
COMPARISON OF REMOTE LABS IN DIFFERENT TECHNOLOGIES

Comparison of Remote Labs in Different
Technologies

C. Mergl
National Instruments, Munich, Germany

Abstract— Recently several possibilities arose to conduct
electronic measurement experiments via remote control.
Now a comparison of the latest different technologies should
bring some answers to interested people, so that they can
choose the best technology for them under their criteria.
Criteria in this case are, the up-to-dateness of the
technology, the development-time, the system-independency
of the client in terms of the operating system and internet
browser as well as other necessary installations on the client.

Index Terms— Remote Control, REL, Virtual Instruments,
LabVIEW

I. INTRODUCTION
Due to the fact that the internet becomes more integrated
into our daily lives, several possibilities have arisen to
use this cost-effective worldwide standard for distributing
data.A lot of different tools are available to publish data
from the development environment, like National
Instruments LabVIEW, to the Web. Because of the
interesting activities in the field of Web-based distance
education a lot of remote controlled laboratories are
available via the Internet, which are not only unique in
their experiments, but also in the tools used to publish
them. The purpose of this thesis is to bring some answers
to interested people in order to compare the latest
technologies which are the LabVIEW built-in Web
Server, Nacimientos AppletVIEW, LabVNC and
Measurement Studio 8.0.1, which is the only one not
supporting LabVIEW as the development environment.
These technologies will be compared in terms of the up
to-dateness of the technology, the development-time, the
system-independency of the client in terms of the
operating system and internet browser as well as other
necessary installations on the client.

Figure 1 Remote Lab Structure

REMOTE CONTROL TECHNOLOGIES II.

A.

Within this section the state of the art remote control
technologies will be presented and shortly explained to
get an overview how to work with them. Because
LabVIEW 8.20 is used as the development environment
for this article, most of these technologies are based on
how to pass data between interconnected computers to
control LabVIEW VIs remotely via a web browser. These
technologies will be the LabVIEW built-in Web Server, a
DataSocket Server with ActiveX controls, AppletVIEW
which is a commercial product to make remote front
panels and LabVNC which is for free. Additionally, as
non LabVIEW tool, Measurement Studio 8.0.1, which is
a free upgrade to Measurement Studio 8.0.0 will be
discussed because of its included suit of Web controls.

 LabVIEW Web Server

With the LabVIEW built-in Web Server it is possible to
view and/or control a VI remotely either from LabVIEW
or a Web browser. If the VI is controlled by LabVIEW, it
must be installed on the client computer. If the VI is
controlled via a Web browser only the runtime engine
with the same version as within the development
computer, so the server, must be installed. This runtime
engine consists of a LabVIEW browser plug-in package
which will be installed in the mentioned directory of the
clients computer. The runtime engine is available for free
via the National Instruments Drivers CD or via download
from the National Instruments ftp server.
This download is done automatically if a client wants to
connect without having the runtime engine already
installed. So on the client side, there is the runtime engine
and on the server side a HTML file with an <OBJECT>
tag, that references to the VI which should become online
viewable and controllable[1]. With this tag, the web
browser passes the VI to the LabVIEW browser plug-in,
because of the information given by this tag, which
contains a URL reference to the VI. By typing the Web
address of the Web Server into the URL or address field
of the clients Web browser, the connection to the Web
Server opens. The address contains the computer name or
IP address of the server, the port of the web server and
the name of the HTML file which references to the VI
(e.g. http://nameofserver:80/file.html).

iJOE International Journal of Online Engineering - www.i-joe.org 1

http://nameofserver/file.html

COMPARISON OF REMOTE LABS IN DIFFERENT TECHNOLOGIES

Now the VI will be posted within the client’s browser
window from the plug-in, which communicates with the
Web Server to establish the interaction between client
and remote front panel of the VI. Now to control the VI,
the client has to request control by selecting “Request
Control of the VI”, either by right clicking anywhere on
the posted front panel where a short cut menu appears, or
at the bottom of the Web browser window.
National Instruments recommends using Microsoft
Internet Explorer 5.5 with Service Pack 2 or Netscape 4.7
or later on the client side to work with the Web Server.
Independent of this the Web Server works with Windows,
Linux and Mac operating Systems (there is LabVIEW
available for each) and with Internet Explorer, Netscape,
Mozilla, Firefox and Opera as Web browser, which are
the most used browsers. With other browsers a few
changes are necessary to also use them viewing and
controlling remote front panels.
The LabVIEW Web Server is available within the
LabVIEW Full Development System, the LabVIEW
Professional Development System and also as single
update. Additionally one can use the LabVIEW
Enterprise Connectivity Toolset to add more security
features to the Web published VIs.

1)

2)

 Web Server Configuration

To publish VIs on the Web, the Web Server must be
enabled, which could be done either with the Web
Publishing Tool, or within the “Web Server:
Configuration” page which is located in the LabVIEW
“Tools” menu at “Options”. The Web Publishing Tool,
described in the following section, is used to create the
HTML files out of the front panel of a VI. Within the
“Web Server: Configuration” page you can enable the
server, change the root directory, the HTTP port, the
timeout and if you want to use a log file or not. For all
there are default settings which should work with the
most applications, so the default port is 80, the timeout is
60 seconds and the root directory, where the HTML files
of the Web Publishing Tool are saved is within the
LabVIEW www directory (e.g. C:\Program Files\
National Instruments\LabVIEW 8.2\www).Perhaps in
some cases one needs another timeout or has to use
another port to communicate, than this is the page where
to change.
Under the “Web Server: Visible VIs” page of the Options
dialog box you can decide whether a VI is visible or
invisible on the Web. Therefore a list of VIs can be
created where it is possible to allow or deny access to this
VIs or even groups of VIs or directories. By default all
front panels are visible, so for each the access is allowed.
If a client wants to connect to a published VI the Web
Server checks the list of the VIs within the “Web Server:
Visible VIs” page, compares it with the client request and
if the VI is on the list, allows or denies access depending
on the respective setting.
Not only the visibility of the VIs could be set,
furthermore it is also possible to configure which browser

address (client address) can view and or control the
published VIs. This is done by creating a Browser Access
List within the “Web Server: Browser Access” page, also
within the Options dialog box. After a client attempts to
connect, the Web Server compares its address with the
Browser Access List and determines if access is permit or
denied. It is possible to set for each “Allow Viewing and
Controlling”, to only “Allow Viewing” and to “Deny
Access”, at which by default everyone has access and is
allowed to view and control the published VIs. All other
Configurations of the Options dialog box, selected within
the Tools menu, are presented quite similarly and can be
accessed by selecting them out of the Category list on the
left side of the dialog box. A few of these settings can
also be changed within the Web Publishing Tool, which
will be discussed within the next section.

 Web Publishing Tool

Until yet the Web Server has only been discussed in
general terms like how it works, which configuration
must or could be done and so on. Now we are talking
about how to make a VI remotely controllable.
The Web Publishing Tool is a LabVIEW built-in tool to
publish the front panel of a VI as a HTML document to
the web. Accessible also within the Tools menu of
LabVIEW, there are three steps from choosing a VI till
saving the HTML file to disk. In the first step “Select VI
and Viewing Options” the VI to publish, which must be
in memory, has to be selected. Also the “Viewing Mode”
can be changed between “Embedded”, “Snapshot” and
“Monitor”, where Embedded allows clients to view and
control the front panel, Snapshot to only display a static
image of the front panel and Monitor to display a
snapshot with a configurable updating interval.
For the next step “Select HTML Output” you can type in
a title (document title), a text before (header) the front
panel and a text after (footer) the front panel which is
going to be displayed on the respective place.
The next, and also last step of the procedure is the “Save
the New Web Page” step where the created HTML file of
the VI is going to be saved to a directory (by default this
will be …\LabVIEW8.2\www) with the selected filename
(e.g. PublishedVI.html) and a URL will be created (e.g.
http://computername:80/PublishedVI.html). After saving
it, the VI now is ready to be remote controlled from a
client by typing this URL into the address or URL field of
his Web browser window.

3) Web Server Conclusion

So with the LabVIEW built-in Web Server it is possible
to remote control VIs from clients who have at least the
runtime engine installed on their systems. Also different
settings according the configuration of the Web Server
within the Options dialog box can be done. The creation
of a Web site with remote front panel could easily be

iJOE International Journal of Online Engineering - www.i-joe.org 2

http://computername/PublishedVI.html

COMPARISON OF REMOTE LABS IN DIFFERENT TECHNOLOGIES

done with the Web Publishing Tool, so a HTML file is
accessible for a client, created out of a VI, at which no
modification of the code is necessary.
National Instruments recommends publishing data-
intensive VIs to be remote controlled, which means for
example VIs with several charts or while loops running
without a wait function to give other tasks time to
perform [2]. This recommendation is not always possible
to follow by developing applications, what should be kept
in mind by programming VIs to publish them on the
Web.

B.

1)

2)

DataSocket Server

DataSocket is based on TCP/IP and enables live data
exchange between different applications, running on the
same computer or also on different computers of a
network [3]. So consisting of two components, the
DataSocket API and the DataSocket Server, DataSocket
is a high-performance programming interface for sharing
and publishing data in different applications, on different
systems, connecting different I/O technologies. The
DataSocket API is the interface for communicating with
multiple data types and languages; the DataSocket Server
does the Internet communication in form of TCP/IP
programming.
Instead of using TCP/IP where one has to write code to
convert the data to a stream of bytes and also to pars it
back into the original form in the subscribing application,
DataSocket transfers the data in an unlimited number of
formats, including strings, Booleans and also waveforms.
So in the same way a Web browser pulls together
different Internet technologies like HTTP, HTTPS, FTP
and FILE, DataSocket pulls together different
communication protocols.

DataSocket API

The DataSocket API, based on URLs for connecting to
the data, is protocol-independent, language-independent
and OS-independent, and publishes binary data. This API
is implemented in LabVIEW as ActiveX Control, as
LabWindows/CVI C library and as a couple of LabVIEW
VIs, to use it in any development environment. So the
API converts the data into a stream of bytes to send it
across the network, where on the other end the
subscribing DataSocket application converts this stream
back to its original form, which eliminates the complexity
of the normally written code by using TCP/IP libraries
instead.
Consisting of four basic actions (open, read, write, close),
the DataSocket API can be used for data items on HTTP,
FTP and DSTP Servers, and also for local files and OPC
Servers. 1.

 DataSocket Server

The DataSocket Server is a stand-alone component, with
which data can be broadcasted across the Internet to
several clients concurrently, using the DataSocket API.
The connections to the clients are managed automatically
which simplifies network TCP programming
[4].Broadcasting data, using the DataSocket Server
requires a publisher, the DataSocket Server itself and a
subscriber. The date will be written, using the DataSocket
API, to the server from the publisher. Also the
subscribing application uses the DataSocket API to read
the data from the server. So both, the publisher and the
subscriber, are clients of the DataSocket Server and also
can reside on the same machine, but normally are running
on different machines. The following figure 2 represents
how two clients, where both are publisher and subscriber,
works for controlling a VI remotely with LabVIEW and
the Internet Explorer as clients.

Figure 2 DataSocket Server with LabVIEW and Internet Explorer as
Clients

3) Using DataSocket for remote controlling VIs

As discussed before, and also illustrated in figure 2, there
are two clients, where both are publishers and subscribers
using the DataSocket Server for sharing data via the
Internet. So on one side there is LabVIEW which is able
to communicate with a DataSocket Server by using the
DataSocket API VIs and on the other side there is the
Internet Explorer. Consider the LabVIEW Web Server
where the front panel of the VI is published within the
Web browser window, it is contrary using DataSocket
Server, because the LabVIEW application don’t needs a
front panel in form of a user interface. The published user
interface for controlling the VI via DataSocket could be
construct e.g. with Visual Basic. Therefore in Visual
Basic ActiveX Controls has to be selected from the
respective DataSocket, which then can be used to build
the user interface. To get a user interface out of the
ActiveX controls, it is necessary to create an Internet
distribution package.

iJOE International Journal of Online Engineering - www.i-joe.org 3

COMPARISON OF REMOTE LABS IN DIFFERENT TECHNOLOGIES

4)

C.

1) DataSocket Conclusion

So as one client there is LabVIEW publishing the
measured data and acting in order to the ActiveX controls
of the Web browser, how subscribes the data from
LabVIEW and shows it within the Web Browser window.
Instead of the runtime engine, which has to be installed
on the client controlling the VI via a Internet browser,
here a package of cabinet files, which are the user
interface within the browser and the DataSocket server
must be installed on this client. As discussed before,
DataSocket is quite independent, but because of using the
ActiveX controls this solution is bound to use Windows
operating systems on the client side.
The LabVIEW VIs must be build using the DataSocket
API functions to communicate with the DataSocket
Server, which could be seen as a modification to the
normal code for controlling instruments and taking
measurements.

AppletVIEW

AppletVIEW is a toolkit for LabVIEW from Nacimiento
Software Corporation which works in terms of
development of a remote controlled VI quite similar to
the LabVIEW Web Server.
The AppletVIEW toolkit uses the Java and TCP/IP to
remote control a VI from any standard Web browser [5].
Because using Java and TCP/IP it is also quite
independent from Web browsers or operating systems,
used at the client side.
The latest Version, AppletVIEW 4.0 is compatible with
LabVIEW 6.x and 7.x, and Java 1.1 through 1.5, it is
using standard HTTP and is also compatible with all
firewalls and proxy servers. So AppletVIEW enables the
control of LabVIEW VIs to be controlled remotely using
Java applets in standard Web browsers, where no plug-
ins, modifications of the LabVIEW code or the LabVIEW
runtime engine, on the client system must be installed.
The Java applet used by AppletVIEW is compliant with
Java 1.1 and can run in any Web browser, supporting
Java 1.1 [6]. As examples for the minimum versions of
Web browser to use on the client side, Nacimiento
recommends to use he Netscape Communicator 4.05 or
higher and the Microsoft Internet Explorer 4.01 or higher
to use it with Windows 9x, Windows NT 4.0, Windows
2000 and also Unix operating systems. By using Mac
operating systems, Netscape Communicator 4.76 and the
Microsoft Internet Explorer 4.0 or higher is
recommended. Generally, every browser able to use Java
1.1 or higher, is able to remotely control VIs published
using AppletVIEW. Currently the latest Version of
AppletVIEW (4.0) is only supporting LabVIEW 7.x as
latest version of LabVIEW and it is unknown when a new
version, supporting LabVIEW 8.x will be available.

 Process of publishing VIs with AppletVIEW

As the first step the AppletVIEW Server has to be
opened, which is used to publish a LabVIEW VI to the
Internet. The following figure 3 represents the
AppletVIEW Server.

Figure 3 AppletVIEW Server

The AppletVIEW Server can either run as a stand-alone
application, as a top level window, or can be placed
within the applications diagram [7]. The next step is to
open the AppletBuilder, which is written in Java, and is
necessary to create a Java applet from the LabVIEW
application.
The AppletBuilder is for reading the front panel of the VI
to publish and recreate it in Java. This is done by
selecting the system where the AppletVIEW Server is
running, which is normally the localhost, to show a list of
the VIs in memory where now the VI to publish must be
selected. AppletBuilder is able to read most of the
information about the front panel of a LabVIEW VI, but
usually there are some modifications necessary to let it
appear in the same form it is represented within
LabVIEW. It is possible to resize, move and change
properties of all components within the AppletBuilder per
clicking and dragging, but not all the controls are
available in Java as they are appearing in LabVIEW. So
instead of a stop button in this applet a kind of switch is
represented, as well as instead of a rectangular LED a
round one appears. Now this Java front panel must be
saved as a .vmil file. Within the AppletBuilder it is also
possible to change between edit mode and run mode, to
also be able to test the published VI while creating the
applet. Now to create the HTML file for the applet the
code is generated in the AppletBuilder by choosing
File>HTML. This code must be copied into a text editor
window and saved as .html file. This file now could be
opened via the internet to remote control the published VI
via an ordinary Internet browser meeting the
requirements in form of Java enable.

iJOE International Journal of Online Engineering - www.i-joe.org 4

COMPARISON OF REMOTE LABS IN DIFFERENT TECHNOLOGIES

2)

D.

1)

AppletVIEW Conclusion

So AppletVIEW is the first solution, publishing VIs,
where now download for the client is necessary to remote
control it via the Internet, because nowadays every
Internet browser is able to use Java applets.
The only constraint is that there is no current version
available supporting LabVIEW 8. So one, who is
developing with LabVIEW 8 has to save all his files for
the current version 7.1 and than form 7.1 to 7.0 to be able
to use AppletVIEW to publish his VIs.
Also the applet is not identical with the front panel of the
VI, so that there are always little changes necessary, but
on the code itself are no further modifications necessary.
Per default AppletVIEW is using port 8080 for HTTP and
VITP runs on port 4749, but both could be changed by
changing the server configuration and the applet tags [8].

LabVNC

LabVNC is also quite similar in using it to publish VIs to
the LabVIEW Web Server and Nacimientos
AppletVIEW. It is a open source utility that uses the
open-source VNC protocol to turn any VI into a Java
applet to remote control it via the net [9].Using LabVNC
to publish VIs also needs no further modification of the
published VIs. The current version is LabVNC BETA 0.4
which needs the following system requirements:

Server: LabVIEW 6.0 or higher, Windows
95/98/NT/2000
Client: Any Java-enabled Web browser on any
operating system

LabVNC consists of a VI control panel, some DLLs, and
a binary executable that is the LabVNC server. With the
actual version the server only runs on 32-bit Windows.
LabVIEW 6.0 or higher must be installed on the server
machine. The remote clients can be on any platform
(Windows, Linux, MacOS, etc.) for which there is a Java-
enabled browser.

Publishing VIs using LabVNC

For publishing VIs using LabVNC the LabVNC.vi has to
be opened, which is illustrated in the following figure 5.

Figure 5 LabVNC.vi

Under “Allow remote connections to:” the VI to publish,
which must be in memory, must be choosen. After
turning the “LabVNC server” switch to on, after a few
seconds a tray icon in the windows tray shows that the
server is running. Now the server is ready to accept
remote connections. The first time the server runs, a
password for the clients need to be set. The client needs
to open a Internet browser and point the URL to:
http://<machine name or IP address of server>:5800/

2)

E.

III.

LabVNC Conclusion

LabVNC is a quite old open source utility, based on
Windows 9.x, Windows NT and Windows 2000
operating systems, using LabVIEW 6.0 or 7.0 as
development environment.
There is no new version available which might support
LabVIEW 8.x on a windows XP platform, which does not
work with the actual version of LabVNC. So it is nice to
have a freeware tool for publishing VIs, which needs no
download to use it on the client side, but on the server
side older development environments and also operating
systems must be used to publish VIs using LabVNC.

Measurement Studio 8.0.1

National Instruments Measurement Studio uses the
concept of virtual instrumentation to deliver measurement
and automation programming tools to a Visual Studio
application development productivity by integrating a
suite of tools and class libraries for Visual Studio [10].
Measurement Studio 8.0.1 is a free upgrade to
Measurement Studio 8.0, which fully supports Visual
Studio. This free upgrade supports version 2.0 of the
.NET Framework and MFC 8.0 in Visual Studio 2005
applications. Measurement Studio 8.0.1 includes a
complete suite of ASP.NET Web controls to build
remote monitoring and control applications. The so
created Web pages do not require any runtime engine on
the client, thus they can be displayed on any operating
system, any browser and any client.
This software has nothing to do with LabVIEW as
development environment, but because of the actuality
and the possibility to be totally independent from any
downloads, operating systems or browser software of the
client it is presented also within this article.

COMPARISON OF THE TECHNOLOGIES

Within this section, the previously discussed technologies
to remotely control an electronic laboratory developed
with LabVIEW will be discussed in different terms like
development time and user handling. The last presented
technology, which is Measurement Studio 8.0.1 will not

iJOE International Journal of Online Engineering - www.i-joe.org 5

COMPARISON OF REMOTE LABS IN DIFFERENT TECHNOLOGIES

be compared with the others because of Visual Studio as
development environment in this case.

A.

B.

1)

2)

3)

4)

Development

Now all four discussed technologies, which are the
LabVIEW Web Server, DataSocket Server, AppletVIEW
and LabVNC, to publish LabVIEW front panels to the
Web, are using LabVIEW as development environment.
All these technologies, excepting the DataSocket Server
need no modification of the LabVIEW code, besides
using AppletVIEW a few changes in developing the
published applet of the front panel has to be done.
So using LabVIEW Web Server and LabVNC, the
published front panel within the clients Internet browser
window looks the same as it does in LabVIEW itself.
Using AppletVIEW a few changes with the
AppletBuilder must be done. Using the DataSocket
Server, the LabVIEW front panel is completely
independent from the one presented in the clients
browser, because this front panel must be developed
using e.g ActiveX controls within Visual Basic. So using
the DataSocket Server, you have to construct all the VIs
for controlling a remote laboratory always with having in
mind that the necessary data must be sent to the
DataSocket Server via the DataSocket API VIs and also
received in the same way. This means a lot of additional
code and also another general construct of the code.
While using e.g. the LabVIEW Web Server, the VI could
be constructed as it works on the development PC, using
DataSocket Server the code becomes much more
complex.
Furthermore AppletVIEW and LabVNC does not work
with LabVIEW 8.2 as development environment, which
causes to use an older version like LabVIEW 7 to
construct the VIs. Also there will be no new version of
LabVNC and it is unknown if there will be a new one of
AppletVIEW, to use them with the latest version of
LabVIEW.
The LabVIEW Web Server and LabVNC needs the
smallest development time because there are no
additionally work to do using them. Using AppletVIEW
the development time increases a little bit because of the
changes which had to be done within the AppletBuilder
and the construction of the HTML page, which is done
automatically using the Web Server or LabVNC. With
DataSocket Server used to publish VIs, even the
construction of the LabVIEW code needs more time and
additionally the front panel has to be created using
another software, like Visual Basic, which overall needs
much more development time.

 Client Requirements

 The needs of the client for working with the published
VIs are also a necessary aspect that must be discussed
independent of the development or the server itself. So
within the following subchapters, the different

technologies will be discussed concerning the client
requirements and they will be compared with each other.

 LabVIEW Web Server

Using the LabVIEW Web Server to publish VIs to be
remotely controlled via the Internet, the client needs to
install the LabVIEW runtime engine which is about
23MB. The WebServer is quite independent form the
clients operating system or Web browser. Every
operating system, for which a runtime engine, so
LabVIEW, is available, could be used with every
standard Web browser.
The Web Server works with Windows, Linux and Mac
operating Systems (there is LabVIEW available for each)
and with Internet Explorer, Netscape, Mozilla, Firefox
and Opera as Web browser, which are the most used
browsers

DataSocket Server / ActiveX Controls

Because of using ActiveX controls on the front panel
within the clients browser window to communicate with
the DataSocket Server, it is necessary to have a Windows
operating system. ActiveX is a Microsoft technology for
data exchange between different applications (e.g. Excel
table in Word), which is not supported from other
operating systems like Linux or Mac.
Also the client needs to install a few .dlls and .cab files,
which could be seen as a plug-in for the Web browser.

AppletVIEW

Because AppletVIEW is using Java 1.1 the published
front panel can run in any Web browser supporting Java
1.1. As examples for the minimum versions of Web
browser to use on the client side, Nacimiento
recommends to use he Netscape Communicator 4.05 or
higher and the Microsoft Internet Explorer 4.01 or higher
to use it with Windows 9x, Windows NT 4.0, Windows
2000 and also Unix operating systems. If using Mac
operating systems, Netscape Communicator 4.76 and the
Microsoft Internet Explorer 4.0 or higher are
recommended. Generally, every browser able to use Java
1.1 or higher, is able to remotely control VIs published
using AppletVIEW. So using AppletVIEW, normally no
further installations must be done on the Client side,
because nearly everybody has Java already installed
because of surfing on websites using Java applets.

LabVNC

On the Client side LabVNC is really independent from
any operating system or Web browser.
Only a Java-enabled Web browser is necessary, which is
almost in included with every OS.

iJOE International Journal of Online Engineering - www.i-joe.org 6

COMPARISON OF REMOTE LABS IN DIFFERENT TECHNOLOGIES

AppletVIEW and LabVNC crystallise as the best
technologies to use, to become completely independent as
client. But remember, they are also the ones which are
not able to use LabVIEW 8.2 as development system.

C.

D.

IV.

User Handling

By developing a remote laboratory, where instruments
are controlled, different measurements and experiments
could be done a user handling is necessary, in form of a
log in and a timing to give every user a defined time to
work with it.
Using the LabVIEW Web Server it is very easy to
implement, because the timing could be constructed as
the VI runs only on the development system. The
connection to the clients could be closed
programmatically using properties of the Web Server. If a
client wants to work with a Web Server build, published
VI he has to request control by clicking the right mouse
button within the front panel and selecting it from the
appearing menu. After finishing the control is getting
released because of the programmatically closing of the
connection to the client. The timing settings are also
possible to set via the Web Server configuration where a
defined value is given to release the control of the
currently controlling client if another client connects,
where he is automatically in viewing mode. After this
time is over, the viewing client gets the control.
Using the DataSocket Server this all has to be done
programmatically in LabVIEW which is a little bit more
complex, because of not being able to use the Web
Servers properties.
With AppletVIEW it is quite similar to the LabVIEW
Web Server, but it has to be constructed with the
AppletVIEW VIs instead of property nodes. There are
several VIs to check connections to clients, so VIs which
handles each HTTP request, the interface between a
remote Web client and an open VI and also one VI to
close the connection to the client. This VI is the Close
Applet Connection.vi which closes the connection to the
client when called. But there is now possibility to
automatically give the control to next viewing client, as it
could be done with LabVIEW Web Server.
With LabVNC there is no user handling in terms of
request/release control of the VI, in terms of closing
connections to the clients available. So in terms of the
necessary user handling, LabVNC is inappropriate to
develop a remote control of a laboratory.

Conclusion

Now after comparing the different technologies in terms
of development time, client requirements and user
handling many advantages and disadvantages arose,
which are represented within the following.

a) LabVIEW Web Server
 + shortest development time

 + best user handling of all
 + client runs on Windows, Linux, Mac and
with nearly every browser

- runtime engine needed to install on client
b) AppletVIEW

 + short development time
 + user handling possible
 + no client requirements
 + operating system and browser independent

- only available for LabVIEW 6.0 and 7.0 for
development

c) LabVNC
 + short development time
 + no client requirements
 + operating system and browser independent

- no user handling
- only available for LabVIEW 6.0 and 7.0 on

Windows 9.x, NT and 2000 OS
d) DataSocket Server

 + available for LabVIEW 6.0 to latest
+ user handling possible
- high development time
- only Windows clients can use
- installation of files needed on client

Because of using LabVIEW 8.20 as the development
environment the best solution to use is the built in
LabVIEW Web Server for publishing VIs. The
construction of the code can be done as the VI would run
locally, no additional things are necessary. With the Web
publishing tool it is very easy and fast to build a HTML
page of the VI to remote control. Also a lot of additional
possibilities like the user handling, timeouts and so on are
implemented, which could be set within the configuration
or programmatically in LabVIEW. LabVNC and
AppletVIEW are not really up to date because of the
development four to five years ago. The DataSocket
technology is quite useful, but not to construct a remote
laboratory, alone because of the constraint to use a
Windows operating system on the client side.

CONCLUSIONS

The current technologies to publish VIs on the Web,
which are the LabVIEW built-in Web Server,
Nacimientos AppletVIEW, LabVNC and Measurement
Studio 8.0.1, have been presented and discussed in terms
of their features and have been compared according to
different criteria. These criteria are the up to-dateness of
the technology, the development-time, the system-
independency of the client in terms of the operating
system and internet browser as well as other necessary
installations on the client.
The comparison of the different technologies reflected
that the LabVIEW built-in Web Server is the current best
technology to use. The construction of the code can be
done as if the VI was running locally, no additional

iJOE International Journal of Online Engineering - www.i-joe.org 7

COMPARISON OF REMOTE LABS IN DIFFERENT TECHNOLOGIES

modifications are necessary. With the Web publishing
tool it is very easy and fast to build a HTML page of the
VI to remote control. Also a lot of additional possibilities
like the user handling, timeouts and so on are
implemented, which could be set within the configuration
or programmatically in LabVIEW.

REFERENCES

[1] LabVIEW Basics II: Development – Course Manual
 National Instruments, March 2004 Edition, Part Number

320629M-01, pp.7-21
[2] LabVIEW Basics II: Development – Course Manual
 National Instruments, March 2004 Edition, Part Number

320629M-01, pp.7-21
[3][4] Integrating the Internet into your Measurement System
 National Instruments, March 1999 Edition, pp.4

[5] www.appletview.com/index.html, Web site of AppletVIEW

Toolkit
 Nacimiento Software Corporation 2004
[6] www.appletview.com/browser.html, Web site of

AppletVIEW Toolkit
 Nacimiento Software Corporation 2004
[7] www.appletview.com/tour.html, Web site of AppletVIEW

Toolkit
 Nacimiento Software Corporation 2004
[8] AppletVIEW User Manual,
 Nacimiento Software Corporation, pp.12-1
[9] http://www.jeffreytravis.com/lost/labvnc.html, Web site of

LabVNC
 Jeffrey Travis Studios LLC 2004
[10] http://sine.ni.com/nips/cds/view/p/lang/en/nid/3769, Web site

of NI Measurement Studio, National Instruments 2006

AUTHOR
C. Mergl is Applications Engineer at National

Instruments, Munich (e-mail: Christian.Mergl@ni.com).

iJOE International Journal of Online Engineering - www.i-joe.org 8

http://www.appletview.com/index.html
http://www.appletview.com/browser.html
http://www.appletview.com/tour.html
http://www.jeffreytravis.com/lost/labvnc.html
http://sine.ni.com/nips/cds/view/p/lang/en/nid/3769

	I. IntroductioN
	II. REMOTE CONTROL TECHNOLOGIES
	A. LabVIEW Web Server
	1) Web Server Configuration
	2) Web Publishing Tool
	3) Web Server Conclusion

	B. DataSocket Server
	1) DataSocket API
	2) DataSocket Server
	3) Using DataSocket for remote controlling VIs
	4) DataSocket Conclusion

	C. AppletVIEW
	1) Process of publishing VIs with AppletVIEW
	2) AppletVIEW Conclusion

	D. LabVNC
	1) Publishing VIs using LabVNC
	2) LabVNC Conclusion

	E. Measurement Studio 8.0.1

	III. COMPARISON OF THE TECHNOLOGIES
	A. Development
	B. Client Requirements
	1) LabVIEW Web Server
	2) DataSocket Server / ActiveX Controls
	3) AppletVIEW
	4) LabVNC

	C. User Handling
	D. Conclusion
	a) LabVIEW Web Server
	b) AppletVIEW
	c) LabVNC
	d) DataSocket Server

	IV. CONCLUSIONS
	References
	Author

