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Abstract—In this paper, we investigate the performance of average capacity 
of transdermal wireless optical communication system under the effect of point-
ing error and skin attenuation. The channel statistical model is assumed to be 
the product of a stochastic process due to pointing error, and a constant channel 
gain caused by the skin attenuation. Furthermore, the transdermal optical wire-
less system employs intensity modulation direct detection with on-off signaling 
(IMDD/OOK). The pointing error stochastic process model considers the zero 
boresight case. We derive novel closed form expression for the average capacity 
which takes into account the effect of geometric spreading due to pointing error, 
and the transdermal channel pathloss. Numerical results for the average capacity 
are provided as a function of the received signal-to-noise ratio, and the results are 
shown for different pointing error severity levels, and transdermal pathloss due 
to skin attenuation.
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1 Introduction

Recent advances in implanted medical devices (IMDs) has embarked many biomed-
ical applications such as health monitoring, neural recording, prostheses and telemetry 
with medical implants. However, IMD applications require robust wireless commu-
nication systems capable of providing high speed rates for the stimulated signals and 
exchange of data within these devices. It is well known that optical wireless commu-
nications (OWCs) can be a suitable technology [1–6], to meet IMD demand for high 
speed data rate systems and its immunity to interference from nearby radio frequency 
medical devices. In fact, OWC technology can offer 1–2 Gb/sec systems, and can be 
easily deployed. In addition, OWC technology is low power, cost effective, and requires 
no licensing for deployment, and hence can be a suitable alternative for radio frequency 
communications currently used in AMD applications.

The use of OWC technology to provide the communication base for the IMD defines 
what is known by Transdermal Optical Wireless (TOW) communication [1–5].
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The feasibility and the suitability of transdermal optical wireless links (TOLs) have 
been experimentally validated by many researchers [7–13]. The work by [7–9], was 
mainly performed to study the optical properties of the human skin and subcutane-
ous tissues. In [7], the author has conducted a vitro experiment aiming at studying the 
optical properties of human skin. The experiment was conducted by taking samples 
of skin specimens of three different individuals in the spectral range of 400–1800 nm. 
The author provided measured results for the diffuse reflectance and transmittance 
of the three different tissues. On the other hand, the authors in [10–13], have vali-
dated the feasibility of the OWCs for the transcutaneous links. In vivo tests, the author 
in [13], reported that the optical wireless link is capable of transmitting data at a speed 
of 100 Mbps with a bit error rate (BER) of, 2.10−7 consuming only 2.1 mW of elec-
trical power.

There are two main draw backs in TOLs. The first being the transdermal pathloss 
[11–15], due to signal attenuation caused by the multilayered skin structure. Signal 
attenuation occurs since the information bearing light signal propagation through the 
skin is reflected, scattered and absorbed by multilayered skin structure. In fact, the mul-
tilayered skin structure can also limit the propagation depth of the information-bearing 
light signal into the tissue by several centimeters [10], [15–16]. The second drawback 
of TOLs is the pointing error due to the random misalignment between the transmitter 
and the receiver. In fact, pointing error not only caused by misalignment between the 
transmitter and the receiver, but it is also caused by the relative motion between the 
transmitter and the receiver due to the nature activity of biological function induced in 
the skin tissues [15]. Accurate pointing error process is modeled by nonzero stochas-
tic model which is composed of two components known as the boresight and jitter. 
The boresight component represents a fixed displacement between the beam and the 
detector center, while the jitter is the beam center random offset at the detector plane 
[5], [15], [17–21].

In TOWs, the direct model and modulator retroreflective (MRR) are usually used to 
configure the transdermal optical link [19–21]. In the direct configuration, the external 
unit acts as the transmitter in order to convey the external modulated stimulated signal 
through the skin to the implanted unit to produce the proper stimulation. In MRR, the 
external laser transmitter emits the laser signal through the skin toward the retro-reflec-
tor (RR) which is located in the implanted device, then RR unit modulates the incoming 
laser signal and reflected it back to the out of body receiver to produce the proper stim-
ulation. In the MRR configuration, since both the transmitter and receiver terminals are 
outside of body, the light signal has to propagate through the skin channel twice, thus, 
causing more induced channel attenuation. However, MRR technology is more robust 
in terms of its ease of deployment and longer battery life time of the implanted unit, 
since most of the signal processing takes place at the out-of-body transceiver.

In [15], signal quality assessment for direct configured TOW under the effect of 
pointing was studies and analyzed. The authors provided results for average SNR for 
different dermis skin thickness, wavelengths ranging from 400 nm to 1800 nm, pointing 
error variance and system parameters. Outage performance for TOL with pointing has 
been studied by [20]. The authors provided closed form expression for evaluating the 
outage probability, which takes into account the effect of pointing error, characteris-
tics of optical unit and channel particularities. Their results reveal that pointing errors 
drastically affect the reliability and effectiveness of the link and should be taken into 
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consideration when designing a transdermal OWC link. Finally, average BER results 
for MRR TOW system with spatial diversity were provided by [21], under the effect of 
pointing error. The authors provided novel analytical mathematical expression for the 
BER, which takes into account the effect of NZB pointing error, channel induced skin 
attenuation and average SNR. The authors reported that significant outage improve-
ment can be attained when using spatial diversity.

In this paper, we will investigate and analyze the performance of direct configured 
TOW system under the effect of pointing error. In this context, we will derive closed 
form expression for average capacity, which takes into account the effect pointing error 
severity, skin induced attenuation and system parameters.

 The paper is organized as follows. In Section II, we provide description and analysis 
for the system under study. Analysis in this section is developed for ZB pointing error. 
In section III, we derive a closed form solution for the system average capacity. In the 
following section IV, we provide numerical results for system average capacity as a 
function of average SNR, for different levels of pointing error severity and skin thick-
ness. In section V, we summarize our work and provide our comments and conclusions.

2 System and channel model

In the analysis to follow, we assume perfect skin channel state information (CSI) and 
direct transdermal optical wireless link configuration as shown in Figure 1. In addition, 
we assume transdermal optical wireless communications system deploying intensity 
modulated direct detection with on-off keying modulation IMDD/OOK. The proposed 
TOW system consist of an out-of-body unit which emits stimulation light messages to 
the implanted device (in-body unit) through the skin. The information-bearing light sig-
nal propagates through the skin, and once it is arrive at the receiver, the light intensity is 
directly detected and demodulated to recover the information data to invoke the proper 
stimuli. The baseband equivalent received signal at the photo detector is given by [20]

 y h x n� � ��  (1)

Where η is the photodiode’s efficiency, and x ϵ {0,1}, is the OOK data information 
signal, while n is zero mean Gaussian process with variance σ n

2, and power spectral 
density N0 2 watts/Hz.

Fig. 1. System model [20]
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In eq. (1), h is the skin channel state and has the form [20]

 h h hl p� �  (2)

Where hl is a deterministic term representing the transdermal channel path loss 
due to skin attenuation, and hp is a stochastic process representing the pointing error 
process between the external unit and internal unit. The determinstic term can be rep-
resented as [15]

 hl � � �exp( . ( ) )0 5� � �  (3)

The parameter δ is the dermis thickness and λ being the operating wavelength in 
“nm”. The term α(λ) represents the skin attenuation coefficient and can be evaluated for 
λ = 400 nm λ =1800 nm using

 � �
�

( ) exp� � �
��

�

�
�

�

�

�
�

�

�

�
�
�

�

�

�
�
�

�� ai

bi
ci

i

2

1
8  (4)

The coefficients ai, bi, and ci, can be evaluated using [15], as shown below in Table 1.

Table 1. Coefficients ai, bi, and ci values [15]

i ai bi ci

1 10 0.35 0.065

2 4.5 0.42 0.25

3 13.478 −1.50 50.12

4 14.7 1442 49.35

5 7.435 1499 75.88

6 48 3322 1033

7 594.1 −183 285.9

8 11.47 −618.5 1054

The stochastic skin channel term hp can highly degrade the performance of the 
TOLs, which represents fraction of the collected power due to geometric spread with 
radial displacement r from the origin of the detector [5], causing an offset between the 
incident beam footprint and the detector aperture measured on the plane of the detector. 
The channel random variable hp has a probability density function [5]

 h A r
wp o
eq

� �
�

�
�
�

�

�
�
�

exp 2 2

2
 (5)

Where Ao is the fraction of the collected power at r = 0, evaluated using

 A vo = [ ]erf ( ) 2  (6)
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The notation erf (*) is the error function, an v can be evaluated using

 v A
�

2��

 (7)

The parameter A is the photodiode effective area given by A a� �� 2, where a rep-
resents the radius of the circular receiving aperture, and ωδ is the beam waste (radius 
calculated at e−2) on the RX plane at distance δ from the transmitter, and can be obtained 
using

 � � �� � � tan( )/2  (8)

Where θ represents the divergence angle of the transmitted beam The parameter ωδ 
ia the beam waste (calculated at e−2) on the receiver plane at distance δ from the trans-
mitter. The equivalent beam width wzq can be evaluated using

 � �
�

�zq

v
v v

2 2
22

�
�

erf ( )
exp ( )

 (9)

As assumed by [5], the radial displacement r at the receiver is modeled by a Rayleigh 
distribution as

 f r r r rr
s s

( ) exp ,� �
�

�
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�
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2

22
0  (10)

The parameter σ s
2 is the jitter variance at the receiver. As a result, it was shown 

by [5], the channel random term hp can be obtained as

 f h
A
h x Ahp p

o
p o( ) ,� � ���

�
� 1 0  (11)

Where ξ is the ratio between the equivalent beam radius at the receiver and the point-
ing error displacement standard deviation at the receiver given by

 �
�

�
�

wzq
s2 2

 (12)

By using eqs. (2) and (11), the channel pdf can be found as

 f h
A h

h x A hh
o l

o l( ) ,� � ���
� �

� 1 0  (13)
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3 Average capacity analysis

In the analysis to follow, we assume perfect skin channel state information (CSI). 
Furthermore, by assuming an intensity modulation and direct detection (IM/DD) trans-
dermal optical wireless link with zero-mean and variance � 2 2� No , where N0 is the 
noise power spectral density.

To evaluate the average channel capacity, we start by the well-known channel 
capacity equation

 C B log� � �2 1[ ]�  (14)

Where B is the bandwidth, and γ is the signal-to-noise ratio. Since the TOL contains 
the random term hp, then the signal-to-noise ratio γ is random and assumed to be con-
stant over at least a couple of symbol intervals, as a result, the average capacity C is can 
be evaluated using

 C B log h f h dhh� � � �
�

�
0

2 1[ ( ) ( )�  (15)

Here γ(h) is the received instantaneous signal-to-noise ratio, and fh(h) is the prob-
ability density function (pdf) of h given by eq. (13). For the case study, for intensity 
modulation and direct detection (IM/DD), the received instantaneous signal-to-noise 
ratio γ(h) can be expresses as [20]

 �
� � � �

�
( )

( )
h

h Ps�
� � �2 2

2

exp{ }
 (16)

Where PS is the average optical power of the transmitted light signal, while the 
parameters α(λ), δ, h as previously defined in section II. By inserting the noise variance 
� 2 2� No  in (16), γ(h) can be written as
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The parameter Ps is the transmitted signal power spectral density. As can be seen 
from (17), the statistics of the instantaneous SNR γ, depends on the statistics of the 
channel random term h2. The average value of γ (h) is evaluated as
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The notation E [*] denotes expectation. So, γ  is evaluated using
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Where E[h2] is evaluated as
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Thus,
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By inserting eqs. (11) and (16) into eq. (14), the average capacity can be written as
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Where the constant k is evaluated using
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By letting x k h� � 2, and going through some mathematical manipulations, the aver-
age capacity can be written as
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By using the identity log z za ( ) ( ) ( )= ln ln 2 , where ln, is the natural logarithmic func-
tion. As a result, eq. (24) can be written as
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By using [22, 01.05.26.0002.01], the average C can be written in terms of Meijer’s 
G function as
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Using [23, eq. (26)], the average capacity can be evaluated as
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Finally, the average capacity can be written in terms of the average SNR as
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4 Numerical results

In this section, we assume direct transdermal optical wireless communications 
system deploying intensity modulated direct detection with on-off keying modula-
tion IMDD/OOK. Unless otherwise stated, Table 2, shows the parameters used in this 
section.

Table 2. System and channel used parameters

Symbol Referenced Item Value

η Responsivity 0.80

λ Operating wavelength 1500 nm

α(λ) Skin attenuation 1.8

A Photodiode effective area 1 mm2

No Noise PSD ( . / )1 3 2pA Hz

Px Signal PSD 0.1 mw/Hz

δ Skin thickness 9 mm

θ Divergence angle 20°

Figure 2, shows results for average capacity versus average γ , for ζ = 0.1, 0.25, 0.50, 
0.75, 1.0. As we can see from the figure, for any given value of SNR, as ζ increases, 
better average capacity performance can be achieved. This is expected since an increase 
in ζ, leads to a decrease in the pointing error displacement standard deviation at the 
receiver. In addition, this implies a larger equivalent beam radius at the receiver as 
depicted by eq. (12).

Figure 3, shows results for the average capacity for different values of the divergence 
angle, as a function of average SNR values. In addition, it was assumed that pointing 
error standard deviation σS = 1.442, the wavelength λ = 850 nm, and the detector radius 
α = 0.5 mm, while the skin thickness was set to δ = 10 mm. As can be seen form the 
figure, for any given value of average, as the divergence angle increases, the average 
capacity increases too.

Figure 4, depicts results for the average capacity as a function of average SNR, for 
different values of skin thickness and pointing error standard deviation. It was also 
assumed that λ = 1000 nm. As we can see from the figure, for any given value of σS, as 
the skin thickness increases, the average capacity is degraded due to an increase in the 
skin attenuation.
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Fig. 2. Average capacity versus average electrical SNR for λ = 1500 nm

Fig. 3. Average capacity versus divergence angle
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Fig. 4. Average capacity for different values of skin thickness and jitter variance

5 Conclusion

In this paper, we have analyzed the performance of transdermal optical wireless 
communications system deploying intensity modulated direct detection with on-off 
keying modulation IMDD/OOK. The proposed TOW system consist of an out-of-body 
unit which emits stimulation light messages to the implanted device (in-body unit) 
through the skin. We have derived novel closed form expression for average capacity 
which contains the system and channel parameters. The derived expression allows for 
evaluating the performance of average capacity which was useful in the evaluation and 
reasoning for system performance in terms of the system and channel parameter. It was 
also demonstrated that, in evaluating the TOW system performance, there are many 
parameters that should be taken into account in order to optimize its performance, the 
wavelength, the signal power, and TOW system configuration.
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