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Abstract—Gathering data in an energy efficient manner in 
wireless sensor networks is an important design challenge. 
In wireless sensor networks, the readings of sensors always 
exhibit intra-temporal and inter-spatial correlations. 
Therefore, in this paper, we use low rank matrix completion 
theory to explore the inter-spatial correlation and use 
compressive sensing theory to take advantage of intra-
temporal correlation. Our method, dubbed MCCS, can 
significantly reduce the amount of data that each sensor 
must send through network and to the sink, thus prolong 
the lifetime of the whole networks. Experiments using real 
datasets demonstrate the feasibility and efficacy of our 
MCCS method. 

Index Terms—Data Gathering, Wireless senor Networks, 
Matrix completion, Compressive Sensing 

I. INTRODUCTION 
In wireless senor networks, deployed sensor nodes 

periodically collect readings and send them to sinks (or 
base stations) via wireless channels. Due to the limited 
computation capability and energy power, it is desirable to 
design simple and energy efficient data gathering method 
to reduce energy consumption on each sensor. 

Energy consumption of sending and receiving data is 
one of the most important factors in WSNs. Various 
methods have been proposed to achieve data compression 
include tradition source coding and distributed source 
coding[1]. Beside those methods, another promising 
taxonomy is Compressive Sensing (CS)[2-3] based 
approaches. 

CS theory proved that if discrete signal 
N

Nx R!  can 
be sparsely represented as N! using a transform basis 

N N!"  (e.g. wavelet basis), we can exactly recover Nx  
from My (M<N) measurements using 1l minimization 
constrain, here 

 M M N N M N N N Ny x !" " "=# =# $  (1) 

In (1), M N!" is the sensing matrix. In this paper, we 
will use sparse binary matrix as the sensing matrix which 
can reduce energy consumption while achieving 

competitive data compression ratio [4]. N! is a sparse 
vector with only few non-zero elements.  

Vuran et al.[5] pointed out that in wireless sensor 
networks, the phenomena observed by sensors is highly 
spatially and temporally correlated. Those correlations 
result to the sparsity of sensor readings under wavelet 
transform (see fig. 2 in experiment section for the example 
of real world dataset) which then satisfy the sparse 
requirement of CS theory.  

In [6-7] both inter-signal and intra-signal correlations 
are considered to reduce the communication cost on each 
sensor. Each sensor sends CS compressed measurements 
to sink individually, and sink recovers original readings 
from measurements of all the sensors using Joint Sparsity 
Module (JSM). 

In [8] the authors proposed Compressive Data 
Gathering (CDG) framework to make use of the sparsity 
of inter-signal in multi-hop fashion for large dense 
wireless sensor networks in a distributed manner. Also in 
[9], a Hybrid CS aggregation was proposed to further 
reduce the communication overhead of sensors. But this 
kind of method needs to re-compute spanning tree each 
time if there are node joining or leaving. 

Temporal correlation of intra-signal and hierarchical 
cluster feature was exploited in [10]. In this method, 
cluster heads of each layer perform CS reconstruction and 
use the recovered readings to form new CS measurements 
with shorter length. The disadvantage is that each cluster 
head need to do CS reconstruction which is computation 
expensive. 

Matrix Completion (MC) is the theory to recover a full 
data matrix from part of its entries. Recently, candes et al. 
proved that if the data matrix is a low rank or 
approximately low rank matrix, we can recover a full 
matrix from an incomplete set of entries[11]. Observing 
that the readings of sensors can form approximately low 
rank data matrix[5], Cheng et al. proposed EDCA scheme 
to apply the low rank matrix completion theory to the data 
gathering problem of WSNs[12]. Since EDCA only sample 
partial readings on each single sensor, the energy cost of 
sampling which is not investigated before can also be 
reduced. 

Inspired by the work of EDCA and the power of intra-
signal temporal correlation, in this paper we first combine 
the matrix completion and compressive sensing theory to 
further compress the senor readings.  
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This paper first presents our matrix completion and 
compressive sensing method, which are called MCCS, 
and then demonstrates the performance gains by real 
deployed dataset. At last, we conclude and give out future 
research direction. 

II. PROPOSED SCHEME 
The fundamental idea of our proposed method is 

straightforward. Each sensor node randomly samples the 
readings, compresses the collected readings using CS 
method, and then sends out the compressed data. The base 
station will do CS reconstruction first and then perform 
matrix completion technology to get the readings from all 
the sensors. 

A. Encoding Algorithm at Each Sensor Node 
Our aim of encoding is trying to reduce the energy cost 

in all possible aspects including energy cost of sampling, 
communication cost and computation complex. Below are 
the details of our encoding algorithm at each sensor. 

Step 1: Each sensor node randomly generates a binary 
sampling position vector NP with only q (q<N) non-zero 

entries. Here, we call /N q! = " #$ %  (0 1!< <  ) the MC 
(Matrix Completion) sample ratio. 

Step 2: Each sensor node then scans the binary 
sampling position vector and only samples when the 
corresponding entry is non-zero. At the end, those 

sampled readings form a vector
q

qx R! . 
At this step, MC based compression is applied. Each 

node only sample q readings instead of N which results to 
/N q! = " #$ %compression ratio. Thus the energy cost of 

sampling is reduced [12]. 
Step 3: At the first time, each sensor node generates and 

stores the same sparse binary matrix p qB ! (p<q) using the 
seed K pre-shared among all sensors and sinks. There are 
only small number d ( 1p d> ! ) non-zero elements 

random located in each column of p qB ! . Also, we call 
[ / ]p q! =  (0 1!< <  ) the CS compression ratio. 

Step 4: Each sensor node gets CS projections py from 
qx   according below operation 

 p p q qy B x!= !  (2) 

After sending out py and the sampling position vector 
NP (using bit mode), goes back to step 1. 
At this step, since our measurement matrix is a sparse 

binary matrix, the energy expenditure for this CS 
compression is only involves simple addition operation. 
That is why we select sparse binary matrix instead widely 
used Gauss matrix. 

Although qx is randomly sampled from N continuous 

readings, due to the temporal correlation, we find that qx is 
still sparse under certain transform basis (fig. 4 is an 
example from a real dataset). That is why we can still 

using CS to compress the readings after Matrix 
Completion based compression. Also, it is our main 
contribution of this paper. 

At the end, each sensor only needs to send out p 
readings instead of N, which results to /p N ! "= # total 
compression ratio. 

B. Recovering Algorithm at Sink Node 
At the beginning, sink node generates and stores the 

same sparse binary matrix p qB ! using shared seed K. 

After receiving CS projections py  from each node, sink 

node is able to reconstruct the partial readings qx through 
solving a 1l minimization problem: 

 1
min || || . .q l p p q q p q q q qs t y B x B! !" " "= = #  (3) 

Here N N!" is a transform basis that can make 
qx sparsely represented as q! . Suppose !!q is the solution 

of the convex optimization problem, than the original 
partial readings is !xq =!q"q

!!q . With proper values of p 

and q, the error between !xq and qx can be very small. 

After recovering from CS compression, sink node uses 

!xq and the binary sampling position vector NP from each 
sensor node to form an incomplete readings matrix 
!X J!N where J is the number of sensor nodes and each row 

contains 0 and related !xq . According to the spatial 

correlation, !X J!N is an approximate low rank matrix. That 
means we can recover the full readings matrix from 
convex optimization problem [11]: 

 minimize || X ||*
subject to Xij = !Xij (i, j)!"

 (4) 

Here, ||.||* is the nuclear norm, and the set ! is the 
positions corresponding to the partially sampled sets of 
readings. 

III. EXPERIMENT RESULTS 
We use the real world dataset from Intel Berkeley 

Research Lab[11] to evaluate the efficiency of our proposed 
method. The dataset contains temperature, humidity, light 
and voltage value periodically collected every 31 seconds 
from 54 distributed sensor nodes between February 28th 
and April 5th, 2004. In our experiment, temperature 
values from 46 nodes on March 1st, 2004 are selected 
(eight nodes among 54 nodes have very few values). Thus, 
those traces form a matrix 46 250X ! , here each row is from 
the readings of related sensor.  

46 250X ! is not row rank but approximately low rank. 

Indeed, letting 
1
46 250X !  be the rank-1 approximation, we 
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have 
1
46 250 46 250 46 250|| || / || || 0.0068F FX X X! ! !" = , here 

||.||F is the Frobenius norm. 
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Figure 1.  Original temperature readings of sensor node 10 
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Figure 2.  Coefficients of 6-level 9/7 wavelet transform of original 

temperature readings from sensor node 10 
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Figure 3.  Coefficients of 6-level 9/7 wavelet transform after MC 

compression with ! =0 of original temperature readings from sensor 
node 10 

Fig. 1 is the original readings from 10th row of 46 250X !  
which belongs to sensor node 10. Fig. 2 shows the 250 
coefficients after 6 level 9/7 wavelet de-correlation. We 
can find that there are only 5 coefficients whose absolute 
value is larger than 0.05, which means those readings are 
very sparse in wavelet domain. More importantly, fig. 3 
shows that even after randomly sampling from original 

readings (! =0.5), those partial sampled readings are still 
sparse in wavelet domain. 

In this experiment, We only compare our MCCS 
method with close related method MC[12], and we use 
CVX toolbox [14] doing CS reconstruction and TFOCS 
toolbox [15] doing matrix completion recovering.  

The number of iteration of simulation is 100, and we 
calculate the average result values. In each simulation, we 
calculate an error matrix by comparing the recovered 
matrix with the original matrix 46 250X ! . Fig. 4 and Fig.5 
show the mean value and standard deviation on different 
sample ratio ! between MC method and our MCCS 
method. From the results, we can see that with almost the 
same accurate, we can achieve more compression ratio 
than MC method. For example, with the same 0.3 sample 
ratio, if we set CS compression ratio ! to 0.4, our total 
compression ratio is 0.12 which is much less than MC 
method. 

 
Figure 4.  Mean value with different sample ratio of original 

temperature readings from sensor node 10 

 

 
Figure 5.  Deviation value with different sample ratio of original 

temperature readings from sensor node 10 

IV. CONCLUSIONS AND FUTURE WORK 
In this paper, we propose a Matrix Completion and 

Compressive Sensing based data gathering method in 
wireless sensor networks in a computationally and energy 
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efficient manner for sensor nodes. Our method fully 
exploits the low rank and sparse nature of readings among 
sensor nodes, and can achieve a high compression ratio of 
readings. Experiment on real world dataset demonstrates 
the efficient of the method.  

Our future work include: 1) compare with other CS 
based methods in the literature; 2) do more experiments 
on other WSN deployment datasets using other CS 
reconstruction algorithms and MC recovering algorithms; 
3) apply DCS-OMP [7] to the CS reconstruction 
procedure to see whether we can further reduce the 
number of samples required for effective recovery; and 4) 
modify our method to accommodate to abnormal readings. 
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