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Abstract—Machine-learning (ML) methods often utilized in applications 
like computer vision, recommendation systems, natural language processing 
(NLP), as well as user behavior analytics. Neural Networks (NNs) are one of 
the most essential ways to ML; the most challenging element of designing a 
NN is determining which hyperparameters to employ to generate the optimal 
model, in which hyperparameter optimization improves NN performance. This 
study includes a brief explanation regarding a few types of NN as well as some 
methods for hyperparameter optimization, as well as previous work results in 
enhancing ANN performance using optimization methods that aid researchers 
and data analysts in developing better ML models via identifying the appropriate 
hyperparameter configurations.

Keywords—hyperparameter optimization, artificial neural network,  
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1 Introduction

NNs are algorithms utilized in ML [1]. The ability of a researcher to efficiently cre-
ate and train an Artificial Neural Network (ANN) based on their skill set; is most likely 
a combination of domain knowledge from previous studies and experience gained 
through continuously trying and failing to construct ANNs. ANNs with multi-hiding 
layers are utilized in NNs, which are a subset of deep learning (DL). Convolutional 
Neural Networks (CNN) and Recurrent Neural Networks (RNN) are instances of vari-
ous NN implementations with minor structural differences [2], [3]. The DNN’s hyper-
parameters optimization approaches could be used for defining the models’ structure, 
which is a complicated and time-consuming procedure that includes picking the best 
algorithm and creating the best model architecture, despite the output targets and input 
characteristics [4].

Tuning hyperparameters is a critical part of developing a successful ML model, par-
ticularly for deep neural networks (DNN) and tree-based ML models [5].

The most extensively utilized hyperparameter selection techniques for ML algorithms 
are Random Search (RS) and Grid Search (GS) [6], [7], Furthermore, in optimization 
problems, excellent optimization procedures are typically necessary for minimizing 
or maximizing objective functions. Algorithms for optimizing weights, learning rules, 
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network design, activation function, neurons, and bias commonly employed. Another 
method of improving and optimizing the ANN is to use an optimizer for replacing the 
NN’s basic algorithms with optimization algorithms, and replacing backpropagation 
with any optimization approaches to overcome particular concerns [3], For example, 
practical swarm optimization (PSO), Bayesian optimization algorithm (BOA), and 
genetic algorithm (GA) are a few optimization hyperparameters techniques. We briefly 
explore the different types of NNs in this study, as well as the most frequent optimi-
zation approaches. Furthermore, we address the essential hyperparameters of standard 
ML models that must be modified, as well as a few past works on hyperparameter 
optimization methods that can be used for improving the performance of specific appli-
cations as well as solving certain challenges. Finally, the drawbacks and benefits of 
different hyperparameter selection approaches indicated, as well as the types of hyper-
parameters utilized to address each one of the problems with the dataset employed. The 
rest of the study structured in the following way: the second section introduces a new 
taxonomy for NN creation and optimization activities. The third section begins with a 
review of earlier work on a few of the most relevant ANN hyperparameter optimization 
and applications. The fourth section provides a discussion and analysis of the work. 
Lastly, section five provides a conclusion of this work.

2 Materials and methods

In this section, we give a new taxonomy in Figure 1, depending on which several NN 
structures are presented, selected, and the superiority of employing different optimiza-
tion methods to search for appropriate ANN parameters is demonstrated.
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Fig. 1. The new taxonomy of hyperparameters optimization processes

2.1 Neural networks

Few algorithms identify patterns and are loosely modeled after the human brain. 
They use a sort of machine perception to understanding sensory data, categorizing or 
clustering raw data. In addition, the patterns they identify numerically encoded in vec-
tors, where all real-world data should be converted, including sound, images, text, and 
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time series. The ability to handle with nonlinear functions and learn weights that help 
map any input to the output for any data known as ANN. An ANN’s training can be 
defined as a continuous optimization process which entails mapping input into output 
in order to get the optimum set of biases and weights in the shortest time possible [8]. 
The activation functions give their ANN non-linear qualities, which might help the net 
learn any complex relationship between output and input data, which is referred to as a 
universal approximation [9]. RNN, DNN, and CNN are examples of NN implementa-
tions with minor differences [10], [11].

DNN. DL is a method that uses a hierarchy of concepts in a field to help a computer 
learn from experience [12]. They use NN topologies to connect various processing 
layers [13]. This method has been used in a variety of fields, including speech recog-
nition and visual object, medicine, and genomics [14], [15]. DNNs divided into two 
types: feed-forward and recurrent. CNN are a type of feed-forward DNN that is similar 
to RNNs.

CNN. Convolutional Neural Networks (CNN) are a particular type of Neural Net-
works (NN) that replicate how the visual system processes information. In general, CNN 
is a type of feed-forward ANN that uses the backpropagation approach to automatically 
and adaptively learn complicated hierarchies of data and patterns [16]. Convolutional 
layers are hidden layers in CNN. In addition, CNN features non-convolutional layers. 
The convolutional layers draw through the input weight and convert the neurons’ input 
on the activation function, which is the essential notion of CNN structure [17], [18]. 
CNN is good for audio and image [10], [19].

RNN. RNN architecture is a type of DNN that differs from ANN in that the loop-
ing requirement on the hidden layer is reversed, resulting in RNN [18]. It is excel-
lent for text and a, time-series data, and audio data, and it can save computing time 
since the gradient is computed only at the last step and vanishes in every neuron in 
RNN [20], [21].

2.2 Hyperparameters optimization problem

This approach demanded a priori DNN architecture definition. Adjusting the 
DNN’s various hyperparameters is required [22]. In ML models, there are two sorts 
of parameters: model parameters, which could be initialized as well as updated via 
data learning processing (the weights of neurons in NNs), and model parameters. The 
others, known as hyperparameters, cannot be predicted directly from data learning and 
should be defined before training an ML model since they constitute the ML model’s 
architecture [23]. Hyperparameters are parameters which are utilized to create an ML 
model or specifying the loss function minimization procedure [24]. The practice of 
tuning hyperparameters still considered a “black art.” Those hyperparameters might 
regulate model complexity (for instance, the number of layers and nodes in a DNN) 
or describe the learning technique (for instance, step sizes, learning rate, initialization 
conditions, and momentum decay parameters) [25]. A hyper-domain parameters could 
be discrete (number of clusters), continuous (learning rate), categorical (e.g., type of 
optimizer), or binary (whether to use early stopping or not). In actual applications, the 
domains of discrete and continuous hyperparameters are frequently bounded [26], [27]. 
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While depending on the value regarding another hyperparameter, conditional hyperpa-
rameters might need to be employed or modified [28]. The primary goal of hyperpa-
rameter optimization methods is to automate the hyperparameter tuning process and 
enable users to efficiently apply ML models to real-world problems [29]. Because the 
DNN’s performance is heavily dependent on hyperparameter modification, the mod-
el’s quality due to the training process, or its capacity to generalize to new data when 
employed in the wild [30], Hyperparameter tuning therefore plays a significant role in 
the DNN’s success. Finding the appropriate DNN model hyperparameter combination 
that performs best when scaled on a validation set is necessary [31]. For classifying, 
analyzing, or upgrading present systems or data, an optimization algorithm is a critical 
tool for choosing the optimum answer from a set of all viable options. Good opti-
mization techniques are frequently required for minimizing or maximizing objective 
functions in optimization problems [32]. Weights, learning rules, network design, acti-
vation function, neurons, and bias are all commonly optimized using optimization algo-
rithms. Another method for improving and optimizing the ANN is to use an optimizer 
for replacing the NN’s original algorithms with optimization algorithms, and replac-
ing backpropagation with any optimization approaches to overcome particular issues. 
Yet, instead of back-propagation, an optimization algorithm, such as the Liebenberg 
Marquardt NN with any optimization approaches for rapid or accurate NN training, can 
be used.[33]–[35].

2.3 Hyperparameters optimization methods

1. Decision-theoretic: Those approaches work by first creating a hyperparameter 
search space, after that detecting hyperparameter combinations inside it, and then 
picking the best-performing hyperparameter combination:
•	 Grid Search (GS) Because the hyperparameter values employed by the method 

are usually unrelated to one another, (GS) can be defined as a decision-theoretic 
method which requires exhaustively searching for a specified domain of hyper-
parameter values [26], [36]. It was acknowledged as one of the most widely-used 
approaches for exploring hyperparameter configuration space [37], [38], as well 
as exhaustive search or a brute-force technique which assesses all hyperparameter 
combinations supplied to configurations’ grid [39]. GS calculates the cartesian 
product regarding a finite collection of values given via the user [7].

•	 Random Search (RS) can be defined as a decision-theoretic approach that, given 
limited resources and execution time, chooses hyper-parameter combinations in 
search space at random [40]. This method might be utilized in discrete instances, 
yet it might also be employed in continuous and mixed spaces. RS may outper-
form grid search in the case when just some hyperparameters affect the perfor-
mance of the ML algorithm [36], yet it is not commonly adaptive, however it 
might be utilized in hybrid ways to drastically enhance performance [41].

2. Bayesian Optimization (BO): it could be defined as one of the probabilistic opti-
mization methods which seeks to reduce a global objective black-box function [37]. 
The models determined the next value of the hyper-parameter depending upon pre-
vious results regarding the values of the tested hyperparameter, avoiding various 
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unnecessary assessments; therefore, BO identify optimum hyperparameter com-
bination in fewer iterations compared to RS and GS [42]. Variable conditionality 
could be preserved in BO. In addition, BO includes two fundamental components: 
an acquisition function and a surrogate model, and may therefore be utilized for opti-
mizing conditional hyper-parameters [43], [44]. The surrogate could be defined as 
one of the probabilistic models, and the posterior estimate regarding the expensive 
function is generated with the use of Bayes’ rule. Through optimizing a selected 
acquisition function, the next most promising point was discovered. The acquisi-
tion function achieves a balance between exploring points in uncharted territory and 
exploiting points in areas where a track record has been established [25]. The objec-
tive purpose of the surrogate model is to fit all of the currently observable points into 
it. The acquisition function regulates the use of various points through balancing the 
trade-off between exploitation and exploration after getting the predictive distribu-
tion of the probabilistic surrogate model. Exploration entails sampling examples in 
previously uncharted locations, whereas exploitation entails sampling in the most 
promising locations in which the global optimum is most likely to take place. The 
GP [45], random forest (RF) [46], and the tree parzen estimator (TPE) [26].

3. Multi-Fidelity Optimization Techniques: these are standard methods for dealing 
with resource and time constraints. People might utilize a subset of the features or a 
subset of the original dataset for saving time [47]. The term “multi-fidelity” comes 
from the combination of high-fidelity and low-fidelity evaluations for practical 
applications [48]. A small subset of low-fidelity evaluations assessed at low costs, 
yet with poor generalization performance. A large subset of high-fidelity evaluations 
had greater generalization performance, yet at high costs compared to low-fidelity 
evaluations. Badly performing configurations were removed after every one of the 
rounds of the hyperparameter evaluation on created sub-sets in multi-fidelity opti-
mization methods, and just well performing hyperparameter configurations were 
reviewed overall training dataset. Multi-fidelity optimization techniques, such as 
bandit-based algorithms, have shown success in handling DL optimization problem 
[29]. The successive halving [49] and Hyperband [50] are two popular bandit-based 
methods.
•	 Successive Halving (ASHA): this is an approach based on the multi-armed ban-

dit algorithm. The ASHA algorithm can be defined as an asynchronous algorithm 
of combining random search with principled early stopping [51], Sample a collec-
tion of hyperparameter configurations at random, evaluate them, and discard the 
ones with the lowest scores. Repeat until only one-configuration remains.

•	 Hyperband: this is a prominent bandit-based optimization approach that com-
pared to RS. It creates small versions of the data sets and gives each hyper-
parameter combination the same budget. For saving resources and time, 
Hyperband eliminates poorly performing hyper-parameter combinations with 
each iteration [52].

4. Metaheuristic Algorithms: it is a collection of methods that could be used to 
solve any optimization problem [53]. Because of its benefits of quick speed, mini-
mal parameters, and straightforward implementation, it has grown to be one of the 
most well-known classical algorithms in the field of evolutionary computation [54]. 
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The two most common metaheuristic algorithms utilized for hyperparameters 
optimization issues are genetic algorithm (GA) and particle swarm optimization 
(PSO) [50], [55], [56].
•	 GA: Through the application of a series of mutation, crossover, and fitness 

assessments to several chromosomes, the GA addresses optimization problems. 
This method starts with a population with many chromosomes [57], [58], after 
that simulates natural selection to see which species could adapt to changes in 
their environment and reproduce and carry on to the next generation [59], where 
each one is representing the problem’s optimal solution, as determined via an 
objective function [35].

•	 PSO: One of the most prominent algorithms of the evolutionary optimization 
is the PSO [60]. The PSO is based on particle position and velocity [61]. One 
aspect of the PSO is that it does not employ a selection procedure; all members 
of the population (particles) survive from the beginning to the end of a trial. In 
addition, their interactions lead to a constant enhancement in the quality of their 
interactions, which is quantified as the fitness value [62]. PSO is used to create 
an ANN technique for each neuron that improves synaptic mass, architecture, 
transfer function [63], [64].

3 Literature survey

This section we display some of the prior relevant works on ANN hyperparameters 
optimization and applications that use hyperparameters technique.

3.1 Applications used hyperparameters optimization algorithms

In this part, various previous work that relied on optimization algorithms in their 
applications are reviews, in order for us to find the most effective algorithms and the 
most used hyperparameters.

1. Maytham S. Ahmed, et al. [65] Proposed using a hybrid lightning search algo-
rithm (LSA)-based NN in order to forecast the best ON/OFF status for household 
appliances. They created an ANN with five inputs, 2 hidden layers with sigmoid 
functions as activation functions, and four outputs. The feed-forward NN and the 
Levenberg–Marquardt training technique used for the training of ANN.

2. Tian Zhang, et al. [66] Proposed a unique method for plasmatic waveguide-coupled 
with cavities structure (PWCCS) spectrum prediction, inverse design, parameter 
fitting, and performance optimization, to construct the network architecture and set 
hyper-parameters for ANNs.

3. Wenzhe Shi, et al. [67] Depending on a DNN model and the PSO as a hyperparam-
eter optimizer, the authors suggested an efficient digital modulation recognition 
technique. This suggested approach employs signal preprocessing and an improved 
DNN model to detect multiple modulation signals in wireless communications.
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4. J. F. Torres , et al. [68] Suggested a random search to adjust the technique’s many 
hyper-parameters, followed by a moving averages-based approach to smooth pre-
dictions that have been given by the variety of the models for every prediction 
horizon value.

5. Seunghyup Shin, et al. [4] Developed DNN model by using the worldwide har-
monized light vehicles test procedure (WLTP) of diesel engines, adjust its hyper- 
parameters with the Bayesian optimization approach, and employ hidden-node 
determination logic for predicting engine-out NOx emissions.

6. Vessela Krasteva, et al. [69] recommended fine-tuning hyper-parameters (HPs) of 
deep CNN for recognizing non-shockable (NSh) and shockable (Sh) rhythms, as 
well as confirming the optimal HP settings for long and short analysis durations 
(2s–10s).

7. Taehywon Kim, et al. [70] Suggested a global optimum rank selection technique 
based upon Bayesian optimization, which is a global optimization approach based 
on ML. The suggested approach generates a global optimal rank providing reason-
able trade-off between computation complexity and accuracy deterioration through 
combining a basic objective function with a correct optimization scheme.

8. Guoyin Zhang,et al. [71] Introduced an enhanced adaptive dynamic particle swarm 
optimization (ADPSO) method, which is based on the PSO algorithm and can 
dynamically change the program’s settings to update particle positions, ensuring 
that particles find the global best solution.

9. Xueli Xiao, et al. [72] Recommended using a GA with varied duration to boost the 
performance of a CNN through modifying its hyperparameters to tackle the towing 
concerns. Overfitting, along with the computing and time expenses, are all factors 
to consider. Through changing one hyperparameter value as well as applying ran-
dom mutation to the population segment with the lowest fitness value, the popula-
tion segment with the lowest fitness value can be improved.

10. H Harafani, et al. [73] Suggested the use of a genetic algorithm for optimizing 
hyperparameters of NN for predicting liver disease , rather than manually optimiz-
ing hyperparameters of NN. They focused on two hyperparameters, momentum 
coefficient and learning rate, for improving estimation results, and the RMSE was 
utilized as a result assessor.

11. Razvan Andonie, et al. [74] Used the Weighted Random Search (WRS) technique 
and compared it to a number of cutting-edge hyperparameter optimization methods. 
Respecting Convolutional Neural Network (CNN) hyperparameter optimization.

12. Maher G. M. Abdolraso, et al. [75] Introduced a PSO augmentation for ANNs in 
a virtual power plant (VPP) system, for managing renewable energy resources 
(RESs).

13. Matteo Miani, et al. [76] Used a Bayesian optimization algorithm for optimizing 
hyperparameters for prediction of Marshall test results, stiffness modulus, and air 
voids data regarding various bituminous mixtures for road pavements, with the use 
of an ML approach based on (ANNs).

14. Mohammad Masum, et al. [37] Proposed a new intrusion detection framework 
for networks, by optimizing the hyperparameters regarding the DNN architecture 
with a Bayesian optimization approach. The suggested framework was after that 
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evaluated and put to comparison with the approach of random search hyperparam-
eter optimization.

15. Puneet Kumar, et al. [77] Developed a new GA-based technique for quickly iden-
tifying the optimum hyper-parameter combinations for DNN training, as well as 
recommending an additional optimization step. Furthermore, the ideal values of all 
hyperparameters discovered using this method.

16. Jussi Kalliola, et al. [78] Suggested an ANN optimization model for real estate price 
prediction. To handle the nonlinear problem of real estate price prediction without 
under- and over-fitting problems, a multilayer perceptron (MLP) NN model uti-
lized, along with fine-tuning hyperparameters in Helsinki, Finland.

17. Mansi Gupta, et al. [79] Through focusing on components of training that effect 
classifier performance, they produced a DNN model for software defect prediction. 
In the case when the train’s accuracy is inadequate, they recommend adding extra 
hidden layers and epochs, as well as the DNN model with dropout.

18. Andrea Menapace, et al. [80] Suggested a grid search algorithm to tune ANN 
hyperparameters for drinking water demand forecasting and implemented it on 
4 ANN architectures: Long Short-Term Memory (LSTM), Feed Forward Neural 
Network (FFNN), Gated Recurrent Unit (GRU), and Simple Recurrent Neural 
Network (SRNN) with 4 times: 1 hour, 6 hours, 24 hours, and 168 hours.

19. Sebastian Blume, et al. [81] Compared various hyperparameter optimization 
approaches for the creation of an ANN-based roll angle estimator. Hyperband 
and Random Search, two random-based approaches, and Genetic Algorithm and 
Bayesian Optimization, two knowledge-based approaches, compared. The aim of 
this research is to create ANN-based software sensors.

20. Parampreet Kaur, et al. [82] Proposed a stacked ensemble model employing DNN, 
a DL model, GBM, and DRF, a distributed form of the RF technique , for the pre-
diction of the breast cancer survival. The Artificial bee colony (ABC) approach 
employed on the dataset for feature optimization, and parallel Bayes optimization 
utilized in order to discover the appropriate HPs for ML models.

21. Warut Pannakkong, et al. [83] Applied (RSM) to fine-tune the hyperparameters of 
three machine learning algorithms: (SVM), (ANN), and (DBN). The goal was to 
show that RSM is more efficient than grid search in keeping ML algorithm per-
formance while decreasing the number of the runs that needed in order to reach 
appropriate hyper-parameter values.

3.2 Another technique

Some of Optimization algorithms and their variants are not efficient at solving spe-
cific issues. Furthermore, while some optimization approaches are effective, they can 
still improve to increase efficiency. In addition, for the purpose of developing com-
putational intelligence or heuristic optimization, new Nature-inspired optimization 
methodologies must be regularly developed because speeding up the convergence of 
an algorithm remains a challenging task. [64], [84]–[86], there are other optimization 
methods that are used to select the suitable hyperparameters for ANN models research-
ers in [87] suggest utilizing variance Matrix Adaptation Evolution Strategy (CMA-ES), 
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which is well-known for its cutting-edge efficiency in derivative-free optimization, 
while in [88] adapted a simpler coordinate-search and Nelder-Mead methods for the 
optimization of the hyper-parameters. In [25] the researchers applied RBFs as error 
surrogates and use an integer algorithm called (HORD) for hyper-parameter optimi-
zation that is both deterministic and efficient. Also, in an article [89] they introduced 
a new technique that optimizes numerous hyperparameters by combining multiscale 
and multilevel evolutionary optimization (MSMLEO) with GPEI. In [90] suggested 
using a Microcanonical optimization algorithm for hyperparameter optimization and 
architecture selection for CNNs. It is interesting to note that the results of all of these 
papers were compared using the Bayesian optimization algorithm, in [90] and [88] they 
use simulated annealing and random search algorithm for comparison. In [91], [92] 
they Compare their results with the use of novel methods ( univariate dynamic encod-
ing algorithm and the using an improved Gene Expression Programming) to enhance 
hyperparameters sequentially by GA and PSO algorithms. All results were significant 
improvement by choosing the right hyperparameters.

4 Analysis and discussion

Neural networks have wide spread and common uses and the results extracted from 
the neural networks are satisfactory. However, optimization algorithms, if used in com-
bination with the network, will significantly increase the accuracy because of selecting 
the best hyperparameters. In this part, the optimization process is analysis and discuses 
in two axes:

4.1  Optimization algorithms

In order for us to clarify the strengths and weaknesses of the optimization algo-
rithms, we summarize Table 1 that views previously work that using optimization algo-
rithms that lead to improving different models, taking into consideration the limitations 
that countered.
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Based on what previously reviewed in section (2.3) and Table 1, we propose  
Table 2 for comparison and analysis between optimization algorithms advantage and 
drawbacks.

Table 2. Advantages and disadvantages of hyperparameters optimization algorithms

Technique Advantage Disadvantage

Grid search 
(GS) [7], [36], 
[39], [55]

•	 Considered a brute-force technique 
or exhaustive search that assesses all 
hyperparameter combinations given to 
the grid of setups.

•	 Could be simply parallelized and 
implemented.

•	 It is not possible to further exploit the 
high-performing regions on its own.

•	 It is ineffective for high-dimensionality 
hyperparameter configuration space.

•	 A boundary must be defined before using 
a GS.

•	 Due to the constantly increasing cost, GS 
could lose parallelism.

Random 
search (RS) 
[6], [7], [55], 
[96]

•	 Because each one of the evaluations is 
independent, it is simple to parallelize 
and allocate resources.

•	 Enhances the efficiency of the system 
through decreasing the likelihood of 
wasting a lot of time on small poor-
performing area.

•	 It can explore larger search space 
compared with GS.

•	 It can identify global optima or near 
global optima in the case where 
provided with enough budget.

•	 Previously well-performing regions are 
not exploited.

Bayesian 
algorithm 
[42], [55], 
[86], [97]

•	 utilizes the previous evaluation records 
for the determination of the next 
evaluation, which is why, don’t waste 
time on the evaluation of the poorly-
performing search space areas.

•	 Can typically detect near optimum 
hyperparameter combinations within 
few iterations.

•	 Difficulty in parallelize.
•	 Inference time increases cubically 

in a number of the cases, because it 
necessitates inverting a dense covariance 
matrix.

Multi-fidelity 
algorithms [98]

•	 Makes it possible to carry out the 
optimization with numerous design 
variables and responses utilizing the 
computationally expensive analyses 
through the virtual elimination of the 
costs of the gradient computations.

•	 Reduces any need for the correlation 
of low and high fidelity analyses 
results throughout the optimization.

•	 The designer must create 2 models of 
various fidelity with similar design 
responses and variables.

•	 It could be the designer’s responsibility to 
compute finite-difference gradients with the 
use of low-fidelity analyses codes, in the 
case where there are not any explicit gradient 
computations in low-fidelity analyses codes.

•	 The optimizer will potentially bring design 
into optimum region, instead of pinpointing 
a precise location of an optimum.

PSO [84] •	 Rapid convergence.
•	 The ability to solve complicated 

problems in another domain of the 
application.

•	 could be trapped in the local minima easily.
•	 unsuitable control parameter selection 

results in poor solution.
•	 It has vulnerability to getting stuck in the 

local minima and incorrectly choosing the 
control parameters, which could lead to 
bad solutions

(Continued)
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Technique Advantage Disadvantage

GA [93], [99] •	 It requires no derivative information.
•	 proper for large numbers of the 

variables.
•	 Ignore the gradient information related 

to the error functions; also learn the 
approximate optimal solution.

•	 No guarantees to find global minimum.
•	 Difficult to fine-tune all of the parameters, 

such as the rate of the mutation, 
parameters of the crossover, and so on, 
which is often done by just trial and error.

•	 Long time for the convergence.

Based on the foregoing, we can summarize the following points:

•	 Grid search is optimal for spot-checking combinations that had performed well pre-
viously. Even though it takes longer to execute, random search is fantastic for discov-
ery and finding hyperparameter combinations that you would not have anticipated 
intuitively. Those two techniques are effective in prediction and classification. The 
application in [37], [68], [74], [80], [81], [83] used GS and RS as hyperparameter 
selection methods. The GS explored all hyperparameters combinations in the search 
space, but it is expensive and not efficient if the search space has high dimensions, 
while RS from its name selected hyperparameters randomly and considered as the 
most efficient way of searching the hyperparameters configurations [5], [96], [100].

•	 Bayesian Optimization is an approach that uses Bayes theorem to direct the search 
in order to find the minimum or maximum of an objective function. In addition, it 
balance the exploration and the exploitation processes to detect the current most 
likely optimal regions and avoid missing better configurations in the unexplored 
areas [101]. And it is an approach that is most useful for objective functions that 
are complex, noisy, and/or expensive to evaluate like developing in [4], detection 
in [37], selection in [70], and designing in [82], addition can use BO as hyperparam-
eter optimization for enhance the model accuracy.

•	 Using PSO to search for hyper-parameters has widely studied and tested as well in 
a variety of studies, with positive results in a variety of applications. For instance, 
CNN-based PSO reduced CNN weights in final network by optimizing the hyper-
parameter linearly [18]. PSO optimization also improves NNs through locating the 
best hyperparameters for network architecture design [67]. In addition for digital 
modulation recognition applications, a PSO-based deep NN has been utilized for 
optimizing the number of the hidden layer nodes [65], [67], [71].

4.2 Hyperparameters

The hyperparameters considered the main key in the optimization process carried 
out by optimization algorithms. In the Tables 3–4 we make a comparison between the 
previous works reviewed in Part (3.1) this perform contributes to determining the best 
hyperparameters results. Finding the best optimization method enables suitable tuning 
of the neural structures in the professional networks, such as the optimal number of the 
neurons, weights, hidden layers, self-shaping architecture, bias, and multi-stage objec-
tive functions, in comparative performance output regarding controllers of an ANN.

Table 2. Advantages and disadvantages of hyperparameters optimization algorithms (Continued)
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Table 4. Applications used hyperparameters optimizations methods comparison

Ref. 
Year

Network 
Type Used Dataset Techniques / Tools Obtained Result

[65], 
2016

•	 Feed-
forward 
neural 
network

•	 Dataset are 
collected from 
the simulation 
system

•	 A lightning search 
algorithm based 
PSO

•	 During the DR event, decrease 
peak-hour energy use by up to 
9.7138 %.

[66], 
2019

ANN Their own dataset GA •	 PWCCS inverted design with 
high precision

•	 Improves several crucial 
transmission spectrum 
performance parameters

[67], 
2019

DNN Their own dataset PSO •	 If SNR is equal to 0 and 1 dB, 
the recognition rate using this 
approach improves by 9.40% 
and 8.80%, respectively, when 
compared to approaches which 
use traditional DNN and SVMs.

[68], 
2019

DNN Electrical 
electricity 
consumption in 
Spain

RS •	 The smoothing technique 
minimizes the forecasting error, 
while random search gives 
competitive accuracy outcomes 
with few models.

[4], 
2020

DNN Logged data 
from ETK–ECU 
interface

Bayesian 
Optimization 
algorithm

•	 The accuracy level has been 
increased, as can be noticed by 
an R2 of 0.9675.

[69], 
2020

CNN Public Holter ECG
OHCA

RS •	 Increase the Sh and NSh 
rhythms’ detection and can 
significantly reduce analysis 
time while adhering to 
resuscitation requirements for 
minimal hands-off pauses

[71], 
2020

BiLSTM 
NN

Collects the 
measured motion 
data of a ship.

ADPSO •	 Compared to BiLSTM, LSTM, 
and PSO-BiLSTM NN models, 
the ADPSO-BiLSTM NN 
model might better fit the data.

[70], 
2020

CNN •	 CIFAR-10
•	 CIFAR-100
•	 ImageNet

•	 Bayesian 
Optimization 
algorithm

•	 The proposed approach gives 
multi-rank with increased 
performance and compression 
in comparison to state-of-the-art 
rank selection method, VBMF.

[72], 
2020

CNN •	 CIFAR-10 •	 Variable-length GA •	 The accuracy results obtained 
in the 30 (Hours) compared 
to methods (random search 
58.66%, classical GA 80.75%, 
and large scale Evaluation 
51.90%) is (88.92%).

(Continued)
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Ref. 
Year

Network 
Type Used Dataset Techniques / Tools Obtained Result

[73], 
2020

ANN •	 Liver Disorder 
dataset from 
BUPA

•	 GA •	 GA gives the smallest RMSE 
compared with other ML 
algorithms like K-NN, SVM, 
and NN.

[74], 
2020

CNN •	 CIFAR-10 •	 WRS
•	 RS

•	 The accuracy that obtained 
when using WRS is 0.85% and 
it is the best one compared with 
other methods are used.

[75], 
2021

ANN •	 Their own data •	 PSO •	 ANN-PSO offers more exact 
decisions than the BPSO 
algorithm, indicating that 
Neural Net augmentation has 
reached the optimum level of 
energy scheduling.

[76], 
2021

ANN •	 Variable dataset •	 Bayesian 
Optimization 
algorithm

•	 ANN model that has been 
identified by Pearson coefficient 
of 0.868.

[37], 
2021

DNN •	 NSL-KDD •	 Bayesian 
optimization 
algorithm

•	 Gaussian Processes
•	 RS

•	 The BO-GP method performs 
better than the random search 
approach. For the KDDTest 
+ and KDDTest-21 datasets, 
BO-GP had the maximum 
accuracy of 82.95% and 
54.99%, respectively.

[77],2 
021

RNN
CNN

•	 Stock market 
data

•	 MINIST

GA •	 Find near optimal performance 
and speed up the optimization.

[78], 
2021

ANN Information 
gleaned from a real 
estate price search 
in Helsinki on the 
internet.

•	 Neighborhood 
component analysis 
(NCA)

•	 Bayesian 
optimization 
algorithm

•	 Person correlation.
•	 Regression tree.

•	 According to the analysis, 0.05 
enhances The R2 value, and the 
RME value is enhanced by 2.5 
percent Reaching a mean error 
of 8.3%

[79], 
2021

DNN 4 NASA system 
datasets (PC1, 
KC1, KC3, PC2)

•	 RF
•	 DT.
•	 Naïve byes for 

calculating the 
accuracy

•	 The accuracy generated by 
proposed DNN with dropout 
highest in comparison with 
other ML techniques.

Table 4. Applications used hyperparameters optimizations methods comparison (Continued)

(Continued)
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Ref. 
Year

Network 
Type Used Dataset Techniques / Tools Obtained Result

[80], 
2021

ANN Synthetic real 
datasets

Grid search method •	 The number of layers and nodes 
increasing as well as the ANN 
models change depending on 
forecasting horizontal.

•	 performance of LTSM 
and GRU is the best and 
performance of the FFNN and 
SRNN is good in the one-hour 
horizon then the accuracy will 
be decreasing.

[81], 
2021

ANN Predefined 
standard driving 
maneuvers dataset

•	 Random Search
•	 Hyperband 

algorithm
•	 Bayesian 

Optimization
•	 Genetic Algorithm

•	 All methods proved a better 
solution, yet the GA results 
in promising solutions in this 
application

[82], 
2022

•	 DNN
•	 GBM
•	 DRF

•	 TCGA dataset 
•	 RNA-seq 

dataset
•	 Metabolomics 

dataset
•	 METABRIC 

dataset

•	 Bayesian 
optimization 
with Gaussian 
Processes.

License module for prediction are:
•	 TCGA data-set produces 

83.90% AUC.
•	 METABRIC data-set gives 

87.30% AUC
•	 RNA-seq dataset it gives 

80.10% AUC.
•	 Metabolomics data-set gives 

91.10% AUC.

[83], 
2022

•	 DBN
•	 SVM
•	 ANN

•	 An industrial 
user in the food 
industry dataset.

•	 RSM
•	 Grid search

For ANN and DBN, GS 
hyperparameter settings are 80% 
reliable, while RSM settings 
are 90% and 100% reliable, 
respectively.

Based on what described previously in Tables 3–4 adscription, analysis and dictation 
will be present in the subsections below according to the obtained strength and weak-
ness points as follows:

One of the most significant hyperparameters is the number of the hidden layers and 
number of neurons learning rate; the first two are set and tuned depending on the data 
sets or problem complexity, while the last one determines step size at every one of the 
iterations, allowing the objective function to converge.

In [37], [72], [76], [77], [79], [82] overfitting problem is showed, in [37], [82] drop-
out rate is most important hyperparameter to prevent this issue, which the dropout and 
number of epochs enable model to reduce overfitting, while in [76], [79] L2 regular-
ization is used to reduce the chance of model overfitting in this case the learning rate 
hyperparameter is affected . Lastly in [77] [72] they overcome the overfitting with-
out relying on the hyperparameter in [77] use early stopping technique and in another 
one fit the neuron number manually. The second problem accurse is filling in local 
minimum the most active hyperparameter in this case is momentum coefficient just like 
problem that showed in [73].

Table 4. Applications used hyperparameters optimizations methods comparison (Continued)
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In [4], [78], [81], [83] the batch size hyper parameter was improved since it rep-
resents the number of the samples that have been processed prior to updating the model 
and the number of the complete passes through the whole training dataset in cases of 
a large dataset. Furthermore, the learning algorithm’s dynamics are influenced by an 
important hyperparameter. It is critical to investigate the dynamics of the model in 
order to get the most out of it.

5 Conclusions

ML has become the go-to method for tackling data-related problems, and it was 
integrated into a wide range of applications. Hyperparameters should be adjusted to 
fit individual datasets in order to apply ML models to reality. The adoption of an auto-
mated method for optimizing hyper-parameters has become crucial. Depending on past 
related work testing findings for enhancing the performance of ANN, we have focused 
on creating the NN by employing optimization techniques to discover the optimum 
ANN hyperparameters to achieve the best structure network in this work. Number of 
layers, learning rate, and number of neurons were determined to be the most commonly 
employed hyperparameters to improve accuracy. Also, we discovered that BO is more 
effective compared to RS and GS because it could detect the best combinations of the 
hyper-parameters through evaluating previously tested values, and executing a surro-
gate model is frequently less expensive compared to running the complete objective 
function. PSO can simple handle discrete problems, but because it is continuous, it 
should be adapted for handling discrete problems. In high-dimensional space, on the 
other hand, it is simple to fall into a local optimum, and the iterative process has a 
poor convergence rate. The genetic algorithm and the Bayesian algorithm were the 
most commonly utilized optimization algorithms, and they produced excellent results. 
Finally, the overfitting problem was the most frequently encountered problem across all 
articles. We anticipate that this work will contribute to a better knowledge of the pres-
ent difficulties in HPO domain, paving the way for future research on hyperparameter 
optimization and machine learning applications.
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