
Cognitive-Compatible Human-Machine Interfaces by Combining Ecological Interface Design and Object-Oriented
Programming

iJOE International Journal of Online Engineering - www.i-joe.org 1

Abstract—Most of human-machine interfaces (HMIs) for

process control disseminated in the industry are mostly
technique-oriented and don't reflect operators' needs. This
approach tries to compensate this lack through offering user-
oriented interfaces characterized as cognitive-compatible. If
HMIs have to be cognitive-compatible, then designers should
take various cognitive objects such as reasoning, memory and
knowledge into account. The ecological interface design (EID)
offers a well-founded methodology for designing HMIs because,
on the one hand, the internal physical behavior of the technical
system will be exposed through the interface; and, on the other, a
harmonic and an effective interaction between operators and
machines will be achieved. This kind of interaction is to see as the
positive result of utilizing the physical and functional
characteristics of the technical system as design inputs.
Additionally, EID is oriented to the three human behavior levels:
the skill-, rule- and knowledge-based levels known as the human-
information processing. In order to obtain cognitive-compatible
HMIs constructed of EID objects, a suitable means like the
object-oriented programming (OOP) in combination with a
powerful development tool such as the Visual Studio .NET
Integrated Development Environment (IDE) is needed. As OOP
is based on nouns and reflects how the real world is perceived, it
disburdens developers in translating their design ideas and
models into computer applications.

Index Terms—Cognitive compatibility, human-machine
interfaces (HMIs), ecological interface design (EID), object-
oriented programming (OOP), C# and Visual Studio .NET

I. INTRODUCTION
UE to the steadily growing requirements for product
quality and economic viability, technical systems

disseminated in the industry become complicated through
strongly coupled and interconnected function modules and
extensive automation equipments. The construction and the
structure of technical systems, thereby, will be increasingly
complicated. This complexity, which is the result of extensive
strategies for process control and supervisory tasks, raises the
cognitive stress of the human operators of these systems. The

more adaptation of the graphical user-display mediating
between the human operators and the technical system to the
cognitive structures of the operators, the less cognitive stress
and physical exertion will be invested by operators during
their control and supervision tasks.

A. Conventional and User-Centered HMIs
Most of user-displays spreaded out in the industry are

oriented towards topological or physical process views which
mainly represent information about physical components and
modules of technical systems [1]. This kind of user-displays
guarantees an effective human-computer interaction only if
regular system behaviors and situations are present, so they
can easily be identified and analyzed by the human operator.
If unexpected process situations and events occur, these user-
displays will fail in representing and mediating the real system
state that eventually leads to user failures. However, there are
four critical points where user failures can occur during the
interaction with an interactive software system [2]: users can
form an inadequate goal; or they might not find the correct
interface object because of an incomprehensible label or icon;
or they may not know how to specify or execute a desired
action; and may receive inappropriate or misleading feedback.

If human factors are considered in the design of both the
management system and the corresponding user-interface, a
user-oriented HMI is resulted, which is compatible to the
cognitive structures of the operators. Such interfaces support
operators in their control and supervisory tasks and take into
account various human factors such cognitive elements, e.g.
reasoning, memory and knowledge [3]. This contribution
focuses not only on the part of the process-control
management system including the different software
structures, but on other aspects related to the management
system such as user-centered graphics controls as well. These
software modules interact with corresponding ergonomic-
graphical structures displayed on the user-interface, e.g. EID
graphical objects [4] and topological views [1].

Cognitive-Compatible Human-Machine
Interfaces by Combining Ecological Interface

Design and Object-Oriented Programming
Salaheddin Odeh

Department of Computer Engineering, Faculty of Engineering, Al-Quds University, Abu Dies,
Jerusalem, Palestine

D

Cognitive-Compatible Human-Machine Interfaces by Combining Ecological Interface Design and Object-Oriented
Programming

iJOE International Journal of Online Engineering - www.i-joe.org 2

B. Case Study: A Distillation Column as a Complex
Technical System

The technical system used here to test the design
methodology and its appropriateness for complex technical
systems exists in the form of a process simulator of a
distillation column. The distillation column consists of
different subsystems (parts) such as a column for separating a
mixture, a mixture flow part, a light component and a heavy
component section. This process separates an ideal mixture;
and it contains several technical components such as a
column, a reboiler at the bottom of the column, a condenser, a
reflux drum, pumps and several control units managed by
operators. Fig. 1 presents a graphical user-interface with
physical presentation of the distillation column.

C. C# and the Visual Studio .NET Integrated Development
Environment (IDE)

The system was programmed by means of the programming
language 'C#' within the Microsoft development environment
ASP .NET [5]. C# developed by Microsoft represents an event
driven, object-oriented and visual programming language; and
is incorporated into .NET platform characterized through its
ability to allow the distribution of web-based applications on
different devices and desktop computers; as well as
communicating with different computer languages. To clarify
the results achieved in this modest contribution, we strengthen
our discussion using some concrete C# source code samples
of the developed application. This will aid the reader with

building an association between the developed methodology
and its implementation. Since C# is based on C, C++ and Java
as the most used and well-known programming languages
worldwide, it will not be a hindrance for most readers in
pursuing the C# code samples.

II. COGNITIVE-ERGONOMICAL CRITERIA

A. Cognitive Elements
When designing HMIs ergonomically, it must be

differentiated between the sciences of perception- and
cognition-ergonomics [6]. In particular, the cognition
ergonomics is related to the cognitive elements: reasoning,
memory and knowledge [3]. The cognition ergonomics
comprehends a variety of design aspects such as the human
memory storage, attention allocation, abstraction level, and
information form including serial or parallel presentation;
whereas the perception ergonomics concerns about designing
aspects such as color, shape form, dimension and allocation;
and last, but not least, highlighting. It is to note that the
software-technical implementation of elements obtained by
the perception- and cognition-ergonomics is known as the
software- and ergonomics structures including both graphical
objects placed later on the user-display and its corresponding
data structures located in the management system.

Fig. 1. Graphical user-display with physical presentation of the distillation column

Cognitive-Compatible Human-Machine Interfaces by Combining Ecological Interface Design and Object-Oriented
Programming

iJOE International Journal of Online Engineering - www.i-joe.org 3

B. Cognitive Compatibility
The cognitive compatibility plays a central role for

describing an interactive computer system; however it is
mainly focused on the internal model of the human using that
system. Users of interactive computer system conceive the
system in the form of a 'natural' model, which can serve also
as a mental model [7]. An internal model includes the user's
imaginations of the HMI regarding performance and the
ability of processing of task objects.

Streitz [8] defines the cognitive compatibility as a general
property of a HMI. A HMI is ensured to be cognitive-
compatible if the number of errors occurred is minimized
while interacting with the whole system, the interface
demands short learn time, the tasks execution will not be
hindered in occasional situations; and the interface allows the
user to react quickly on signals. In our considerations,
compatibility is related to the human information processing
supported by the cognitive structures; and the HMI consisting
of software- and ergonomics structures. A cognitive-
compatible HMI is accomplished if the software- and
ergonomics structures of the HMI match the cognitive
elements of the users, or are equivalent to them [9].

III. SOFTWARE DESIGN AND SYSTEM ARCHITECTURE

A. Iterative Design Approach
The implementation of the system has followed the

continual refinement design process [10], in which the
development procedure was broken into two parts: a
preliminary and a refinement. In the former, the requirements
are verified and reviewed with close cooperation with the end
users, i.e. the operators. Significant changes are often made to
the requirements during this phase; whereas in the latter, the
implemented system can be revised and tested iteratively. In
order to obtain better understanding of the final system, a
modest prototype has been developed. The prototype consists
of a graphical user-interface, a simple management system for
receiving the process data acquired by the technical dynamic
system. The received data serves as inputs to the processing
components located in the management system for calculating
animation values for the graphical user-interface. The
processing procedure uses a database including engineers'
know-how and operators' experience about the technical
system. Later, it will be shown that for enabling software
reusability and for being able to handle process objects of
different classes in a class hierarchy generically as objects of a
common base class require several object-oriented
programming (OOP) techniques such as inheritance and
polymorphism. Furthermore, the system is provided with
exception-handling to ensure robust and fault-tolerant
programs.

B. The Unified Modeling Language (UML)
UML (the unified modeling language), which can be seen

as a diagramming notation or a visual language [11], was used
for modeling the software architecture and describing the

Fig. 2. A block diagram of the cognitive-compatible human-machine interface

Cognitive-Compatible Human-Machine Interfaces by Combining Ecological Interface Design and Object-Oriented
Programming

iJOE International Journal of Online Engineering - www.i-joe.org 4

development process. UML is a notation consisting of a set of
diagrams with different elements that may be facilitated to
describe the design of a software system [12]. It's not only a
process or a method, but it comprises both a notation and a
process. Although the UML offers several useful
diagramming notations that can be very helpful during design
software systems, this contribution utilizes only the class and
object diagrams for modeling the objects of our interactive
cognitive-compatible HMI since the design process itself will
not be considered.

C. Architecture and Features of the Cognitive-Compatible
HMI

In the following, we are is going to discuss the software
aspects of both the management system and the graphics
controls placed on the user-display, as they act on each other
harmonically; and thus, can't be considered separately. The
management system of the cognitive-compatible HMI
includes different software- and ergonomics structures in the
form of various classes for the arrangement of real process
variables, graphics controls and virtual process variables. The
real process variable classes are responsible for either reading
or writing process values form or to the technical system;
whereas, the virtual process variable classes that are mainly
used for e-learning purposes, exchange information with a
process simulator or receive recorded process situations by a
playback component.

The graphics controls embrace and manage the views
eventually visualized on the user-display. However, every
metaphoric view [7] of a physical plant element or component
managed by a graphics control class must have a
corresponding real and virtual variable class in the
management system. Properties of the user-display views
reflecting characteristics of the technical system such as alerts,
process variable units etc, are stored in a database which can
be easily edited by means of a dialog box. Without taking the
graphical user-display into account, the software part of the
cognitive-compatible HMI, illustrated in Fig. 2, can be
divided into two sections, one responsible for both the
graphics management and obtaining values used to animate
graphics on the user-display; and another for conducting the e-
learning data.

Before discussing the software architecture of the
cognitive-compatible HMI, it will be of great significance if
we clarify some term definitions related to HMIs. This will
not only simplify distinguishing between the terms used in this
contribution, but it will mediate the concept as well. The
following discussion leans on the structure shown in Fig. 2.
As shown, the architecture of the cognitive-compatible HMI
includes distinctive domains: collaborative human
environment [2], a graphical user-interface, an e-learning tool
discussed later, a management system and the technical
system itself. Every domain is modeled by various links and
components with autonomous functionalities.

In the collaborative environment, it is intended to integrate
technology and user-centered aspects by taking
interdisciplinary approach. The interaction among different
types of users such as operators, engineers and trainers, their
characteristics and how this interaction can be embedded
together aimed at training, supporting and enhancing
collaboration is a key part of this research and further
investigations. Trainers, engineers and experienced operators
collaborate also in building and maintaining the e-learning
tool, which can be used for training novices and refreshing
knowledge of experienced operators.

Operators realize the graphical display, as part of the user-
interface, visually, audibly or through other sensing channels.
In addition to conventional process interaction elements, it
includes other graphical modules such as menus, windows,
dialog boxes and form fillins. However, technical systems
could not be viewed as pure dynamic processes, as they might
also include the automation equipments and could be provided
with advanced supporting components like expert systems
[13]. For simplicity, we will be using the term plant instead of
the technical system in the following.

D. Multithreaded HMI
The different program components within these parts

exchange their data via shared memory regions. For achieving
more processor utilization and increasing the perceived speed
of the whole application, the different program components
have been arranged as multithreads [14]. The management
system, which can be seen as the kernel of the whole
cognitive-compatible HMI, consists of a primary and a
secondary part. The former one includes the plant coupler
thread, graphics control thread, a plant property thread, a plant
property database, and various shared memories and a dialog
box, which enables usability engineers to modify the plant
property database. If this database is modified, the plant
property thread writes the data in the shared graphics control
container. The secondary part, the e-learning system,
represents an advanced feature of the interactive process
control system and includes several software components such
as a plant simulator thread, a recording/playing back thread, a
database for recorded scenarios, a shared memory for
exchanging virtual plant values, and a dialog box for
controlling the e-learning sessions by the trainer.

A multithreaded HMI leads to an efficient performance in
execution of the applications running on the same system.
This is achieved due to the fact that one thread can compute
and present the received batch of data while another is reading
the next batch from the controlled technical system, process
simulator or recorded situations. Another benefit acquired is
the achievement of modular program structure since the
arrangement of programs in threads leads to simplicity in
designing and implementing complex programs characterized
not only by a variety of activities, but with several sources and
destinations of data [15]. .NET framework class library makes
concurrency primitives available to the application

Cognitive-Compatible Human-Machine Interfaces by Combining Ecological Interface Design and Object-Oriented
Programming

iJOE International Journal of Online Engineering - www.i-joe.org 5

programmers, i.e. the programmer specifies the program
portions that will be containing "threads of execution"; and
then these threads proceed together concurrently.

Apart from the plant property thread, all other threads are
managed asynchronously and treated in an alternating
producer/consumer relationship. For instance, the plant
coupler and graphics control threads are scheduled by a timer
whose clock interval depends on the sample rate of the
controlled plant. Interrupts inform the plant property thread as
soon as the database for plant properties has been modified.
The changed data will be written into the shared memory of
the graphics control container, which will eventually be
viewed on the graphical user-display. Visual Studio .NET
(C#) enables programmers to create applications with
producer/consumer relationship using the namespace
System.Thread. Several methods and static classes that are
available in this namespace can be used to schedule
multithreaded applications. This enables mutual exclusion of
concurrent threads such as Thread.Sleep(), Thread.Pulse(),
Monitor.Enter(), Monitor.Wait() etc. Relational database
programming is fully supported in .NET through Microsoft
ActiveX Data Objects (ADO), ADO .NET, which disburdens
programmer by their task of connecting, interacting and
manipulating database tasks [16]. In the following, we are
going to discuss some aspects of the interface design
methodology, EID, adopted in this approach; and whose
merger with OOP eventually conducts us to cognitive-
compatible HMIs.

IV. AN OVERVIEW OF DESIGN PHILOSOPHIES OF HMIS
On the user-display, various graphics controls, both input

and output elements, are ordered and connected together
according to a specific presentation technique, e.g. topological
views or ecological interface design, so that information over
the technical system can be mediated transparently and
efficiently. As a result, several graphics controls different in
their appearance and complexity are needed. Sequentially, this
is reflected on the design and programming effort made. Later
it will be shown that using the object-oriented programming
approach will not only minimize the programming difficulties
and efforts, but it will also increase the efficiency of the final
result.

As mentioned, several interaction problems between
operators and conventional HMIs might occur, particularly in
occasional or abnormal system situations and while repairing
malfunctions. In order to bypass these problems and to
minimize human failures during the task of controlling
complex technical systems, other design concepts and
methods of user-interfaces have to be considered. Lind [17]
emphasized that the quality of the human-computer interaction
can be improved if system goals, functional characteristics and
means are integrated and embedded in the user-interface. Such
kind of user-interfaces that visualize the above mentioned
information, are designated as functional-oriented.
Unfortunately, user-interfaces designed using this method are

very abstract, and therefore, not suitable for our purposes of
the user-centered design.

A well founded alternative for the user-interface design
method is the Ecological Interface Design (EID) developed by
Rasmussen and Vicente [18]. This method serves as a basis
for the design of graphical user-interfaces and should improve
the interaction between human operators and technical
systems due to the fact that the internal physical behavior of
the technical system will be revealed through the user-
interface [19]. In addition, a harmonic and an effective
interaction between operators and machines will be obtained
as a result of taking the physical and functional characteristics
of the technical system into account. Furthermore, the human
information processing represented by means of the three
human behavior levels, the skill-, rule- and knowledge-based
levels will be modeled in the interface as it will be shown in
the next section [20]. The design of the software objects both
on the graphical user-display and likewise within the
information management system is oriented to the idea of
decoupling of mass/energy balances within the system.

This contribution discusses some fundamentals of EID both
theoretically and practically, and the design steps needed to
apply EID to build a user-interface for the distillation column.
At the end, we will conclude with a discussion highlighting
the suitability of EID for designing graphical user-interfaces
for complex systems characterized by having a huge number
of process variables like the distillation column which consists
of more than 30 process variables. In future work, it is
intended to determine the differences between the cognitive-
compatible HMI based on EID; and conventional
presentations such as the topological presentations by means
of usability engineering tests [21]. However, an evaluation of
the effect of EID on designing graphical user-interfaces
demonstrated on a noncomplex technical system named
DURESS (DUal REservoir System Simulation) is investigated
[19], [22].

V. HUMAN INFORMATION PROCESSING
As previously mentioned, the ecological interface design in

addition to the functionality of the technical systems, takes
into consideration the human information processing, which is
described by means of different models: skill-, rule- and
knowledge-based framework as well as an abstraction
hierarchy as a structure of work domain semantics and as a
reflection of the mental model of operators. Moreover, it
implies a decision ladder, a way to describe human decision
making. All these models were developed by Rasmussen [20],
[23] and [24]. The decision ladder models the human decision
making, especially during error situations and describes
mainly the decision making in familiar and unfamiliar
situations. The ecological interface design is founded on the
two other models explicitly. In order to understand the
interaction between humans and information technology
systems and conceive the idea and meaning behind the

Cognitive-Compatible Human-Machine Interfaces by Combining Ecological Interface Design and Object-Oriented
Programming

iJOE International Journal of Online Engineering - www.i-joe.org 6

ecological interface design, we shall briefly discuss these two
models [25].

A. Skill-, Rule- and Knowledge-Based Behavior
Fig. 3 shows a schematic representation of the cognitive

human behavior: skill-, rule- and knowledge-based framework
while interacting with interactive technical systems. This
model is formalized by means of analysis of operators'
behavior in error situations during their supervision and
control of technical systems. Each level, which describes a
different behavior type, is stimulated by different types of
information: signals, signs and symbols. The skill-based
behavior occurs when human operators interact
unconscientiously with technical system, and therefore, this
interaction is called an automated form of the human
information processing. If operators behave according to the

rule-based level, their interaction is not only dominated with
rules of the form "if-then", but known behavior patterns as
well; whereas the knowledge-based behavior occurs only in
new situations.

B. Part-Whole/Means-End Space
The part-whole/means-end space or abstraction hierarchy,

illustrated in Fig. 4, contains a framework of work domain
semantics and reflects the mental model of operators
regarding understanding and conceiving the operations for
controlling and supervisioning of the technical system. The
abstraction hierarchy space consists of two dimensions: part-
whole of the technical system and means-end levels for the
functionality of the technical system, indicating distinctive
decomposition degrees.

The means-end/part-whole space serves as guideline for
designers for creating user-interfaces. At a particular level
within the means-end levels dimension, operators can specify

WHAT should be done and, at higher level, WHAY it needs
to be done. The corresponding part-whole dimension clarifies
HOW the activities must be executed and serves as navigation
mean within the abstraction hierarchy. Due to these facts, the
user-interface with its graphical interface should give
operators the opportunity to navigate themselves within the
different levels. The part-whole dimension can be graphically
implemented by means of zooming technique, which provides
distinctive detailed information by a window hierarchy.
Window hierarchies in graphical user-interfaces (GUIs)
guarantee the visual momentum between the different process-
views [26].

Fig. 4. Abstraction hierarchy [24]

Fig. 3. Schematic representation of the cognitive human behavior: Skill-, Rule- and Knowledge-based framework
[20]

Cognitive-Compatible Human-Machine Interfaces by Combining Ecological Interface Design and Object-Oriented
Programming

iJOE International Journal of Online Engineering - www.i-joe.org 7

VI. ECOLOGICAL INTERFACE DESIGN

A. EID Modeling of HMIs
In the previous section, we have shown how the abstraction

hierarchy directs user-interface designers in understanding and
analyzing technical plants, so that they have sufficient
information for applying EID to design cognitive-compatible
HMIs. This section will cover the three EID modeling
diagrams: functional purposes and goals, abstract functions
and generalized functions, although there are several models
achieved by the levels of the abstraction hierarchy, part-
whole/means-end space.

Fig. 5. illustrates functional purposes and goals of the

distillation columns regarding various part-whole
perspectives, subsystem and individual components. Every
modeled part-whole element is assigned a goal: main, sub- or
individual description. The links have two meanings: the first
indicates the part-whole links; whereas the other means-end.

Another modeling result of the distillation column acquired
by the means-end/part-whole space is the abstract functions.
Fig. 6. shows the abstraction function level exposing the
system dynamic from the mass- and energy viewpoint. The
graphics controls used to describe the internal system behavior
are energy/mass sources, sinks and storage. The links between
these objects are flows of mass or energy. It should be noted
that the structure in Fig. 6. is equivalent to the topological
view in Fig. 1.

Fig. 5. Functional purposes and goals of the distillation columns on the part-whole dimension.

Fig. 6. Simplified abstract functions representing mass- and energy relations.

Cognitive-Compatible Human-Machine Interfaces by Combining Ecological Interface Design and Object-Oriented
Programming

iJOE International Journal of Online Engineering - www.i-joe.org 8

The two models mentioned above offer coarse information
about the distillation column and, therefore, they can be
utilized in two ways. Firstly, they are beneficial for designers

in analyzing and modeling the plant since they can be refined
to obtain more detailed decomposition. Secondly, such models
can be directly flowed in the graphical design of the user
display, and thus, they serve as zooming tools for other
process views provided with detailed information. If the
designer begins to construct a cognitive-compatible user-
interface based on EID, the generalized functions on the
component level will be very helpful. These models contain
more refined information of the technical system, so that that
the relations between abstract objects such as mass storage,
energy storage, transport elements for energy or mass, and
links for mass and energy, and concrete plant objects such as
pumps, heat exchangers, reservoir etc. can be established.
Thus, this model determines which technical parts of the
technical system are energy/mass coupled, and where to place
their EID-based graphical presentation on the user-display.

B. Advanced Graphical EID-Based Graphics Controls
When user-interface designers adopt the ecological

interface design, they can follow these guidelines to manage
their design procedure: In the first place, they should build a
means-end/part-whole space containing different abstraction
models as explained previously. Secondly, the design of
graphic elements has to be oriented to natural objects existing
in the real environment [4]. Finally, operators should be
directly allowed to manipulate the technical system without
hindrance caused by the graphical user-display. Vicente
implemented the second guideline by mapping formalized
mass/energy equations to geometrical shapes. To clarify the
idea behind mapping mathematical equations to geometrical
shapes, consider the following simple physical system shown
in Fig. 7, which describes mass/energy balance and
temperature relations. The management system of the HMI
delivers calculated data used to animate mapped shapes on the
user-display. The calculation of the animation data is carried
out according to equations illustrated in Fig. 7.

Integrating the two shapes to a new object, leads us to the
advanced graphics control shown in Fig. 8, which is not only
couples the mass/energy balances and the temperature
graphically, but it also predicts changes of process variables.
This graphics control is cognitive-compatible since it fulfills
both various requirements discussed in section II: "Cognitive-
ergonomical criteria"; and it enables a transparent process
control and supervision. Furthermore, this kind of graphical
presentation has additional advantages. Firstly, it includes the
desired reference value of the controlled process variable, e.g.
the temperature as depicted in Fig. 8. Secondly, differences
between the input-output flow of the energy or mass act as
graphical predictors for energy or mass balance states.

Fig. 5. Mapping between mathematical equations and
geometrical shapes [27]

Cognitive-Compatible Human-Machine Interfaces by Combining Ecological Interface Design and Object-Oriented
Programming

iJOE International Journal of Online Engineering - www.i-joe.org 9

VII. EID-BASED USER-INTERFACE OF THE APPLIED TECHNICAL
SYSTEM

This section discusses some aspects of the implemented
user-interface of the distillation column. During the modeling
and design of some parts of the technical system, we faced
many difficulties, so we were forced to substitute their
presentation with topological views. The conclusion clarifies
these difficulties and problems encountered. Fig. 9 shows a
cognitive-compatible presentation of the distillation column
resulting from EID. This presentation exposes the dynamic of

the thermal-hydraulic taking place in the bottom of the
chemical plant, where the balances of the energy and mass
inflows and outflows and their relations are visualized
transparently.

In addition to physical (topological) views of the plant
components such as valves, control units, heat exchangers
etc., the topological view in Fig. 9 includes symbols through
which EID views can be activated. These symbols are
identified by mass/energy coupler icons and placed at
locations where mass/energy relations are important. It's
agreed that traditional conventional graphic elements, besides
neoterical graphics controls on the user-display, have to be
integrated into user-interfaces because of their importance
both on the knowledge-based human behavior level and as
mean to influence actuators' states of the distillation column,
e.g. valves and pumps.

VIII. OBJECT-ORIENTED DESIGN APPROACH OF HMI
So far, we have discussed in depth the EID design method

adopted in this research for accomplishing cognitive-
compatible HMIs. For instance, the graphics control on the
user-display such as EID objects represents some parts of the
ergonomics structures. Operators interact directly with the
ergonomics structures using the different sensing channels. In

Fig. 6. Graphical mass/energy coupler

Fig. 7. EID-enhanced physical presentation of the technical system for achieving a cognitive-compatible

Cognitive-Compatible Human-Machine Interfaces by Combining Ecological Interface Design and Object-Oriented
Programming

iJOE International Journal of Online Engineering - www.i-joe.org 10

the following, we are going to cover the software structures.
The ergonomics and software structures complement each
other and, therefore, both must be thoroughly designed and
properly integrated.

Fig. 10 depicts some of the graphics controls ordered in an
inheritance hierarchy, which enables programmer to assign
derived class objects to the base-class reference and cast
explicitly between the different types in the hierarchy. All
these graphics controls are derived from the base class
UserControl, which is classified as an "abstract class". As
abstract classes are characterized in such away that they
cannot be instantiated, they must be only used as base classes.
Their definitions are not complete, so that derived classes
must complete define the missing chunks; and their derived
classes must override inherited abstract methods.

All graphics controls on the graphical user-display are
arranged in an array containing references to those controls.
Despite their type differences, the controls can be treated
together because they are derived form the same base class. In
OOP, this feature is called polymorphism, which makes it
possible for programs to deal with diverse related classes in a
generic manner. Furthermore, programs are easily extensible.
In this way, several methods for either updating the control
values or redrawing the graphics can be individually
developed, but equally arranged and handled.

In .NET framework, there are several preprogrammed
classes and methods visible for application developers. In the
following section, we shall highlight some of these classes and
methods related to previous discussion. One of the graphics
control created is the graphics control LevelBar, which is
derived from the .NET class UserControl. The level bar
graphics control can be used to display physical values like
temperatures or pressures. Properties values of the physical
process variable visualized by graphics control LevelBar, e.g.
the maximum and minimum magnitudes, alert boundaries
coded by the colors green, yellow and red, can be also
configured. .NET enables application programmers to create a
verity of custom controls.

Fig. 11 illustrates the encapsulated graphics control
LevelBar using the UML class view. This UML class view
consists of two regions, one for the class instance variables

and the other for the class methods. Most of these variables
are either private or protected, so that they can only be
accessed by the different class methods. .NET (C#) provides
the 'set' and 'get' accessors through which the manipulation of
the class's private instance variables can be easily controlled.
As an example from Fig. 11, the method Minimum() is only
allowed to get or set the private instance variable minimum.

An advantage of using class accessors is to ensure that
writing or reading of new value is appropriate for the data of
the private instance variable, e.g. variable interval. Using the
'set' and 'get' accessors for handling private member variables
does not only make the .NET environment attractive from
software engineering view point, but also it allows the
graphical direct manipulation of these data through a dialog
form. In the Visual Studio .NET Integrated Development
Environment (IDE), the visualized data are called properties
and, if desired, they can be viewed and changed through a
dialog form called "properties window". Fig. 12 presents a
snapshot of IDE while editing the properties of our custom
graphics control LevelBar. It is to note, that the properties'
names, e.g. Minimum and Maximum, are corresponding to the
methods Minimum() and Maximum() illustrated in Fig. 11.
The graphics control container is implemented as an array of
the base class UserControl. In order to allow array style
access to the data of classes, we can provide these classes with
indexers. If we use indexers, we can use the bracket ([])
notation, as with arrays. Consequently, graphics controls of
different types can be treated polymorphically, such as the

Fig. 8. Inheritance hierarchy of graphics controls

Fig. 9. UML class description of the graphics control
'Level Bar'

Cognitive-Compatible Human-Machine Interfaces by Combining Ecological Interface Design and Object-Oriented
Programming

iJOE International Journal of Online Engineering - www.i-joe.org 11

case with the method OnPaint() for repainting the graphics
and Update() for updating the values.

The object-oriented software design and technique of this
modest investigation in cooperation with Visual Studio .NET
Environment directs developers to either realize newer design
philosophies like the EID, or carry out other exotic user-
interface design ideas. As a result, user-interface design,
which has been created with the help of this tool, is a mixed
presentation of physical (topological) and EID-based views.
Fig. 13 illustrates the so-called graphical mass/energy coupler
forming an advanced graphics control, which integrates two
simple geometrical shapes, triangle and trapezoid, to an
advanced one. The trapezoid might be mapped to mass or
energy balances, whereas the triangular to thermal-hydraulic
equations like the physical phenomenon taking place in a
liquid-filled tank with a heater. This advanced view is
available as a graphics control of the class eidView derived
from the base class UserControl. Such complex view demands
not only comprehensive mapping from mathematical
equations into geometrical shapes, but extravagant
programming effort as well.

IX. CONVENIENT EXPANSION TOWARDS E-LEARNING
As previously discussed, an e-learning system is integrated

to the interactive process control system. E-learning has been
praised by many as very useful tool for learning, and a way to
minimize commuting and relevant problems. Despite the low
cost possibility of e-learning against traditional learning, it
might often require substantial investments in equipment.
Strategically, the usage of e-learning in combination of
process control systems will be profitable, since operators
have the opportunity to both learn new process situations and
refresh their knowledge and experience about occasional plant
states. The e-learning system implemented here is mainly
based on a multimedia simulation and recorded situations.
However, an educational simulation can be defined as a model
of some phenomenon or activity that users learn about through
interaction with the simulation [28]. This means that the
simulation definition embodies techniques such virtual
learning and case-based scenarios. The latter is equivalent to
recorded situations.

While a training session administrated by the trainer, the
operators will be instructed in repairing malfunctions, so that
this will be seen as they are controlling and super visioning
the real plant. The e-learning container whose variables are
identical to the plant variables is realized as a shared memory.
It obtains its data form either the plant simulator or previously
recorded situations. Software technically, the classes in this
container, which is implemented as an array like the graphics
control container, uses overloaded methods in order to get
their data from several sources without changing the methods'
names. Overloading in OOP enables using multiple methods
with the same name. Overloaded methods must have different
signatures, but needn't have the same return type or access
level.

X. USABILITY TESTING OF THE WHOLE SYSTEM
Despite the fact that the qualitative impressions have been

left while having experimented with EID to build cognitive-
compatible HMIs that are should be suitable to control
complex technical system, it is necessary to evaluate the
appropriateness of EID as a design methodology to satisfy the
cognitive compatibility property. This can be achieved by

Fig. 11. Advanced graphics control implemented after
the ecological interface design

Fig. 10. Properties window showing the properties for
our custom graphics control 'LevelBar'

Cognitive-Compatible Human-Machine Interfaces by Combining Ecological Interface Design and Object-Oriented
Programming

iJOE International Journal of Online Engineering - www.i-joe.org 12

usability tests where subjects, end users, interact with the
interface through solving several scenarios [21].

It is intended to evaluate the resulted cognitive-compatible
HMI through a comparative usability test, through which it
will be compared with another user-interface with a distinctive
design philosophy such as physical (topological) interfaces. In
this evaluation, the different HMIs serve as independent
variables, whereas the criteria discussed in section II
"Cognitive-ergonomical criteria" as dependent variables.
Hereby, it will be possible to measure the differences between
the HMIs regarding the cognitive compatibility property.

XI. CONCLUSION
It has been shown, how we can design cognitive-compatible

HMIs for presenting complex technical systems using EID, a
well-founded design methodology for designing user-
interfaces, combined with OOP. In addition to OOP with its
advanced programming features: encapsulation, inheritance,
polymorphism and overloading, it was necessary to use
powerful development tools like the Visual Studio .NET
Integrated Development Environment (IDE) for
accomplishing effective and transparent interactive systems.
Using OOP and ASP .NET will not only simplify modeling
the ergonomics- and software structures, but implementing
them as well.

Before concluding the experiences and results achieved
while investigating EID combined with OOP for designing
cognitive-compatible HMIs, we should recall in mind that one
goal of this investigation is to apply the approach on complex
technical systems like chemical processes characterized by
difficulties in measuring process variables as the sensors may
be not available or are very expensive. As examples for such
difficult measurable process values are concentrations and
stream flow magnitudes of mixture substances existing in the
different distillation column levels.

It is to note that, usually, experienced operators of such
complex technical systems can deal with the control and
supervision complexity of technical systems using traditional
topological interfaces acquiring their animation process values
by conventional sensors. However, these tasks can be
achieved only with large effort, so that the operators are
permanently under mental and physical exertion. Cognitive-
compatible HMIs resulted through this approach must
disburden the operators in stress situations where they have to
repair malfunctions quickly and efficiently.

The object-oriented software design and programming
makes it possible to implement powerful interactive systems
for process control on the one hand; and enable system
designers and user-interface designer to realize newer ideas on
the other. Using Visual Studio .NET Integrated Development
Environment (IDE) simplifies accomplishing the object-
oriented cognitive-compatible HMI. Besides the management
system with its various parts for graphics controls, real plant

variables, plant properties and virtual plant variables, an
investigation to applying and integrating e-learning methods
and techniques to the interactive process control system has
been carried out. The communication of these all parts is
taking place in a multithreaded environment both with and
without synchronization.

Prior sections highlighted in the first place the advantages
of EID modeling and designing techniques. A discussion of
the problems we came across while experiencing and applying
EID for modeling complex technical systems is summarized in
the following: In the first place, before creating any display
element such as the graphical mass/energy coupler, EID
required mathematical modeling to describe the technical
system behavior. This represents a troublesome activity that is
often impossible to accomplish since mathematical models of
technical systems are often very complicated to be determined
due to project duration and investment viewpoints. Secondly,
some process variables are technically or costly immeasurable.
Thirdly, delay times of influencing variables were difficult to
implement technically and graphically. Finally, EID-based
graphics controls demand valuable display place, so that
operators are forced to carry out their tasks through several
process views and user-display windows.

REFERENCES
[1] "Guideline for Process Control Using Display Screens", VDI/VDE

Guideline of the Association of German Engineers, Düsseldorf: VDI-
Verlag, 2005.

[2] B. Shneiderman, and C. Plaisant, Designing the User Interface:
Strategies for Effective Human-Computer Interaction (4th Edition).
Addison Wesley Longman, 2004.

[3] J. R. Anderson, J. R., Cognitive psychology and its implications (5th
ed.), New York: Worth, 2000.

[4] K. Vicente, The Human Factor: Revolutionizing the Way We Live with
Technology. Vintage, Canada, 2004.

[5] A. Duthie. Microsoft ASP.NET Programming with Microsoft Visual C#
.NET Version 2003 Step by Step. Microsoft Press, 2003.

[6] G. Johannsen. Mensch-Maschine-Systeme. Berlin: Springer, 1993.
[7] N. A. Streitz, Mental Models and Metaphors: Implications for the

Design of Adaptive User-System Interfaces, Learning Issues for
Intelligent Tutoring Systems. New York: Springer-Verlag, 1988.

[8] N. A. Streitz, "Cognitive compatibility as a central issue in human-
computer interaction: Theoretical framework and empirical findings",
in G. Salvendy (Ed.), Cognitive engineering in the design of human-
computer interaction and expert systems. Amsterdam: Elsevier, 1987,
pp. 75-82.

[9] P. Fuchs-Frohnhofen, E. A. Hartmann, D. Brandt, D. Weydandt,
"Designing human-machine interfaces to match the user's mental
models," Control Engineering Practice, Volume 4, Number 1. Elsevier
Science. 1996.

[10] T. Faison, Component-Based Development with Visual C#, John Wiley
& Sons, 2002.

[11] S. Si Alhir, Learning UML, O'Reilly, 2003.
[12] C. Larman, Applying UML and Patterns : An Introduction to Object-

Oriented Analysis and Design and Iterative Development, Prentice-
Hall, 2004.

[13] J. E. Larsson, Knowledge-based methods for control systems, PhD
Thesis from Lund Institute of Technology, Department of Automatic
Control, Lund University, Sweden, 1992.

[14] K. Ardestani, F. C. Ferracchiati, S. Gopikrishna, T. Redkar, S.
Sivakumar, T. Titus, C# Threading Handbook, Apress, 2004.

[15] W. Stallings, Operating Systems: Internals and Design Principles,
Prentice Hall, 2005.

Cognitive-Compatible Human-Machine Interfaces by Combining Ecological Interface Design and Object-Oriented
Programming

iJOE International Journal of Online Engineering - www.i-joe.org 13

[16] J. Ferguson, B. Patterson, J. Beres, P. Boutquin, M. Gupta, C# Bible,
John Wiley & Sons, 2002.

[17] M. Lind, "Multilevel flow modeling," AAAI'93 Workshop on
Functional Reasoning, Washington, 1993.

[18] J. Rasmussen, K. Vicente, "Ecological interface design: Theoretical
foundation," IEEE Transactions on systems, man, cybernetics, vol. 25,
no. 4, 1995.

[19] K. Vicente, M. Bistanz, "Making the abstraction hierarchy concrete,"
Human-Computer Studies, 40, 83-117, 1994.

[20] J. Rasmussen, "Skills, rules and knowledge; signals signs, and symbols
and other distinctions in human performance models," IEEE
transactions on systems, man and cybernetics, Vol. SMC-13, No. 3,
May/June 1983.

[21] M. B. Rosson, J. M. Carroll, Usability Engineering: Scenario-Based
Development of Human-Computer Interaction, Morgan Kaufmann
Publishers, 2002.

[22] K. Christoffersen, C. N. Hunter, K. J. Vicente, "A longitudinal study of
the effects of ecological interface design on skill acquisition," Human
factors, vol. 38, pp. 523-541, 1996.

[23] J. Rasmussen, Information processing and human interaction, an
approach to cognitive engineering, New York, 1986.

[24] K. Vicente, J. Rasmussen, A theoretical framework for ecological
interface design. Risφ report M-2736, Risφ national laboratory, DK-
4000 Roskilde, Denemark, August 1988.

[25] L. P. Jensen, P. Koch, "An ecological man-machine interface for
temporal visualization," in: Proceedings of the 1st international
conference on intelligent user interfaces, Florida, 1993.

[26] D. D. Woods, "Visual momentum: A concept to improve the cognitive
coupling of person and computer," Int. J. Man-Machine Studies, Vol.
21, pp. 229-244, 1984.

[27] K. Vicente, Cognitive Work Analysis: Toward Safe, Productive, and
Healthey Computer-Based Work, Lawrence Erlbaum Associates, New
Jersy, 1999.

[28] S. M. Alessi, S. R. Trollip. Multimedia for Learning: Methods and
Development. Allyn & Bacon, Massachusetts, 2001.

AUTHOR
Salaheddin Odeh received his master degree in electrical

engineering, specialization area computer and control
engineering, from the University of Stuttgart and the PhD
degree from the University of Kassel; both universities are in
Germany. He is currently an assistant professor in the
Department of Computer Engineering, head of the Department
of Computer Engineering and coordinator of the master
program of the Faculty of Engineering at Al-Quds University
in Jerusalem. His interests include control engineering,
robotics, advanced programming, operating systems, human-
computer interaction, and multimedia. In 1999 and for his
doctoral thesis, he was the recipient of the first prize of the
Association of German Engineers (VDI) in the state Hessen in
Germany for the best technical-scientific research.

Salaheddin Odeh, Department of Computer Engineering,
Faculty of Engineering, Al-Quds University.

P.O. Box 20002, Abu Dies, Jerusalem

Email: sodeh@eng.alquds.edu

Manuscript sent on October 02, 2006.

