
Remote Engineering and Virtual Instrumentation Using Jini Technology

Remote Engineering and Virtual Instrumentation
Using Jini Technology

Z. Juhasz, G. Bognar, K. Kuntner, A. Pasztory and Sz. Pota
Pannon University, Department of Information Technology, Veszprem, Hungary

Abstract—The rise of Internet and web technology have
transformed our society by providing access to
unprecedented amount of information, supporting
communication and collaboration, empowering e-business
and e-commerce. Its role in advancing science is equally
important. It has become possible to disseminate scientific
information more effectively, access large databases, share
computational resources, measurement devices, control
experiments and collaborate at a global scale. The human
user centered traditional world wide web technology,
however, cannot provide the suitable technological platform
necessary for the further development and improvement of
online and remote engineering applications. New, service-
oriented technologies are required, which support higher
level of automation, enable seamless programmatic and
interactive access to remote devices and systems, and have
an adequate programming model suitable for creating large
and complex distributed scientific applications. In this
paper, we describe such a technology, Jini technology, and
illustrate with case studies its various benefits for the remote
engineering, virtual instrumentation community.

Index Terms — Remote Engineering, Virtual
Instrumentation, Service-oriented Architecture, Jini
Technology

I.

II.

INTRODUCTION
The rise of the Internet and the World Wide Web

opened up new opportunities in teleworking, remote and
online engineering. Researchers and developers have been
looking at ways to provide access to hardware equipment
(sensors, instruments, actuators) in order to improve their
utilization or minimize the travel required for their use.
Notable examples can be found in the fields of astronomy
(remote access to and control of telescopes) and health
services (remote diagnostics, pathology, etc).

Due to its relative simplicity, most of these integration
efforts are based on web technology and use the web
browser as the client program. To provide improved
control and interaction, the Java language and platform
have been a popular choice for implementation. Applets
provide a convenient way of extending the capabilities of
web pages with dynamic update and control facilities
which are required for these applications [1][2]. The main
drawback of the web browser based approach is that it
requires user presence. A human user must download the
web page and manually control the instruments. This
represents serious problems in automated systems
operated by programs, e.g. feeding sensor values into a
large Grid application for processing and control.

Recent technological advances raised expectations and
opened up new possibilities for remote engineering and

virtual instrumentation. It is possible to create Internet-
based simulations or integrate with Grid systems to enable
the development of new scientific applications.

In this paper we show that Jini Technology [3] provides
many benefits for virtual instrumentation and remote
engineering. It relies on the power of the Java platform,
offers programmatic or user interface based access to
remote services, and comes with a suite of technologies
required to build reliable distributed systems.

The structure of the paper is as follows. Section II
discusses requirements that differentiate online and
remote engineering as well as virtual instrumentation from
traditional web applications. Section III provides a brief
introduction to service-orientation and Jini technology. It
explains the fundamental concepts, infrastructure,
operation and programming abstraction of Jini, and
highlights how it supports the requirements listed in
Section II. Section IV describes case study applications
that illustrate the use of Jini in the online, remote
engineering and virtual instrumentation area. The benefits
of the Jini model in programming, interaction and
flexibility is also discussed. The paper ends with our
conclusions and discussion of future work.

NEW REQUIREMENTS
The Internet is a global computer communication

backbone originally designed for a limited set of
applications such as FTP, Telnet and electronic mail. The
advent of the World Wide Web and the Web Browser
opened up the Internet for the public as it simplified the
process of publishing information on interlinked web
pages without requiring programming knowledge. The
ubiquitous browser and its ability to display multimedia
content (initially images only) played a crucial role in
popularizing this technology.

The web was designed for retrieving mainly static
HTML pages. Web servers are therefore stateless,
providing the same response for every query regardless
the history of interaction with a given user. Online and
remote engineering, as well as virtual instrumentation
applications are, however, very different from the original
web concept. The main differences are due to the
following requirements.

• Continuous interaction – Clients need interactive
connection to remote systems, devices and
instruments as they need to be monitored and
controlled continuously.

• Clients need to be able to receive event
notifications from the remote system when
important state changes occur.

iJOE International Journal of Online Engineering - www.i-joe.org 1

Remote Engineering and Virtual Instrumentation Using Jini Technology

Client Service
3. use

Lookup
service

1.1 discover2.1 discover

1.2 register
(upload proxy)2.2 lookup

(download proxy)

Service proxy object

Figure 1.

III.

A.

B.

High-level operation of a minimal Jini system

• Various interaction patterns must be supported
using a range of data formats. One off
instructions, periodic polling, receiving and
sending data (ASCII, binary, audio or video)
streams to and from the remote systems are
equally important.

• Miniaturization resulted in various portable
devices (mobile phones, Personal Digital
Assistants) that should be supported either as
client or remote server devices regardless their
resource limitations.

• Fully automated applications in which programs
interact with other programs without the
intervention of human users are becoming
increasingly important. One such example is
sensor networks. This type of operation requires
an infrastructure and programming model suitable
for integration in distributed software systems.

• In automated operation mode, systems must work
in the presence of errors. Fault handling, tolerance
and minimal administration needs are essential
required features.

• Support for composition is important when
assembling complex systems from existing
modules and devices. This is prerequisite, e.g. for
integration into Grid applications.

• Multi-user access to shared devices, data,
applications and experiments is essential to enable
collaborative engineering work.

The above requirements are not unique to remote

engineering applications. Traditional web sites comprising
a set of static HTML pages are quickly disappearing.
Users increasingly interact with remote systems (web
applications) instead and consequently expect the desktop
application experience. With traditional web technologies
this is difficult to achieve.

JINI TECHNOLOGY AS A TOOL FOR VIRTUAL
INSTRUMENTATION

Service Orientation
A relatively new approach to creating complex,

typically distributed, systems is service orientation [4]. In
a service-oriented architecture, software and hardware are
represented as services. Anything can be a service as long
as it can be defined by a programmatic interface that
describes the functionality offered by the service. The
interface serves as a contract between the service user (the
client) and the service. Since the implementation of the
service is not part of the contract, it is hidden from the
client allowing various devices, instruments, etc. to appear
on the computer network as virtualized software services.

Service orientation offers a modular, component-based
and compositional approach to system design. It specifies
the fundamental concepts of service-oriented architecture
without prescribing its implementation. Most notable
implementations are Web Services Technology [x] and
Jini Technology [3]. In this paper, we concentrate on Jini
Technology, as we believe it is more suited to and offers
more benefits to the online, remote engineering and virtual
instrumentation community.

Jini Technology Overview
 Jini technology is a service-oriented technology based

on the Java platform. Its main features are dynamic
networking and mobile code. A Jini system consists of
services, clients and at least one lookup service that is a
mediator connecting clients to services. Jini services are
described by Java interfaces creating a contract between
the client and service. Service implementations
dynamically join the service network by discovering one
or more lookup services (registrars) and then registering
with them by uploading a Java object that represents the
service to the client, as shown in Fig. 1. Clients wishing to
use services also discover lookup services using the well-
known interface of the required service. The result of the
successful lookup operation is the downloading of the
service proxy objects from the lookup service to the client,
where it will automatically create an access point to the
service.

The use of the lookup service makes the system
extendable and evolvable in run-time by allowing the
addition and removal of services without the need of
worrying about hard-wired service addresses. Also, only
correctly operating services can be discovered by clients
as non-responding services are automatically deleted from
the lookup service after a predefined timeout period. This
is referred to as the Leasing mechanism that underlies the
automatic resource management and robustness of a Jini
system.

The use of the proxy object has many benefits. Since
the proxy is downloaded from the service, no prior client-
side installation is necessary. This provides the simplicity
of use similar to applets and ensures that the most recent
version is used, thus removing the need of manually
upgrading software. The proxy object is a Java object that
client programs can readily use, hence services can be
easily integrated into other programs and accessed
programmatically without human intervention. Jini also
provides facilities for event generation to enable services
to notify their clients about changes in their state.
Transaction support and loosely coupled object-based
communication are also supported.

The proxy can carry additional information about the
service in form of Java attribute objects. These can
describe e.g. the physical location, developer, owner, etc
of the service. Attributes enable clients to locate services
based on information other than functional properties.

Attributes can be used to attach a user interface object
to the proxy as well. If a user interface is required for
accessing the service, the Jini ServiceUI mechanism [6]
enables services to attach multiple user interface objects to

iJOE International Journal of Online Engineering - www.i-joe.org 2

Remote Engineering and Virtual Instrumentation Using Jini Technology

the proxy (various graphical, sound, etc interfaces). The
interface is instantiated on-demand based on the
requirements of the user.

The final advantage of the proxy concept is that it hides
the client-service communication protocol from the client
as it is a private implementation detail between the proxy
and the service. This allows a service implementer to use
the best suited and most efficient protocol for the task or
choose any suitable implementation for the service
backend.

Figure 2. The Jini service browser after discovering the

DataSource service

C.

1)

2)

D.

IV.

A.

Jini on Limited Resource Devices
The abovementioned scenario assumed participants

capable of running the Java Standard Edition version 1.4
virtual machine. In the instrumentation and hardware
world, there are many devices that can only run earlier or
more limited virtual machines, or cannot run Java at all.
Jini can be used in these circumstances as well, although
in slightly different ways as we elaborate next.

Limited services
The responsibility of a Jini service is to register a proxy

object with lookup services and respond to requests
received from the proxy. Systems that can run Java 1.3
can participate in a Jini 1.2 system. This is similar to the
current Jini 2.1 version but with limited support for
security. For this reason, this option is only recommended
for closed systems. One such example use of Jini is the
security management system of the Eiffel Tower [7].

Services that run 1.0-1.2 versions of Java can use the
Jini Surrogate Architecture [8] or the JMatos framework
[9] to participate in the service community. The Surrogate
Architecture defines a standard operation mechanism in
which a limited service can delegate its Jini-related
responsibilities to a Surrogate Host – this will represent
the service in the Jini world – and perform its service-
related tasks without Jini. The service can use any suitable
interconnect protocol to connect to the Surrogate Host.

The JMatos framework unifies the lookup service and
the particular service in question. The result is a service
that can be discovered via its “built-in” lookup service.
This removes the need for registration, lease management,
etc. The service only has to export the proxy object, which
can even be done without Java as the JMatos C version
exemplifies this.

If a third party provides a proxy for a given service, it is
also possible to implement the service in any
programming language as the proxy can connect to the
service via any suitable protocol, e.g. raw TCP/IP socket.

Limited clients
Clients are more reliant on Java as they need to be able

to download and instantiate service proxy objects. Those
devices that cannot run Java 1.4 can either use Jini 1.2
(using the Java 1.3 VM) or use the previously mentioned
Surrogate Architecture. In the latter case, a purpose-
written client adapter is required that connects the client
user interface and the proxy object running in the
Surrogate Host computer.

An illustration of a Jini 1.2 client is shown in Fig. 5,
while a Surrogate Architecture based client is shown in
Fig. 6. Both examples are described later in the paper in
more detail.

Client-side Service Execution
A very important property of Jini Technology is its

ability to move executable objects around the network.
This property can be exploited in creating virtual
instrumentation applications. Since it is the developer’s
responsibility to decide which part of the system is
executed in the proxy object and which part in the remote
service implementation, it is possible to create services
that execute entirely in the proxy within the client
computer. This is equivalent to downloading and
installing a virtual laboratory software. In this case,
however, the installation happens at run-time and
automatically, and the software stays at the client only
until the laboratory experiment is performed. This is an
ideal framework for creating e.g. educational laboratory
exercises.

DEMONSTRATION SERVICES AND APPLICATIONS
The main focus of the work of our project team is to

look at how Jini Technology could be used for creating
reliable, dynamic service-oriented Grid systems. Over the
years we have developed the JGrid framework [10] as an
experimental device to test our concepts. Although the
main emphasis of our work was on computational grids;
as part of this effort, we have also looked at how remote
instruments and devices could be virtualized and
represented as services in a Jini service federation. In the
rest of the paper we describe our experience and ongoing
work in this area using representative case study
application we have developed and explain how they
relate to remote engineering and virtual instrumentation.

Real-time Data Display – the DataSource Service
Many devices (measurement instruments, sensors)

provide continuous real-time data that must be logged,
displayed, stored or processed at a different location. To
demonstrate this functionality, we have designed a generic
DataSource service. It allows clients to continuously read
data from services. The actual service is described with a
very simple interface. It provides only one method, to
retrieve an InputStream object that represents the channel
that will carry data to the client.

public interface DataSourceService {
 InputStream getDataStream() throws

 RemoteException;
}

iJOE International Journal of Online Engineering - www.i-joe.org 3

Remote Engineering and Virtual Instrumentation Using Jini Technology

Video stream

Processed video stream

Client

Grid Compute
Service

Figure 2 shows a Jini service browser developed for the
JGrid project that already discovered a DataSource
service; the service appears in the services list and its
visual icon is also displayed. Also shown in the bottom-
left window of the browser the user interface
(UIDescriptor) and other descriptive attributes attached to
the service. Double-clicking the service icon opens up the
service interface as shown in right-hand frame of the
window in Figure 3.

Should a programmatic client need to use the service,
the returned InputStream object is used to read
timestamped service data represented as TimeValuePair
objects:

public interface TimeValuePair {
 public long getTime();
 public double getValue();
}

Time stamping is necessary to carry the actual
measurement time with the data instead of relying on the
client clock.

Figure 4. The remote motion detection system that demonstrates
live video stream processing at a remote location.

Figure 3. The on-demand graphical user interface of the

DataSource service displaying real-time
data received from the service.

Figure 5.

B.

C.

The measurement probe of the Jini Weather Service and
its client user interface running on a wireless

LAN enabled PDA device.

Remote Media Stream Processing
Many applications require support for media streaming.

Security surveillance systems, telescopes, microscopes
can transmit live video stream for remote viewing and
processing. Acoustic sensors may need to transmit live
audio data. To illustrate these types of applications, we
have developed a remote motion detection system that
demonstrates the integration of a live video data source
into a grid application for real-time (interactive)
processing task. In our experiment, whose configuration
setup is shown in Figure 4, a client (located in Hungary)
transmitted captured live video stream to a motion
detection process running at a remote grid node (located in
Australia). The processed, motion detected stream was
then transmitted back to the client for display purposes.
The experiment successfully demonstrated the capability
of a wide-area grid system to support real-time processing
of a continuous data stream. Naturally, the data stream
could be replaced by other types of data, e.g. audio, binary
measurement data, etc. With little modification, it could
support e.g. viewing remote microscope images.

Another example application demonstrating media
processing is a remote dictating machine, in which a client
program was used to capture audio data from a
microphone and transmit it as a live audio stream to a

remote dictating machine service. The audio stream was
converted and stored on the remote server for later
playback and processing purposes. This application
demonstrates that acoustic sensors, devices can be
integrated into complex applications in a simple manner.

Sensor Integration – the Jini Weather Service
The previous examples did not include real hardware

devices at the service side. A Weather Service application
was developed to demonstrate how hardware can be
described and represented as a software service, as well as
to provide an example for interfacing between the various
system modules.

The sensor used in our example is a 1-Wire Weather
Station [11] that measures temperature, wind speed and
direction. The measurement probe is connected to a TINI
[12] evaluation board that runs a small Java program
reading the measurements and transferring it to the Jini
Weather Service. The Weather Service runs on a separate
host as a full Jini service. In the current implementation
the TINI program connects automatically to the service,
which will register in the Lookup Service after receiving
the first measurement from the hardware. Note that it is
possible for the service to detect the TINI module or use
the Surrogate Architecture to place the service in the TINI
device. Jini gives great freedom for the developer in
designing the final system architecture.

The three measured values are represented by three
separate interfaces. Temperature is represented as a
TemperatureSensor service, wind speed is
WindSpeedSensor, while wind direction is given by the

iJOE International Journal of Online Engineering - www.i-joe.org 4

Remote Engineering and Virtual Instrumentation Using Jini Technology

Figure 6.

D.

E.

The Jini service browser after discovering the
DataSource service

WindDirectionSensor service. The corresponding service
interfaces are shown below.

public interface TemperatureSensor {
 public DoubleValuePair getTemperature()
 throws ServiceCommunicationException,

 SensorException;
 public double getMinTemperature()
 throws ServiceCommunicationException,

 SensorException;
 public double getMaxTemperature()
 throws ServiceCommunicationException,

 SensorException;
}

public interface WindSpeedSensor {
 public DoubleValuePair getWindSpeed()
 throws ServiceCommunicationException,

 SensorException;
}

public interface WindDirectionSensor {
 public static final String N = "N";
 public static final String NNE = "NNE";
 ...
 public static final String WNW = "WNW";
 public static final String NW = "NW";
 public static final String NNW = "NNW";

 public StringValuePair getWindDirection()
 throws ServiceCommunicationException,

 SensorException;
 public double getWindDirectionAngle()
 throws ServiceCommunicationException,

 SensorException;
}

The service proxy implements all three interfaces thus

represents the complete weather station hardware as one
entity. It is also possible to create separate proxies for
each interface. In this case, a client interested only in
temperature would not need to download wind
measurement related program code.

The service also contains its own ServiceUI
specification-based graphical user interface. Figure 5
shows the interface instantiated on a PDA after
discovering the weather station service. The client is in
continuous connection with the service and refreshes the
screen at a predefined frequency.

The developed application could be used in larger
sensor networks, e.g. in meteorological monitoring
networks to collect real-time measurement data and,
optionally, send it to further services for further
processing. The dynamic networking and discovery
features of Jini could be used to deal with errors and
partial failure.

Access from mobile phones
The most complicated development scenario for a Jini

environment is having clients that cannot run full Jini
client programs. As a case study we have developed a
stock value monitoring system that can be easily
generalized for accessing any service providing real-time
or near real-time data. The client runs a specific Java

MIDlet that connects to a Surrogate Host executing the
Jini client that can access the Jini Stock Service.

Figure 6 shows two screenshots of the client program
(here running in an emulator). The left screen allows the
user to select which stocks he or she is interested in, while
the right screen shows the graphical display of the
retrieved stock values. It is easy to see how this
framework can support the monitoring of other types of
services via a mobile phone.

Remote Control to Services
All case studies mentioned so far read values from

services or transferred data to them but did not control
services. Remote control facilities are equally important in
remote engineering applications. We have deliberately left
this requirement to the end as it naturally emerges from
the service-oriented nature of the system. Each method on
a service’s interface can be viewed as a remote control
command to the service. The role of the developer is to
develop an interface that correctly and effectively
describes the remote control capabilities of the remote
device. As an example, we show a hypothetical basic
microscope interface below. This allows a client to
position the microscope lens above the specimen, set
magnification and retrieve the live video stream. The
complete interface depends on the capabilities of the real
microscope in question.

public interface Microscope {
 public RTPStream getImageStream()

 throws RemoteException;
 public void moveTrayLeft()
 throws RemoteException;
 public void moveTrayRight()
 throws RemoteException;
 public void moveTrayUp()
 throws RemoteException;
 public void moveTrayDown()
 throws RemoteException;
 public void setMagnification(double value)

 throws RemoteException;
}

iJOE International Journal of Online Engineering - www.i-joe.org 5

Remote Engineering and Virtual Instrumentation Using Jini Technology

CONCLUSIONS REFERENCES V.
Online and remote engineering, virtual instrumentation

are becoming increasingly important fields in science and
engineering. The increasing cost of high-tech instruments
and the collaboration needs of small and medium
enterprises with academia lead to systems that allow
effective access to and share of instruments.

[1] iPath - Open Source Telemedicine Platform:
http://ipath.sourceforge.net/

[2] I. Ahmed, H. Wong and V. Kapila, “Internet-Based Remote
Control using a Microcontroller and an Embedded Ethernet
Board”,
http://www.parallax.com/dl/docs/article/EEBnBS2Paper.pdf

[3] J. Waldo, K. Arnold, The Jini Specifications. Jini Technology
Services, Addison-Wesley, Reading, MA, USA, second edition,
2001.

In this paper we have argued that traditional web
technology is not suitable for achieving these goals. A
service-oriented approach is required that represent remote
applications and devices as services.

[4] P. Allen, Service Orientation, Cambridge University Press, 2006.
[5] The World Wide Web Consortium, Web Services Activity,

http://www.w3.org/2002/ws/ Jini is a very elegant and powerful technology for
creating dynamic service-oriented systems. We believe
that its object-oriented programming model, support for
fault-tolerance, ability to work with and without human
intervention, its architectural flexibility offers many
advantages in virtual instrumentation and remote
engineering.

[6] B. Venners, “The ServiceUI API Specification”,
http://www.artima.com/jini/serviceui/Spec.html

[7] Nedap Security Management, Nedap AEOS, http://www.nedap-
aeos.com/en/solutions/

[8] Jini Technology Surrogate Architecture Specification,
surrogate.jini.org/sa.pdf

[9] PsiNaptic Corp., JMatos, A Jini technology for embedded
processors, http://www.psinaptic.com We demonstrated using a number of case study

applications that it can be used in various application
domains for reading, processing and displaying live data
of various sorts, controlling remote systems or creating
virtual laboratory programs usable at and on-demand basis
creating a rich user experience superior to currently
available alternative technologies.

[10] The JGrid project: http://pds.irt.vein.hu/jgrid
[11] AAG Electronica. LLC, 1-Wire Weather Instrument Kit,

http://www.aagelectronica.com/aag/index.html
[12] Dallas Semiconductor, TINI platform, http://www.maxim-

ic.com/TINIplatform.cfm

AUTHORS In the near future, we are planning to design and
develop new types of services (including e.g. actuators) to
demonstrate further application possibilities, and in the
long term we are hoping to use these ideas and expertise
for solving real remote engineering and virtual
instrumentation problems.

Z. Juhasz and his co-authors are with the Department
of Information Technology, Pannon University,
Veszprem, 8200, Hungary (e-mail: juhasz@irt.vein.hu).

Manuscript received June 14, 2006. This work was supported by the
Hungarian National Office for Research and Technology under Grant
GVOP-3.1.1-2004-05-0035/3.0 and GVOP-3.1.1-2004-05-0266/3.0

iJOE International Journal of Online Engineering - www.i-joe.org 6

	I. Introduction
	II. New Requirements
	III. Jini Technology as a tool for virtual instrumentation
	A. Service Orientation
	B. Jini Technology Overview
	C. Jini on Limited Resource Devices
	1) Limited services
	2) Limited clients

	D. Client-side Service Execution

	IV. Demonstration services and applications
	A. Real-time Data Display – the DataSource Service
	Remote Media Stream Processing
	C. Sensor Integration – the Jini Weather Service
	D. Access from mobile phones
	Remote Control to Services

	V. Conclusions
	References
	Authors

