
PAPER
A SOA AND KNOWLEDGE-BASED TELEMONITORING FRAMEWORK: DESIGN, MODELING, AND DEPLOYMENT

A SOA and Knowledge-based Telemonitoring
Framework: Design, Modeling, and Deployment

http://dx.doi.org/10.3991/ijoe.v9i6.3312

W. Zhang, K. Thurow and R. Stoll
University of Rostock, Rostock, Germany

Abstract—Telemonitoring systems have proven to greatly
reduce medical costs while improving the quality of medical
care. Today, the main factors restricting the development
and popularization of Telemonitoring systems include
scalability and compatibility. The current sensor devices
lack unified standards and deliver complicated data
structures. This paper presents the design for an ontology-
based context model, and related middleware, that provide a
reusable and extensible application framework for Remote
Healthcare and assistance at home. We define the semantic
information to describe attributes of sensors, services and
working procedures. Developers may rewrite the service
definition to adapt to new requirements as needed.

Index Terms—telemonitoring; SOA; knowledge; modeling;
ontology

 INTRODUCTION I.
A Telemonitoring System can be defined as a

technological means for sending remote physiological
information and medical signals through a communication
network to a monitoring center for analysis and
diagnostics. Remote monitoring systems generally include
three components: a monitoring center, Telemonitoring
device, and a communication network connecting the two.
This system integrates applications and devices like
medical sensors, smart phones and data-store centers to
provide health care services.

Telemonitoring systems currently face many
challenges, primarily because the sensor technology,
Telemonitoring’s key technology, is still in the early
stages of development. In the fields of architecture and
service, the system faces the following two technical
challenges:
- Dynamistic. The types of medical sensing devices are

varied and lack unified standards. The present
Telemonitoring system is mostly researched and
developed for a specific sensing device. In other
words, an unique connection code and working
process is designed for each type of sensor, greatly
reducing the system’s scalability and presenting a
significant obstacle for the popularization of
Telemonitoring systems today.

- Heterogeneity. The heterogeneity between the
Telemonitoring systems and the commonly used
medical systems like HIS, LIS, causes data and
service interaction difficulties which may easily
create an “information island”.

Example: Home HeartRate monitoring is a typical
application scenario of Telemonitoring.
1) First, the patient needs to wear a medical sensor that

can measure his heartbeat.
2) The heartbeat data collected by the sensor is first

transmitted to a local data processing center Gateway
(usually a smartphone) which will send the data to a
remote medical center.

3) The medical center will store the acquired data in the
database then transfer the medical data to a data-
process-module which returns the processed results to
the smart phone client.

4) Under certain conditions, an alarm is triggered as a
reminder to the patient.

This example shows that, to solve the above problems,
a Ubiquitous Telemonitoring System should have the
following three abilities:
• The system should have the ability to discover,

integrate and control new medical sensors.
• The sensor should connect with the local data

processing gateway and transmit corresponding
physical parameters according to medical service
needs.

• In the medical service center, there should be open
interactive data interface services. All types of
medical services and data processing services should
be published using open standards so that they can be
discovered and employed by external systems.

 METHODS II.

 Context-Aware Middleware A.
The first and second problem can be solved by

establishing a Context-aware Middleware [1]. In order to
extricate remote medical applications from tedious sensor
data acquisition and management, this paper proposes a
Telemonitoring Context-Aware Middleware (TCAM).
With TCAM, the upper-layer applications would not be
concerned about acquiring the context data, but only about
the business logic itself.

As shown in Table 1, applications based on TCAM are
divided into three layers. TCAM separates the collection
of context information and the development of aware
applications. It provides a Subscriber API (i.e. Subscriber
Application Programming Interface [2]) for the developer
of the upper-layer application; TCAM is then responsible
for completing the data collection of various kinds of
sensors, including physical, virtual and logic sensors.

48 http://www.i-joe.org

PAPER
A SOA AND KNOWLEDGE-BASED TELEMONITORING FRAMEWORK: DESIGN, MODELING, AND DEPLOYMENT

TABLE I.
TELEMONITORING CONTEXT-AWARE MIDDLEWARE

Context aware applications

Telemonitoring Context-aware Middleware

Subscriber API

Pub/Sub framework

Provider API

Data collection

All kinds of sensors

All Context-aware Middleware that exists today, suffers

from a common defect; they do not provide support to
external sensor data. A major advantage of TCAM, as
proposed in this paper, is that it provides support for
external sensor data. The Mobile Terminal as the gateway,
utilizes the Experia-ARCS-BL/ANT module of Sony to
communicate with external sensor nodes (via Bluetooth,
ANT protocol) to collect its data. At the same time, in
order to overcome the dynamic properties and the
heterogeneity of the external sensor data, this paper
presents the design for a sensor context bnowledge-base,
based on ontology [3], and develops a data definition
language (DDL) to dynamically resolve sensor data
according to the information in the knowledge-base.

 SOC and Modeling B.
The second problem can be solved using a form of

Service Oriented Computing (SOC) [4] and Workflow
Modeling [5]. The SOC pattern hides the underlying

implementation of the service; the workflow combines
different services to control the whole process. For
example, the above remote heartrate monitoring scenario
can be designed as a SOC model; the alarm-process can
be published in the monitoring center as a type of
published Webservice.

The remote medical SOC model in this context means
to wrapped devices , medical tasks as a software services.
With the use of SOC to acquire data from the device as a
service, the bottom communication protocol details are
hidden from the users. When writing the workflow, the
users can directly use the Medical Web Services provided
by the knowledge-base, as described above, without
having to deal with device protocol issues. Since there is
no need to write code with PERL, C or JAVA, this
method significantly simplifies development of
Telemonitoring systems; it allows the integration of new
services or component devices which improves the
compatibility of the system with external systems.

 SYSTEM STRUCTURE III.

 System structure A.
The system architecture is shown in Fig.1, From a

physical perspective, it is based on a C/S architecture
which includes the sensor terminal, smart phone client
terminal, and remote server terminal. From a functional
perspective, the whole system can be divided in to three
modules: Client Management Modules (CMD), Server
Management Modules (SMD), and communication
mechanisms.

Figure 1. Telmonitoring System Architecture: Management Modules and Communication link

1. The core module at the smart phone client is the
TCAM Middleware. It is responsible for
communicating with the various sensors and
performing data collection. Other core components
include data processing, analysis, and display
modules plus server communication modules. It
should be noted that, unlike other Telemonitoring
systems, the communication between client and

server is bidirectional. In addition to sending data to
a server, the client terminal can also synchronize
information with the server. The design concept of
the client terminal is to offload as much processing
as possible to the server, so that the smart phone
client functions only as gateway [6] to display and
transfer data.

iJOE ‒ Volume 9, Issue 6, November 2013 49

PAPER
A SOA AND KNOWLEDGE-BASED TELEMONITORING FRAMEWORK: DESIGN, MODELING, AND DEPLOYMENT

2. On the Server-side, the core component is the
knowledge-base, based on ontology. Ontology means
“formalized, clear and detailed specifications to a
shared conceptual system.” Ontology provides a kind
of shared vocabulary, including object type or
concepts, and their properties and relationships
existing in special fields. In this project it is used to
store Information and Ralations, including sensors,
remote medical services, control strategies, and
patients’ personal domain knowledge. Other
components on Server include a communication
module that is responsible for transmitting
information between the server and the client
terminal, a data management module, plus a web
service module. These modules communicate
through a service bus.

3. As shown in Fig.1, the communication between
CMD and SMD is implemented through
HTTP/HTTPS, SOAP and SOCKET. HTTP is used
in synchronous XML workflow description; SOAP is

used to transmit ontology instance information;
SOCKET connection is used in high real-time
demand, for example, transmitting ECG
(1024Byte/Sec) and Acceleration (200Byte/Sec)
data.

 TCAM Structure B.
The TCAM proposed in this paper is based on the

Android system for design and implementation. Its
architecture is shown in Fig.2,

According to the previously mentioned three-layer
structure, TCAM include these three layers, i.e. context
data acquisition, context data transmission and
distribution, etc. TCAM first uses the context data
collection module to collect the original context data
provided by the sensors, then transmits the data to the
upper sensing applications via the Pub/Sub framework.
The Pub/Sub framework [7] completes the context data
transmission and distribution.

Figure 2. TCAM Architecture

50 http://www.i-joe.org

PAPER
A SOA AND KNOWLEDGE-BASED TELEMONITORING FRAMEWORK: DESIGN, MODELING, AND DEPLOYMENT

Unlike common Middleware, this project adopts a
distributed context knowledge-base and the server
terminal conducts reasoning through the context instances
obtained from the device and web services. The context
information uses an inference engine based on conditions
to conduct reasoning via OWL/RDF [8] modeling. Once
the conditions are met, the context processing module
will send information to the context-aware service in the
client terminal through the SOAP protocol. Other
important components of the TCAM include the data
provider and the service bus.
1) Data Provider (Client)

Data provider(Internal) 1 and data provider(Externel) 2
are shown in Fig.2, A data provider usually exists in the
form of a plug-in and is written using Provider API. After
the providers are completed, the Provider API will
transmit the data to the upper sensing applications.
During the actual realization process, data provider 1 and
data collector 1 are usually combined and exist as many
different system plug-ins. However, data provider 2 and
the data package resolver, are combined and exist as an
independent plug-in. Under these circumstances, the data
provider can directly transmit the data, read by the data
collector, and the data analyzed, by the data package
resolver, to the upper sensing applications via Data-Bus
Reference [9] .
2) Service Bus (Server)

The service bus is designed to combine three kinds of
services as follows:
• The service provided by the sensor device;

• The web service that can be directly visited via the
network;

• The functional modules on the Server-Side, for
example, the data-process-service, alarm service etc.

In addition to important functions like binding and

routing of messages, the service bus can also provide
service registration. Service registration allows other
service modules to find and inquire web services and
context processing services. All the context providers and
context aware services need to be registered to the Bus
through this registration module.

 SYSTEM DESIGN IV.

 System Operating Principle A.
In the last section, we introduced the system structure.

To further specify how the system works, Fig.3, provides
a flow chart that describes the establishment of remote
health care service procedures, based on a knowledge
base and workflow modeling. The outline of the design
phase is as follows:
• Step-1:Ontology Knowledge Base Design. The

medical experts and the developers should establish
an Ontology Knowledge Base

• Step-2:Modeling. Establish a Telemonitoring
workflow model based on a knowledge base, then
define device and services in the workflow.

• Step-3:Code Generation. Convert the workflow
model into executable code

• Step-4:Code Execution and Deployment.

Figure 3. Remote Health Care Service Design and Running example

iJOE ‒ Volume 9, Issue 6, November 2013 51

PAPER
A SOA AND KNOWLEDGE-BASED TELEMONITORING FRAMEWORK: DESIGN, MODELING, AND DEPLOYMENT

 Knowledge-base design B.
The context knowledge-base design has two parts. The

first part stores the ontology and their instances in the
system. The other part provides a reasoning interface and
context discovery, i.e., how to inquire and to add
modules. Ontology instances may be pre-defined in the
profile or may be retrieved from the device and other
services. The pre-defined profile is dynamically imported
into the system at the start of system operation. The
context information [18] also includes some fixed
information from a specific time; for example, the
patient’s blood type, emergency telephone number,
clinical records, etc. At the same time, the context
knowledge-base supports the inquiry and discovery of
services/device based on semantic information [16].
The ontology used in this paper includes the following
key parts:
• Device ontology: describes the concept of relevant

device.
• Function ontology: describes the concepts related to

service templates and functions.
• Patient ontology: describes the information related

to the patient.
The corresponding ontology instances include:
• Device instance: records the device ID, type,

function, status, position, energy consumption, brand
and communication protocols.

• Service instance: is composed of a group of function
ontologies.

• Patient instance: includes patient specific
information and can function as the electronic health
record (EHR).

This paper uses OWL to construct the model and
process them using Sample Semantic Web Rule
Language [19,20] . The reason for using the context to
construct the model is that, it can not only express the
context information, but can also use the inference engine
based on conditions to conduct inference to the subtle
context to get higher level information [10] .

The context models have the following forms:
(Subject, Predicate, Value)
• Subject belongs to S*: set of subject names. a

patient, a place a smart phone, or a Emergency
Service for example.

• Predicate belongs to P*: the set of Predicate names,
the patient’s current body temperature or if the client
terminal has connected to the service center, for
example.

• Value belongs to V*: the overall value of the Subject.
For example, we have a patient with ID 001, body

temperature 37°C. Use a PDA to connect to the service
center, and the information would be recorded as:
! (Patient001, TemperatureFromPDA001, 37)
Fig. 4, shows the ontology UML picture based on OWL.

Figure 4. Telemonitoring Ontology UML Representation

Table 2 shows a few example rules, which the system
uses to predict the sensor-data-specific service and Table
3 shows basic example policy we defined for each
Emergency Service level [17]. The HeartRateHigh rule

assigns the Emergency Service level when the heart rate
is abnormally high. The hasRangeMin and hasRangeMin
properties specify a normal heart rate in each instance of
the HeartRateSensorData class. If a patient’s heart rate is

52 http://www.i-joe.org

PAPER
A SOA AND KNOWLEDGE-BASED TELEMONITORING FRAMEWORK: DESIGN, MODELING, AND DEPLOYMENT

greater than the specified normal maximum, then the
system sets the heartrate alarm and start the Emergency
Service [21].

In this paper, the service is also included in the
ontology; the service will invoke specific activities. There
are two advantages in doing this: the first advantage is
that the specific details of the service and the service sub-
actions are divided. Under these circumstances, the
description of the service doesn’t need to be changed
when the device information, used by a sub-activity,
changes. The other advantage is that the description of
service by ontology, can make inference to the changes
that should be made by the service; the inference
processing depends on the service status, context
information, and the custom rule. At the root node, is the
design of a type of named service and a specific service
level taking service. After inference is completed and the
instances of service type exist, SOAP objects are sent to
the service response components and then to the client
terminal, including all the service information. We use the
following attributes to describe a service:
a. ServiceName: the name of the service;
b. ServiceType: The type of service and function

description information;
c. Todo: describes the current sub-activities of the

service;
d. ServiceState: indicates the current state of a service.

There are three values to be chosen: -CLOSE. , -INIT
and -OPEN and they respectively indicate the service
has not been started, or the service needs to be
initialized or is started for use.

e. RelatedTo: indicates which specific function in the
ontology the service is related to, and what kind of
device instances the service is related to. If it is a
common service, then the property is empty.

f. DataDescription: data description describes the data
type and format that needs to be collected by the
service. The information is stored in the service
profile and uploaded when the system is operational.

TABLE II.
RULES FOR THE SYSTEM’S ALARM MANAGEMENT

RULE DESCRIPTION
HeartRateHigh (?patient rdf:type HeartRateSensorData) ,

(?par1 hasSensorDataResult ?v1) ,
(?par1 hasRangeMax ?Max) , greaterThan(?v1,
?Max)
-> (?servicestate hasEmergencyService ‘MES’)

HeartRateLow (?patient rdf:type HeartRateSensorData) ,
(?par1 hasSensorDataResult ?v1) ,
(?par1 hasRangeMin ?Min) , greaterThan(?v1,
?Min)
-> (?servicestate hasEmergencyService ‘MES’)

TABLE III.
EMERGENCY SERVICE NOTIFICATION POLICY EXAMPLES

EMERGENCY SERVICE
LEVEL

NOTIFICATION POLICIES

Low Emergency Service
(LES)

- sensor alarm
- sms to patient relative

Medium Emergency Service
(MES)

- sensor alarm
- sms , mail and call to relative

High Emergency Service
(HES)

- sensor alarm
- message to emergency operator
- call to relative

 Modeling C.
After the knowledge base design is complete, the next

step is to construct a model for a specific remote medical
service. The project uses three stages to design the
composition of the service [11]:

1. Design of abstract workflow
2. Functional configuration
3. Device discovery
One specific problem needs to be solved in each stage:

work procedures, function and device.
At the beginning, the developers design an abstract

workflow, including steps and their designated relevance.
Then, the developers connect the block in the workflow
to the function of the service ontology. Finally, the
function is mapped to the specific device detail via the
knowledge- base. This paper uses PSML [22] as the
modeling language as it allows modeling, composition,
code generation, ontology, and analysis capabilities from
a single language.

PSML is a modeling language that can be used for
modeling, composition, analysis, simulation, and policy
enforcement for service-oriented applications. The PSML
ACDATER models, including Actor, Condition, Data,
Action, Timing, Event and Relation, define the basic
elements for applications. Among these model elements,
Actors, Conditions, and Actions contain their internal
workflows, and they can be used as a component in
workflows. Workflows will be described by a set of
behavior tags [11]. Fig. 5, shows a constructed abstract
workflow that contains only a start point and two
processes, after specifying the functions, the original
empty block of the workflow can be used to
describe/related to a service/device

Figure 5. Three phases of service workflow construction

 Code generation and service publication D.
After modeling, the service is executed in the operation

environment, which requires converting the PSML model
description to executable code. The method adopted in
this paper is to first convert the PSML model into the
more commonly used XML format, then convert the
XML into the executable code. Commonly, the service
described in the XML cannot be executed independently.
It may be executed in the following two ways:
• through the XML parser
• through the code generator.
The first method, via parser, usually requires a

complicated workflow engine that has domain
knowledge. As such, the application in different fields
requires different parsers and the implementation is
comparatively complicated. The second method, with

iJOE ‒ Volume 9, Issue 6, November 2013 53

PAPER
A SOA AND KNOWLEDGE-BASED TELEMONITORING FRAMEWORK: DESIGN, MODELING, AND DEPLOYMENT

code generation, requires an independently generated
code for each application procedure. However, the code is
lightweight. In the process of code generation, the main
task is to design a code template then generate a new code
template by changing code and codes for different target
systems. Some code generation technologies using the
current tools [11, 12] have been proposed. This paper
uses the algorithm introduced in [11] to generate the code.

The first step is the translation; it serializes the PSML
module into the XML document after completion of the
device discovery step. The generating algorithm of the
XML document is detailed as follows. It is the traversal
algorithm of the BFS (breadth-first search) figure and
uses one queue to record the nodes passed. When one
node is pushed out of the queue, the corresponding
content will be written into the XML document. At the
same time, the subsequent unprocessed nodes will also be
calculated. Under these circumstances, they will be
pushed forward in the queue to conduct further
processing. The output of the algorithm is an XML
standardized workflow description document [11].

The second step is the code generation step. Each
factor will first be pushed into the code generator and
then the code generator generates the target code on the
basis of the CodeSmith [15] template. The template is the
executable document and it converts the XML description
into executable code. Due to the platform independence
of XML, the code generated during the code generation
process can be adapted to different operating systems.

Algorithm : XMLGeneration algorithm

Input : XmlWriter xmlwriter, ExcutableElemenet start
Result : An XML file with all the workflow information
1 if start ! = null then
2 Queue queue = new Queue();
3 Queue.Add(start);
4 Set processedSteps = new Set(); next = start;
5 While queue.Count ¿ 0 do
6 next = (Step)queue.Dequeue();
7 if processedSteps.Contains(next.Id) then
8 continue;
9 end
10 Iterator iter = next.next();
11 While iter.has Next() do
12 queue.Enqueue(iter.next());
13 end
14 if next is StepAssign then
 GenerateStepAssign((StepAssign)next,xmlwriter);
15 else if next is StepExcute then
 GenerateStepExecuter((StepExecuter)next,xmlwriter);
16 else if next is StepExcute then
17 GenerateStepExecuter((StepExecuter)next,xmlwriter);

18 end
19 processedSteps.Add(next);

20 end
21 end

 Deployment and execution E.
The deployment of the service is completed by experts

at the remote terminal and the parsed code is transmitted
to the client terminal of the smart phone via SOCKET
connection. The mobile client will dynamically load the
code and parameters to complete the initialization of the
local service according to the service parameters. The
service parameters include the collection of parameters,
sensor connection and data from sensors according to
communication protocols, etc. The client terminal of the
smart phone exchanges information with the server and
the message bus allows the interaction between server
code and client terminal device.

 EXPERIMENT V.
In this section we will use an emergency assistance

service as a practical example to describe the above
design pattern: how new devices are added to the
ontology library and medical treatment begins via
conditional reasoning.

The specific scenario for an emergency assistance
service is as follows: An anomaly has been detected for a
patient suffering from heart disease or high blood
pressure; based on system reasoning, emergency
assistance is requested. According to this service profile,
the response time of the service is one minute, meaning
that medical personnel must respond within one minute,
react to the patient’s condition and initiate corresponding
measures. After the response, the service’s mode is set to
CLOSED. If the patient's condition remains abnormal, the
service is started again.

 The first step is to add new devices: In the experiment A.
we used the wearable multi-parameter sensor
Equital001 produced by HIDAGO.

When a new device is connected to the TCAM sensor
adapter, context information must be converted into
ontology instances before being sent to the knowledge
base. The data gathering webservice inquires whether
classes with identical names already exist in the ontology
library based on the <deviceType> in the device
description file. If not, a new class is added with the new
<deviceType>. The following example shows the class
of an Equital device being added:
! <owl: Class rdf: ID = “Equital“>

<rdfs: subClassOf rdf: resource = “#Device”/>
<owl: disjointWith rdf: resource = “#”/>
</owl: Class>

The service description file of middleware devices is
searched to retrieve the stateVariable. This value is then
compared to the current ontology library (knowledge
base) to determine if there are any classes with this name.
If not, a new class is added which acts as subclass of
PatientData. Below the classes HeartRate and
BloodPressure are added for the Equital device.
! <owl: Class rdf: about =

“#EquitalHeartRateValue”>
<rdfs: sublassOf rdf: resource = “#PatientData”/>
< owl: disjointWith rdf: resource = “#”/>
< /owl: Class>
<owl: Class rdf: about =
“#EquitalBloodPressureValue”>
< rdfs: sublassOf rdf: resource = “#PatientData”/>

54 http://www.i-joe.org

PAPER
A SOA AND KNOWLEDGE-BASED TELEMONITORING FRAMEWORK: DESIGN, MODELING, AND DEPLOYMENT

< owl: disjointWith rdf: resource = “#”/>
< /owl: Class>

With the establishment of the above-mentioned
ontology, ensures that the device description file and the
ontology name match. When the control point receives
data from the device, it looks for the parameters in its
own device files and device service files and creates an
instance. The above-mentioned Equital device might, for
example, receive event messages from the control point
detailing HeartRate (Beats/Minute) = 60, BloodPressure
(systolic, mmHg) = 120. In this case the practical
example would look as follows:
! <EquitalHeartRateValue rdf: about =

“#EquitalHeartRate001”>
<hasHeartRateValue rdf: datatype = “&xsd;
double”> 60.0</hasHeartRateValue >
< /EquitalHeartRateValue>
< EquitalBloodPressureValue rdf: about =
“#EquitalBloodPressure001”>
< hasPostureValue rdf: datatype = “&xsd;
double”>120.0</hasPostureValue >
< /EquitalBloodPressureValue >
<Equital rdf: about = “#Equital001”>
< provideData rdf: resource e=
“#EquitalHeartRate001”/>
<provideData rdf: resource =
“#EquitalBloodPressure001” />
< /Equital>

After the context information is converted, the data
gathering webservice will send the aforementioned
information to the knowledge-base.

 The second step is to execute the service. B.
When the middleware is executed, the system

automatically generates an instance for every service of a
class, which is saved in the knowledge-base. The
important information in these service instances is as
follows:
! <EmergencyService rdf: about=”#service001”>

<Num>100< /Num >
<serviceState>CLOSE</serviceState>
<todo rdf: resource= “#Alarming” />
<todo rdf: resource
=“#PrepareEmergencyOperator”/>
</EmergencyService >

With the previous scenario in mind, we can define the
specific conditions for the emergency service to be
triggered: if the heartbeat of the patient drops below 40,
or the blood pressure (systolic) exceeds 170. Reasoning
may be carried out according to the rules of the language
itself, for example:
! (?a ?p ?b), (?p rdf: subPropertyOf ?q) -> (?a ?q ?b)
User defined rules may also be added in the reasoning
process, e.g.:
! (? patient, hasBloodPressureValue, vl), GE(?vl,

170), (? patient, hasHeartRateValue, vl), LE(?vl,
40) -> (? patient patientState “danger”)

! (?patient, patientState, “danger”),(?Patient,
hasDisease, “movementfail”), (EmergencyService,

ServiceState, “CLOSE”) -> (EmergencyService,
ServiceState, “OPEN”)

The reasoning process is as follows:
1) On system start, generate instances for all

services and introduce a service profile.
2) examine newly acquired information, determine

if lower level context is consistent with context;
if there are inconsistencies, terminate reasoning.

3) store new context information in knowledge-
base.

4) deduce high level information according to own
context knowledge.

5) determine if newly deducted knowledge is
consistent; if there are inconsistencies, terminate
reasoning.

6) store newly deducted knowledge in knowledge-
base.

7) go through newly deducted knowledge,
determine service mode. If a service needs to be
started, trigger start and send service
information.

8) renew service mode instances in knowledge-
base.

9) terminate.

 Deployment and Code generation C.
The deployment configuration includes at least two

Context Manager nodes as show in Fig.6: We used a
SonyEricsson-Xperia smartphone as the Client Manager
(CM) node, connect with medical sensor module
Equivital; and Server Manager (SM) node, which is
deployed on a Central Application Server, in the domain
of the organization which is responsible for the
integration and delivery of Emergency Web Service.

Figure 6. mHealth Prototype System Architecture

The Home Smartphone hosts the Client and
communicates with the Central Application Server via
2G/3G/WiFi. The Central Application Server hosts the
Server SM and other assistance and information service
applications. These services include: a Emergency Web
Service, patient record data management, and a web
application which offers web-based access to health
operators via mobile device.

Fig.7 describes the code generation process of the
service. This paper uses the CodeSmith tool to generate
code. CodeSmith first reads the XML document
generated from the PSML model, then outputs the
executable Java code. It can generate different code for
different systems, according to the CodeSmith template.
Finally, the code will be deployed in the server terminal
for execution and synchronization with the client
terminal. Fig.8 shows Online visualization of the
incoming raw data.

iJOE ‒ Volume 9, Issue 6, November 2013 55

PAPER
A SOA AND KNOWLEDGE-BASED TELEMONITORING FRAMEWORK: DESIGN, MODELING, AND DEPLOYMENT

Figure 7. Example code generation from a workflow model to XML representation to Java code

Figure 8. Online visualization of the incoming physiological data

 CONCLUSION VI.
This paper designs an innovative Telemonitoring

framework based on services and ontology technology.
All steps in the Telemonitoring are modularized to
facilitate dynamic trend, discovery, code generation and
deployment of new remote medical services through
semantic ontology information. The actual experiments in
the operation indicate that the services-oriented design
can greatly reduce the complexity of new application
development. A context-aware Middleware is developed
to support the scalability of the telemedical system; new
sensor device and data formats can be integrated into the
system conveniently. In the context reasoning module,

ontologies are used to construct target services and
circumstances. This paper, however, does not address the
handling of context conflicts in the process of
constructing ontologies and reasoning conditions. Further
research will focus on the reliability and energy
consumption problem of remote medical systems.
Concerning the energy consumption problem, some new
ultra low power transmission protocols, like BLE and
ANT, have appeared that can greatly improve the
sustainability of remote monitoring. Other challenging
services will include the development of an intelligent
error discovery and system recovery mechanism to
maintain the stability of the system over time.

56 http://www.i-joe.org

PAPER
A SOA AND KNOWLEDGE-BASED TELEMONITORING FRAMEWORK: DESIGN, MODELING, AND DEPLOYMENT

 ACKNOWLEDGMENT VII.
This work is part of the eHealth-MV (Mecklenburg

Vorpommern) project which results from the cooperation
between University of Rostock Institute for Preventive
Medicine and Center for Life Science Automation
Germany. The authors thank the ministry of economy,
work and tourism in Mecklenburg-Vorpommern
Germany for the financial support of this project.

REFERENCES
[1] Baldauf M Dustdar S Rosenberg F. “A survey on context-

aware systems,” International Journal of AdHoc and Ubiquitous
Computing, 2007, pp. 263-277 http://dx.doi.org/10.1504/
IJAHUC.2007.014070

[2] Papapanagiotou I, Falkner M, Devetsikiotis M. “Optimal
functionality placement for multiplay service provider
architectures,” IEEE Transactions on Network and Service
Management Volume 9, Issue 3, 2012, pp. 359-372
http://dx.doi.org/10.1109/TNSM.2012.061212.110032

[3] Elston J, Tsai WT, Li W, Bucur L. “Software architecturewith
ontology for intelligent building management,” In: Proceedings of
international conference on control systems and computer science,
vol 2, 2011, pp. 682–686

[4] Aziz M.W, Mohamad R, Jawawi D.N.A, Mamat R. “Service
based meta-model for the development of distributed embedded
real-time systems,” Real-Time Systems, 2013, pp. 1-17

[5] Tick J. “Business Process based initial modeling at software
development,” SAMI 2013 - IEEE 11th International Symposium
on Applied Machine Intelligence and Informatics, Proceedings.
2013, pp. 141-144

[6] Kuna M, Kolaric H, Bojic I, Kusek M, Jezic G. “Android/OSGi-
based Machine-to-Machine context-aware system,” Proceedings
of the 11th International Conference on Telecommunications,
ConTEL, 2011, pp. 95-102

[7] Wang N, Yang Z, Yang Y. “Based on event-driven and service-
oriented architecture business activity monitoring design and
implementation,” International Conference on System Science,
Engineering Design and Manufacturing Informatization, ICSEM.
2011, pp. 241-245

[8] Armas R, Cuenca G, Horrocks I. “MORe: Modular combination
of OWL reasoners for ontology classification,” Lecture Notes in
Computer Science. 2012, pp. 1-16 http://dx.doi.org/10.1007/978-
3-642-35176-1_1

[9] XIONG LB NIU J ZHANG JF CHEN CF SHEN XP.
“Context Sensing Middleware Based on Mobile Devices. Journal
of Chinese Computer Systems,” 2011, pp. 1170-1174

[10] Cheng J, Rao R. “A context-aware middleware for pervasive
healthcare,” Computer Applications and Software, 2009, pp. 50-
53

[11] Wu L, Yann-hang L, Wei-tek T, Jingjing X, Young-sung S, Jun-
hee P, Kyung-duk M. “Service-oriented smart home applications:
composition, code generation, deployment, and execution,”
Service Oriented Computing and Applications. 2012, pp. 65-79

[12] Cai Y, Zhao L. “Study on custom service combination based on
BPEL,” Advanced Materials Research. 2013, pp. 2451-2456

[13] Lee YH, Li W, Tsai WT, Son YS, Moon KD. “A code generation
and execution environment for service-oriented smart home
solutions,” In: International conference on service-oriented
computing and applications 2009

[14] Tsai WT, Fan C, Chen Y, Paul R. “Ddsos: a dynamic distributed
service-oriented simulation framework,” In: Proceedings of the
39th annual symposium on simulation, IEEE Computer Society.
2006, pp.160–167

[15] Ma TM, Zheng BL, Chai TY. “Oriented-service simulation
platform for iron & steel production planning,” Xitong Fangzhen
Xuebao / Journal of System Simulation, April 2010, pp. 890-894

[16] Lasierra N, Alesanco A, García J. “Home-based telemonitoring
architecture to manage health information based on ontology
solutions,” Proceedings of the IEEE/EMBS Region 8

International Conference on Information Technology
Applications in Biomedicine, ITAB. 2010

[17] Lasierra N, Alesanco A, García J. “An ontology approach to
manage individual patient profiles in home-based telemonitoring
scenarios,” Proceedings of the IEEE/EMBS Region 8
International Conference on Information Technology
Applications in Biomedicine, ITAB, 2010

[18] Paganelli F, Giuli D. “An ontology-based context model for home
health monitoring and alerting in chronic patient care networks,”
Proceedings - 21st International Conference on Advanced
Information Networking and Applications Workshops/Symposia,
2007, pp. 838-845

[19] Subramanian M, et al. “Novel Sensor Technology Integration for
Outcome-Based Risk Analysis in Diabetes. Proc,” First Int’l
Conf. Health Informatics, vol. 2, IEEE CS Press, 2008, pp. 119–
126.

[20] Horrocks I, et al., “SWRL: A Semantic Web Rule Language
Combining OWL and RuleML,” World Wide Web Consortium
(W3C), www.w3.org/Submission/SWRL, May 2004

[21] Benlamri R, Docksteader L. MORF: “A mobile health-monitoring
platform”, May 2010, pp. 18-25

[22] Tsai WT, Paul RA, Xiao B, Cao Z, Chen Y. “PSML-S: a process
specification and modeling language for service oriented
computing,” In: The 9th IASTED international conference on
software engineering and applications (SEA), 2005, pp.160–167

AUTHORS
Weiping Zhang received the Diploma degree in

Computer Science from Technical University of Dresden,
Dresden, Germany, in 2009.

Since 2011, he has been a Research Scientist with the
Institute of Preventive Medicine, University of Rostock,
Rostock, Germany. His research interests include process
information management systems and real-time mobile
measurements of physiological parameters.

Kerstin Thurow studied chemistry with the University
of Rostock, Rostock, Germany, and received the
Graduate degree. Afterward, she received the Ph.D.
degree from the Ludwigs-Maximilians-University,
Munich, Germany (under the guidance of Prof. Lorenz),
working on metal–organic sulphur compounds. In 1999,
she received the Habilitation degree from the Department
of Electrical Engineering, University of Rostock.

Dr. Thurow received the highly renowned Joachim-
Jungius-Award of Science in 2004, in addition to many
awards, such as for the foundation of a start-up company
Amplius—Screening Technologies & Analytical
Measurement.

Regina Stoll received the Dip.-Med. degree in
medicine, the Dr.med. degree in occupational medicine,
and the Dr.med.habil. degree in occupational and sports
medicine from the University of Rostock, Rostock,
Germany, in 1980, 1984, and 2002, respectively.

She is currently the Head of the Institute of Preventive
Medicine, University of Rostock. She is a Faculty
Member with the Medicine Faculty and Faculty Associate
with the College of Computer Science and Electrical
Engineering, University of Rostock. She also holds the
Adjunct Faculty Member position with the Department of
Industrial Engineering, North Carolina State University,
Raleigh. Her research interests include occupational
physiology, preventive medicine, and cardiopulmonary
diagnostics.

Submitted 03 October 2013. Published as re-submitted by the authors
05 November 2013.

iJOE ‒ Volume 9, Issue 6, November 2013 57

