instruction: a new use of
electronics media in education" Science, Vol.195, no.4283, pp.
1139-46, 18 March 1977. http://dx.doi.org/10.1126/science.195.
4283.1139

[4] Barry P., "Virtual Laser Lab - The Future of Distance Learning is
Here!", Instrumentation Newsletter, Volume 10, Number 4, Win-
ter 98-99.

[5] Barrie, J.M., and Presti, D.E., "The World Wide Web as an In-
structional Tool", Science, Vol. 274, 18 October 1996
http://dx.doi.org/10.1126/science.274.5286.371

[6] Ferreira, Sousa, Nafalski, Machotka, Nedic (2010). "Collaborative
learning based on a micro-Webserver remote test controller", iJOE
International Journal of Online Engineering vol. 5, no. Special Is-
sue, pp. 18-24 1861-2121, August 2009

[7] Tzafestas, C.S., Palaiologou, N., Alifragis, M., “Virtual and Re-
mote. Robotic Laboratory: Comparative Experimental Evalua-
tion”, IEEE. Transactions on Education, vol. 49, no. 3, p.360-369,
August 2006 http://dx.doi.org/10.1109/TE.2006.879255

[8] Gravier. C, Fayolle. J, Bayard. B, Ates .M, and Lardon .J, “State
of the Art About Remote Laboratories Paradigms—Foundations of
Ongoing Mutations DIOM Laboratory,” iJOE, vol. 4, no. 1, pp.
18-25, Feb. 2008.

[9] Olmi, C., Cao, B., Chen, X. and Song, G., "A Unified Framework
for Remote Laboratory Experiments", In Proceedings of ASEE
Annual Conference & Exposition, Vancouver, BC, Canada, June
26 - 29, 2011.

[10] Chen, X., Osakue, D., Wang, N., Parsaei, H., Song, G., “Devel-
opment of a Remote Experiment under a Unified Remote Labora-
tory Framework” in Proceedings of the World Congress on Engi-
neering Education 2013. H.R. Parsaei and K.S. Warraich, eds.

[11] Omli, C., Chen, X. and Song, G., "A Framework for Developing
Scalable Remote Experiment Laboratory", In Proceedings of
World Conference on E-Learning in Corporate, Government,
Healthcare, and Higher Education 2011 (E-Learn 2011), pp. 2045-
2050, Honolulu, Hawaii, October 18-21, 2011.

[12] Foresman, Chris., (July 9, 2009). "Apple proposes HTTP stream-
ing feature as protocol standard". Ars Technica. Retrieved 2009-
07-10.

[13] Roger, Pantos (Apple Inc.), William May, Jr (Apple Inc.) "the
IETF Internet-Draft of the HTTP Live Streaming specification. "
Internet Engineering Task Force, Online, Retrieved October, 2012

[14] McDonald, Carson “An open source segmenter– written by Car-
son McDonald” Subversion (SVN) online, Submitted: June 28,
2009.

AUTHORS
Ning Wang is with Department of Computer Science,

Texas Southern University, Houston TX, 77004 USA
(n.wang4648@student.tsu.edu).

Xuemin Chen. is with Department of Engineering
Technology, Texas Southern University, Houston TX
77004, USA (e-mail: chenxm@tsu.edu).

Gangbing Song is with Department of of Mechanical
Engineering, University of Houston, Houston TX, USA
(e-mail: gsong@uh.edu).

Hamid Parsaei is with Department of Mechanical En-
gineering, Texas A&M University at Qatar, Doha, Qatar
(e-mail: hamid.parsaei@qatar.tamu.edu).

This material is based upon work supported by the Qatar National Re-
search Fund under Grant No. NPRP 4-892-2-335.Submitted 06 Septem-
ber 2014. Published as resubmitted by the authors 25 January 2015.

iJOE ‒ Volume 11, Issue 1, 2015 9

