
LINKING TOGETHER RESERVATION SYSTEMS AND REMOTE LABS

Linking together reservation systems and
remote labs

Jasper Bedaux1, Leendert van Gastel1, Theo Koreneef2, Jos Loonen3 and Kees Uiterwijk4

1 Universiteit van Amsterdam, Faculty of Science, AMSTEL Institute, Amsterdam, The Netherlands

2 Haagse Hogeschool, TH Rijswijk, Academie voor Engineering, Rijswijk, The Netherlands
3 Fontys Hogescholen, Institute for Information and Communication Technology, Eindhoven, The Netherlands

4 Hogeschool Utrecht, Institute for Information and Communication Technology, Utrecht, The Netherlands

Abstract— In the technical track of a new remote labs
project called Labs on line, we will look at the linking of two
reservation systems for remote labs. Instead of integrating
both systems into one new system we are exploring
possibilities of designing a generic interface for remote lab
reservation systems.

By using this approach organizations will be able to keep
and manage their own reservation systems while linking
them with the labs of other organizations. This is a very
flexible and scalable solution, both from a technological
point of view as from an organizational point of view.
Individual implementations can thus be customized and
integrated with other systems without affecting existing
reservation systems.

Index Terms— Remote labs, reservation system
architecture, online experimenting.

I.

II.

INTRODUCTION
In the recent past, two different remote lab projects in

the Netherlands were finished: e-Xperimenteren+ [1]
(Universiteit van Amsterdam, Universiteit Twente, Vrije
Universiteit Amsterdam, Fontys Hogeschool Eindhoven)
and FLEXlab [2] (Hogeschool Utrecht, Technische
Hogeschool Rijswijk). Both projects built a reservation
system and several remote experiments involving physics
experiments (e-Xperimenteren+) and telecom and
electronics experiments (FLEXlab).

Recently, a new project has been started called Labs on
line that will build on the results of the two preceding
projects. The new project will consist of several tracks: an
existential track (why remote labs are useful), a content
track (selecting and building remote experiments), a
didactical track (embedding of the remote labs into
education), an organizational track (how to continue and
manage the remote labs after the project finishes) and a
technical track.

This paper will focus on the technical track, especially
on how to link together existing (or new) reservation
systems for remote labs. We are looking at the possibility
that a student can make a reservation into one reservation
system using another, different reservation system.

Because the project is in the definition phase, a lot of
choices are not made yet and we are open for suggestions
and cooperation with other projects. Especially for the
topic of linking together remote lab reservation systems
cooperation is important evidently. Therefore we invite
related projects or projects that are interested in
cooperation or projects that might benefit from the results
of our project to contact us.

PROPOSED LINKING OF SYSTEMS
When the reservation systems of the projects e-

Xperimenteren+ and FLEXlab were compared, it turned
out that, although there are remarkable similarities, each
system has its own features and strengths. The projects
that designed them had different wishes and requirements,
e.g. one of the projects did want a feature to save
individual marks for students, while the other system put
more effort in a sophisticated system for determining the
rights to make reservations. Also, the systems are
implemented using different technologies. When we look
at future wishes, there is a clear wish to integrate the
reservation system with the existing Electronic Learning
Environments (ELE) of the participating institutes and to
establish a connection to the student administration
systems of the participating universities.

One solution to bundle the results of the two preceding
projects would be to redesign one of the systems or build
an entirely new system. We decided that it would be more
flexible to keep both systems side by side, but link them
together through a generic interface.

To ensure maximum flexibility some starting points are
determined:

1. Each participant may have its own reservations

system, i.e., there is no central system and there
are no requirements about the platform or
programming language of a reservation system.

2. A user (student) only needs one portal to make a
reservation, access experiments and access logs
and/or measured data.

iJOE International Journal of Online Engineering - www.i-joe.org 1

LINKING TOGETHER RESERVATION SYSTEMS AND REMOTE LABS

There are a lot of reasons why not to use one central
system but instead keep the possibility of different
systems open, we name a few:

1. Organizations may want to administer and

manage their own systems; transferring control to
a central system may be undesirable from an
organizational point of view.

2. Distinct systems already are in use and many
organizations may not be willing to replace their
existing systems.

3. Different universities may want to integrate their
reservation system with their own Electronic
Learning Environment (ELE) or student
administration system.

4. Organizations may want to add custom
functionality and change appearance or language
of the interface.

Reservation system

Object
computer Object

User

Authentication
& authorization

Generic authorization
service interface

Figure 2

III.
IV.

RESERVATION SYSTEM INTERFACE
In this section we are talking about an interface between

two different reservation systems, i.e., a machine-machine
interface. The general requirements are that a user of
reservation system A can make a reservation for an
experiment or object of reservation system B while only
interacting with reservation system A.

In this early stage of the project the actual requirements

and the interface itself are not designed yet, but we can
already describe some functionality to get an idea of this
interface:

1. Get list of experiments / objects that are

available.
2. Get scheduling policy (sometimes reservation is

not needed in case of very short experiments).
3. Get a list of available time slots for a certain

experiment / object.
4. Make a reservation for a certain experiment in a

certain time window.
5. Get a list of reservations that the user made.
6. Cancel an existing reservation.
7. Get the user authentication information for a

certain reservation, see below for details.
8. Get the URL of the experiment / object.
9. Get logs and or measured data of a certain

experiment.

The user authentication information consists of

information that is necessary to authenticate a user. This
can be the current IP-address of the user or a username
and password hash or a session ID. By communicating
this information, the reservation system in which the
reservation is made does not need to connect to the user
database of the reservation system that made the
reservation when the user wants to log in to the
experiment or object computer. This is very important in
order to keep the design flexible: each reservation system
can use a custom solution for (a connection to) a user
database, independent of the other systems.

It must be decided also how the interface will be
implemented. One of the options is to use web services
[4]. Libraries to easily implement web services exist for
many platforms and programming languages and web
services are based on simple and widely used standards
like SOAP [5] (uses HTTP) and XML.

AUTHORIZATION SERVICE INTERFACE
Just as for the reservation system interface, it can be

useful to specify an interface between the reservation
system and an authorization service.

Of course, it is not required to implement this interface,
e.g. when the authentication / authorization service is
already integrated into the reservation system. In this
project, the reservation systems and authorization systems
of the projects e-Xperimenteren+ and FLEXlab were
compared. Although the different systems were designed
and built independent of each other, it turned out that the
general architecture of both systems has a lot in common.
For example, both projects already had an authorization
service that was separate from the reservation system, so
interfaces are already present. By using a generic interface
it will be possible to exchange the different authorization
modules.

Generic reservation
system interface

Reservation
system A

 User

Reservation
system B

 User Figure 1
Below is an overview of the general architecture of a

system where the authentication & authorization is split
off from the reservation system:

The authentication & authorization service is between

the user and the object computer (or experiment
computer). The authentication & authorization service
gets the user authentication information from the
reservation system. The user authentication information
can for example be the current IP-address of the user or a
username and password hash or a session ID. The
reservation system might get the user authentication
information from another reservation system (in case the

iJOE International Journal of Online Engineering - www.i-joe.org 2

LINKING TOGETHER RESERVATION SYSTEMS AND REMOTE LABS

Reservation service

Agenda

 time window

 broker ref

 user ID

 permission ref

Permissions

 broker ref

 [policies]

Object
computer

Broker
 user interface for

reservations

 management of users and

permissions

 customization, extensions

and links to learning

environment

Object

User

Authentication &
authorization

Figure 3: Multi-broker
architecture

user made the reservation from another reservation
system, see above).

In the earlier two projects, three solutions for the
authorization service were built. All these solutions use
authentication on the base of the current IP-address of the
user.

1. A hardware router is dynamically programmed to

let pass or block traffic from the IP-address of the
user that wants to access the experiment or
object.

2. A Network Address Translation server checks
the reservation table and either assigns an object
computer to the user or blocks the user if no valid
reservation was found.

3. An access list of a LabVIEW server that serves
remote panel applications is dynamically updated
by a LabVIEW software component.

The first two solutions are very generic: they can be

used for any remote lab interface, it doesn’t matter what
kind of application or protocol is used. The third solution
is very convenient when the LabVIEW remote panel
technology is used: no additional hardware is needed; just
a simple LabVIEW software component can be added.

This interface is also not yet designed in this early stage
of the project, but we can already name some of the
functionality:

1. Get the user authentication information (IP-

address or username + password hash or session
ID) of the user that has currently a valid
reservation.

2. Get the start and end time of the current
reservation.

MULTI-BROKER ARCHITECTURE V.
In the project e-Xperimenteren+, also a distributed

model was designed, where the reservation system is split
up into a broker and a reservation service. A similar
architecture was also implemented in the project Co-Lab
[3], another project where remote labs figure. In this

section we take a look at this architecture because it uses
the interfaces described in III and IV and because this
architecture adds flexibility and scalability because the
broker and reservation service modules can be duplicated
and customized independently. Note that

1. It is not required to implement this architecture

to link a reservation system by using the generic
reservation system interface of III; it can
however be helpful when designing a new
architecture or redesigning an existing one.

2. In the presented architecture below many details
and choices are still open for discussion.

In figure 3 is a short overview of the multi-broker

architecture. In this picture:

 Each component can appear multiple times.
 A broker can communicate with multiple reservation

services and a reservation service can also
communicate with multiple brokers.

 A reservation service can communicate with multiple
authentication & authorization modules, but an
authentication & authorization module can only
communicate with one reservation service.

 An authentication & authorization module can service
multiple object computers, but an object computer is
protected by only one authentication & authorization
module.

Permissions at the reservation service are permissions at

the level of brokers, i.e. they determine the permissions of
each broker that communicates with it. The broker is
responsible for managing the permissions of its individual
users. A reservation service can implement policies about
the maximum number of reservations and dates and times
a broker may make reservations. This way it is easy for
example to guarantee that on a certain day only a certain
broker is allowed to make reservations.

Apart from the permissions the reservation service
contains a reservation table or agenda that keeps track of
reservations. A reservation consist of a time window, a

iJOE International Journal of Online Engineering - www.i-joe.org 3

LINKING TOGETHER RESERVATION SYSTEMS AND REMOTE LABS

reference to the broker that made the reservation, a user
ID and a reference to the permission used to make this
reservation from the permission table. The reference to the
broker is used to keep track of which broker made which
reservation, so it can be determined whether a broker is
allowed to view, cancel or update a reservation. The user
ID is a local user ID used at the broker that made the
reservation. Although the reservation system itself might
have not much use of it, it is useful in the communication
with the broker that made the reservation.

Functionality of the broker is providing an interface for
the users to make reservations, the management of users
and their permissions (to make reservations) and
integration with other systems like the ELE (Electronic
Learning Environment) or student administration of the
institute. Also customizations like additional features and
layout and language of the interface can be built into the
broker.

Advantages of the multi-broker architecture are that the
reservation service component can be kept simple and
robust (this is the part that communicates with external
brokers / reservation systems) because all customization
like interfaces to electronic learning environments and
user management can be built into the broker part.
Because each module can be duplicated at different
locations, this architecture has a very good scalability.
Duplicating the broker module can be useful for several
reasons. It can be convenient for example to have several
brokers for different target groups, e.g. one broker for
internal students that is integrated with the student
administration system and another broker for external
visitors that has another user management and possibly
other policies. Also the layout and functionality can be
different for different brokers.

VI. CONCLUSIONS
By specifying an interface between reservation systems

it becomes possible to link together different reservation
systems without the need of a central system. Care must
be taken that the interface is simple and that as few as
possible restrictions are set for the reservation systems that
must be linked together. This will ensure that it is
relatively easy to implement the interface into existing
solutions.

There are a lot of advantages to the approach of using
an interface between systems instead of integrating them
into one central system. The most important advantages
are that the solution is very scalable and flexible (both

from a technical point of view as from an organizational
point of view) and that customization and integration with
other systems is easier, especially when using the multi-
broker architecture.

In our project the interface is only needed for two
different reservation systems, but it is a nice chance for
cooperation with other initiatives or standards and a nice
chance for other projects to link their remote labs together.

REFERENCES
[1] e-Xperimenteren+ website:

http://www.science.uva.nl/remotelabs/
[2] FLEXlab website: http://www.flexlab.nl/
[3] Co-Lab project website: http://www.co-lab.nl/
[4] Webservices: http://www.w3.org/2002/ws/
[5] Simple Object Access Protocol

http://www.w3.org/TR/soap/

AUTHORS
Jasper Bedaux is with the Universiteit van

Amsterdam, Faculty of Science, AMSTEL Institute,
Kruislaan 404, 1098 SM Amsterdam, The Netherlands (e-
mail: bedaux@science.uva.nl).

Leendert van Gastel is with the Universiteit van
Amsterdam, Faculty of Science, AMSTEL Institute,
Kruislaan 404, 1098 SM Amsterdam, The Netherlands (e-
mail: gastel@science.uva.nl).

Theo Koreneef is with the Haagse Hogeschool, TH
Rijswijk, Academie voor Engineering, Lange Kleiweg 80,
2288 GK Rijswijk, The Netherlands (e-mail:
t.j.koreneef@hhs.nl).

Jos Loonen is with the Fontys Hogescholen, Institute
for Information and Communication Technology,
Rachelsmolen 1, P.O. Box 347, 5600 AH Eindhoven, The
Netherlands (e-mail: j.loonen@fontys.nl).

Kees Uiterwijk is with the Hogeschool Utrecht,
Institute for Information and Communication Technology,
Oudenoord 340, 3513 EX Utrecht, The Netherlands (e-
mail: kees.uiterwijk@hu.nl).

Manuscript received July 19, 2006. This work was supported by the
Digitale Universiteit (DU) of the Netherlands, http://www.du.nl/.

iJOE International Journal of Online Engineering - www.i-joe.org 4

http://www.science.uva.nl/remotelabs/
http://www.flexlab.nl/
http://www.co-lab.nl/
http://www.w3.org/2002/ws/
http://www.w3.org/TR/soap/
mailto:bedaux@science.uva.nl
mailto:gastel@science.uva.nl
mailto:t.j.koreneef@hhs.nl
mailto:kees.uiterwijk@hu.nl
http://www.du.nl/

	I. Introduction
	II. Proposed linking of systems
	III. Reservation system interface
	IV. Authorization service interface
	V. Multi-broker architecture
	VI. Conclusions
	References
	Authors

