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Abstract—Cardiovascular diseases (CVDs) are considered one of the leading 
causes of death worldwide. Myocardial infarction (MI) is one of the deadliest 
cardiac diseases that require more consideration. Recently, cardiac magnetic res-
onance imaging (MRI) has been applied as a standard technique for assessing 
such diseases. The segmentation of the left ventricle (LV) and myocardium from 
MRI images is vital in detecting MI disease at its early stages. The automatic 
segmentation of LV is still challenging due to the complex structures of MRI 
images, inhomogeneous LV shape and moving organs around the LV, such as the 
lungs and diaphragm. Thus, this study proposed a convolutional neural network 
(CNN) model for LV and myocardium segmentation to detect MI. The layers 
selection and hyper-parameters fine-tuning were applied before the training 
phase. The model showed robust performance based on the evaluation metrics 
such as accuracy, sensitivity, specificity, dice score coefficient (DSC), Jaccard 
index and intersection over union (IOU) with values of 0.86, 0.91, 0.84, 0.81, 
0.69 and 0.83, respectively.
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1 Introduction

Cardiovascular diseases (CVDs) are challenging diseases that threaten most people 
worldwide [1]. Myocardial infarction is a common CVD affecting many patients and 
increasing the leading causes of death globally [2]. Early detection of MI is crucial 
for effective diagnosis and therapy to alleviate the MI risk that leads to death. Several 
techniques have been used for assessing MI include electrocardiogram (ECG) [3]–[5] 
computed tomography (CT) scan [6], [7] and magnetic resonance imaging (MRI) 
[8]–[11] In particular, cardiac MRI is the gold standard modality for assessing myocar-
dial tissue providing comprehensive information on the myocardium’s structures and 
functions [12]. Segmentation approaches are widely used in clinical CMR analysis to 
delineate the healthy and pathological contours of LV and myocardium.

Manual segmentation in clinical routines is time-consuming and subject to intra- 
and inter-observer variations. Thus, automatic or semi-automatic segmentation meth-
ods are highly required. Several traditional segmentation methods have been proposed 
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for cardiac MRI segmentation, including thresholding [13], Gaussian mixture model 
[14], [15], graph-cut model [16], atlas-based method [17], and active contour models 
[18]. However, the traditional segmentation algorithms require intervention and expert 
knowledge to delineate the myocardium and LV borders, which also have poor perfor-
mance. Thus, automatic segmentation models for myocardium and LV from cardiac 
MRI images are proposed utilizing deep learning approaches. This paper proposes a 
CNN model for automatic LV and myocardium segmentation to detect MI areas from 
late gadolinium enhancement (LGE) short-axis MRI images.

2 Related works

Medical imaging analysis plays a critical role in diagnosing disease such as diabetic 
retinopathy [19], skin cancer [20] and lung disease [21]. In literature, several studies 
have been reported for automatic segmentation of myocardial scar and edema. Majority 
of such works are based on the integration of prior shape information of the myocar-
dium to detect myocardial infarction [9]. Several methods employed traditional seg-
mentation techniques such as thresholding based on image intensity and resolution to 
distinguish healthy and pathological tissues. Recently, deep learning-based algorithms 
have achieved state-of-the-art performance of myocardium, and LV segmentation in 
cardiac MRI [22]–[25], and more recent studies in this field are summarized in [26]. 
Table 1 summarized the characteristics of the recent related works in LV and myocar-
dium segmentation using deep learning algorithms.

Table 1. Summary of related studies for LV and myocardium segmentation using deep learning 
techniques (FCN = fully convolutional neural network, DRN = dilated residual network, 

HPPRN = hybrid pyramid pooling network, LSTM = long short-term memory)

Authors Technique Objective Dataset

Tan et al. [27] CNN regression LV segmentation 2D Short-axis MRI

Shaaf et al. [22] FCN LV and myocardium 
segmentation

2D Short-axis MRI

Du et al. [23] DRN with HPPN LV and myocardium 
segmentation

3D Short-axis MRI

Qi et al. [24] CNN LV and myocardium 
segmentation

2D Short-axis MRI

Du et al. [25] Encoder-decoder with LSTM Bi-ventricles segmentation 2D Short-axis MRI

Yang et al. [28] CNN with U-Net LV segmentation 2D Short-axis MRI

Most of deep learning models for myocardial infarction segmentation focuses on 
mono-sequence cardiac MRI images, such as LGE. The cardiac images are acquired 
from different sequence, providing meaningful information of heart function. Auto-
matic LV segmentation from cardiac MRI data remains a challenge in medical image 
analysis, which plays an effective role in early detection of cardiovascular diseases 
[29]–[32]. Winther et al. [33] proposed deep learning model to determine cardiac 
mass and function parameters based on biventricular segmentation. Bernard et al. [34] 
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summarized deep learning models for automatic MRI cardiac multi-structure seg-
mentation and diagnosis. They measured the effectiveness of the state-of-the-art deep 
learning models in segmenting the myocardium and ventricles as well as classifying 
pathologies. Recently, Pérez-Pelegrí et al. [35] proposed a deep learning model based 
on 3D U-Net to estimate LV volume in the end diastole frame. The proposed method 
provided explanation for obtaining results in the form of segmentation mask without 
the need of labels for training. Furthermore, an automatic pipelines for myocardial and 
scar segmentation from short axis LGE-MRI was proposed by Mamalakis et al. [36]. 
The initial segmentation step is to estimate the myocardial boundaries by applying 
multi-atlas segmentation techniques. The following step is combining k-mean cluster-
ing and a geometric median shape variation techniques to refine myocardial segmenta-
tion. Then, an active contour technique was applied to determine healthy and unhealthy 
myocardial wall. The scar segmentation pipelines in an integration of a Rician–Gaussian 
mixture and full width at half maximum thresholding models, to define the intensity 
pixels in scar areas. The last step was segmentation of final scar regions by using water-
shed model with automatic seed-points framework. Based on limitations in previous 
proposed models such as inaccurate detection of position and size of endocardial and 
epicardial regions, and low segmentation accuracy in some patients, an automatic and 
accurate segmentation models for LV and myocardial segmentation to detect MI are in 
demand. Therefore, this work proposed a segmentation model that has achieved supe-
rior performance for MI segmentation compared with previously proposed methods. 
The essential step is applying pixel normalization for the training dataset to allow the 
network to extract features adequately even without extensive images.

3 Methodology

This study proposes a CNN model for myocardial infarction detection based on the 
segmentation of short-axis MRI images. The procedures for the proposed model are 
illustrated in Figure 1. The images and their corresponding labels are fed into selected 
CNN layers. Fine-tuning network hyper-parameters, including optimization algorithm 
(SGDM), learning rate (0.001), and epochs number (100), is an essential step before the 
training phase to ensure an efficient performance for the MI area detection.

3.1 Dataset

The image sequence with their corresponding labels used in this work was provided 
by the EMIDEC segmentation challenge [37]. The EMIDEC dataset consists of 150 
exams from LGE-MRI associated with 12 clinical physiology features such as age, 
gender, history of cardiac diseases, etc. Each subject has different number of images 
with series of 5–10 short-axis slices for the LV area from base to apex. The correspond-
ing contours of the normal myocardium, LV cavity, and MI are identified and marked 
by experts with more than 15 years of experience in medical imaging field. Due to 
the complex structures with the irregular shape of LGE-MRI in the EMIDEC dataset, 
preprocessing tools such as cropping and normalization were applied to extract region 
of interest (ROI) features (LV and myocardium) and remove irrelevant anatomical 
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structures. Moreover, data augmentation using rotation and flipping of images was per-
formed to provide adequate training images for the proposed network with promising 
performance.

Fig. 1. Procedures of the proposed CNN model

Figure 2 shows the proposed CNN model layers architecture that extracts image 
features to detect MI areas if they exist in input images. The input layer represents the 
pixel matrix of the input images. The convolutional layer is the backbone of the CNN 
building block that consists of learnable filters (kernels) with height and width to learn 
features throughout the training phase. The convolutional layer is always followed by a 
rectified linear unit (ReLU) as an activation function that introduces non-linearity into 
the convolutional layer’s output. Max-pooling layer is used to create a down-sampled 
feature map by calculating the maximum values for patches of feature maps. Transposed 
convolutional layer, known as the deconvolutional layer, reverses the operation of the 
standard convolution layer to generate an output feature map and retrieve input dimen-
sions using up sampling. The last layers of the CNN network are the pixel classification 
layer for semantic image segmentation with outputs of the categorical label for each 
image pixel and the softmax layer to assign probabilities to each class, respectively.
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Fig. 2. Architecture layers of the proposed CNN model

3.2 Performance evaluation

The parameters used in the evaluation phase for the proposed network were accu-
racy, sensitivity, specificity, dice score coefficient, and Jaccard index, as follows:

 acc = (TP + TN)/(TP + TN + FP + FN) (1)

 sens = TP/(TP + FN) (2)

 spec = TN/(TN + FP) (3)
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Where TP (true positive) represents ROI that is correctly predicted as ROI; TN (true 
negative) represents background area that is correctly detected as background; FP 
(false positive) represents background region that is incorrectly detected as ROI; and 
FN (false negative) represents ROI region that is incorrectly detected as background. 
A represnts the predicted ROI and M for manual ROI.
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4 Results and discussion

The proposed CNN model was trained and tested using short-axis MRI images for a 
patient with myocardial infarction. Based on the layers selection and fine-tuning of the 
selected hyper-parameters, the model performance was robust in detecting MI regions 
in different cases. Figure 3 depicts the model accuracy and loss function during train-
ing phase. The evaluation metrics such as accuracy, sensitivity, specificity, dice score 
coefficient (DSC), Jaccard index and intersection over union (IOU) are illustrated in 
Figure 4. The accuracies of the proposed segmentation network are 0.84, 0.87 and 0.86 
for LV, myocardium and MI, respectively. The proposed model gained sensitivity with 
values of (0.71, 073, and 0.91), specificity (0.90, 0.94, and 0.84), DSC (0.74, 0.79, and 
0.81), Jaccard index (0.59, 0.65, and 0.69) and IOU (0.55, 0.58, and 0.83) for LV, myo-
cardium, and MI, respectively. The network detection of MI outperformed the detection 
of LV and normal myocardium (Myo) regions in terms of sensitivity, DSC, Jaccard 
index and IOU with values of 0.91, 0.81, 0.69 and 0.83, respectively.

Fig. 3. Training accuracy and loss function of the proposed network
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Fig. 4. Evaluation metrics of proposed network’s performance

The visualization results of the proposed network are depicted in Figure 5, which 
shows a good detection of MI area in cardiac LGE-MRI images. Despite the complex 
shape of the scar and the edema in MRI images, the segmentation outcomes look rea-
sonable, and the infarcted area is consistent with the MI area in the ground truth. A 
confusion matrix is a summary of computed results from the predicted pixel labels and 
ground truth pixel labels. The confusion matrix is shown in Figure 6 for model perfor-
mance evaluation. The percentage of detected pixels for LV, Myo and MI, are 70.94%, 
73.49% and 90.68%, respectively.
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Fig. 5. The results of detected MI region by CNN network

Fig. 6. The confusion matrix of the proposed CNN segmentation network
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To validate and assess the results of the proposed model, quantitative comparison 
with three previous methods were applied. Table 2 presents the quantitative comparison 
results which are based on three evaluation metrics consists of accuracy, DSC and IOU. 
As shown in the table, it is obvious that the proposed model outperforms other methods 
in term of MI area segmentation by achieving 0.86, 0.83 and 0.81 for accuracy, IOU 
and DSC, respectively. The accuracy and DSC of the model proposed in [38] are higher 
due to applying various models with multi-level and multi scale variation encoders 
for features learning. Although this proposed network has achieved the desired perfor-
mance in MI detection, it lacks the detection of MI area in some apical slices. More-
over, the results need to be checked by a clinician to confirm the performance of the 
proposed CNN segmentation model.

Table 2. Performance comparison between the proposed model and other 
state-of-the-art models in MI segmentation (MICCAI = Medical Image Computing 

and Computer Assisted Interventions)

Method Dataset
Metrics

Accuracy IOU DSC

Proposed network EMIDEC 0.86 0.83 0.81

Popescu et al. [39] MICCAI 2015 0.86 0.68 0.75

Bleton et al. [40] MICCAI 2015 0.84 0.64 0.72

Xu et al. [38] MICCAI 2018 0.96 0.79 0.90

5 Conclusions

This paper proposed a fully automatic CNN network to segment myocardial infarc-
tion with irregular and complex shapes from LGE-MRI images. Experimental results 
have shown the network’s effectiveness in segmenting the anatomical structures of 
the infarcted area. The model achieved values of 0.86, 0.91, 0.84, 0.81, 0.69 and 0.83 
for accuracy, sensitivity, specificity, dice score coefficient (DSC), Jaccard index and 
intersection over union (IOU), respectively. Visually, the automatic scar segmentation 
is consistent with manually labelled ground truth by experts. Integrating hybrid model 
using classification model to extract clinical features and segmentation model for fea-
ture extraction from LGE-MRI to detect myocardial infarction is suggested for future 
work.
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