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Abstract—Aided image diagnostics (CAD) have been used in many fields 
of diagnostic medicine. It relies heavily on classical computer vision and artifi-
cial intelligence. Quantum neural network (QNN) has been introduced by many 
researchers around the world and presented recently by research corporations 
such as Microsoft, Google, and IBM. In this paper, the investigation of the valid-
ity of using the QNN algorithm for machine-based breast cancer detection was 
performed. To validate the learnability of the QNN, a series of learnability tests 
were performed alongside with classical convolutional neural network (CCNN). 
QNN is built using the Cirq library to perform the assimilation of quantum com-
putation on classical computers. Series of investigations were performed to study 
the learnability characteristics of QNN and CCNN under the same computational 
conditions. The comparison was performed for real Mammogram data sets. 
The investigations showed success in terms of recognizing the data and training. 
Our work shows better performance of QNN in terms of successfully training and 
producing a valid model for smaller data set compared to CCNN.

Keywords—quantum neural network, breast cancer, classical neural network, 
machine learning, mammography

1	 Introduction

With the advancement in medical and engineering fields, novel solutions were 
implemented to facilitate patients’ health care and prolong their life [1–8]. The use of 
computer use of computer-aided diagnostic (CAD) is an important topic in engineer-
ing-medical research [9–10]. Recently, many researchers investigated the concept of 
automating CAD by building self-learning algorithms based on machine 
learning [11–13]. In order to build a successful diagnostic model of medical images, 
classical machine learning is used. However, training classical machine learning is con-
suming a huge computational resource in terms of the data set preparation as well as 
computer resources for the training phase [13–14]. For the medical diagnostic field, 
data are mostly visual-based, such as X-rays, computed tomography scan and magnetic 
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resonance imaging (MRI), etc. Therefore; computer vision tools are the most appropri-
ate method to be used for CAD. Add to that, most data in modern diagnostic are com-
puterized based [15]. As such, artificial intelligence is the most suitable to be used in the 
next generation of fully computerized CAD. Historically, CAD [16] has been 
approached in two sequential steps. The first step is to screen the data to detect the sus-
picious regions or what are so-called (Regions of interest) then, the region of interest 
will be “labeled” for the closest possible medical cases according to the corresponding 
disease likelihood. This is done by what so called expert systems [17–18]. Expert sys-
tems will assign diagnostic labels according to the probability of the region of interest 
diagnostic ascendingly, then eliminate medical cases of lower probabilities and then 
identify the highly likely disease. The problem with the use of expert systems is that 
they are built upon predetermined diagnostics for a fixed small number of cases and are 
mostly based on a wide variety of collective diagnostic data. For example, to diagnose 
a single case of apparent mass in appeared in mammography, a series of tests should be 
performed (Blood, tissue samples, multiple scans, etc.) to be fed to the expert systems 
than gives the preliminary diagnosis. On the other hand, artificial intelligence (AI) has 
great potential to replace traditional expert systems and allows one to reach a prelimi-
nary diagnosis in a very short time. AI is presented itself as a powerful tool for image 
classification and medical identification due to its characteristics of transforming repre-
senting information sets of data (database) into structured matrices of simple units con-
taining weighted partial differential equations (PDEs). Weights then will be tuned to 
draw learning pathways as an intuitive mimic of the learning process of the biological 
neural system (i.e., the brain). The satisfying amount of learning data (i.e., raining data) 
to provide a robust outcome or valid model is depending on the AI model design and 
the problem itself. For data selection, two major aspects should be taken into consider-
ation; the first one is identifying the objective of data to be trained for. In other words, 
what are the systematic methodologies of the doctor to make diagnostics based on such 
data. For example, in microscopic cultures, counting cells is one of the diagnostic tools; 
therefore, counting will necessitate isolating (through image segmentation) as well as 
labeling the targeted cells in each picture before submitting the data to the deep learning 
model. The second aspect is the data set size and number of items for each label. As it 
has been expressed before, training robustness is susceptible to data set size and the 
balance of data distribution in each label. The bottleneck of creating a strong and highly 
trusted CAD is the computational power [19–24]. For classical machine learning 
(which is performed on nowadays classical computers that use the binary system [0,1]), 
the researchers reach the computation limitations to modeling real-life problems such 
as biochemical interactions and immune system interaction with infection. Some algo-
rithms are invented to rework the data feed and training process to optimize workflow 
for the available resources. Furthermore, some hardware-based methods are introduced 
to give the classical systems the needed dynamic storage to allocate the data feeds for 
the processing units as well as storing the tensor from the data (such as Intel Obtain-
based modules and tensor processors). However, the largest computer (supercomputer) 
is still facing huge challenges to simulate the simulation tasks mentioned earlier. 
As such, in the medical field, classical computers are still facing serious limitations in 
terms of attaining good diagnoses compared to well-trained doctors with the same 
amount of data. To overcome classical computers’ limitations, researchers are working 
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on developing so-called quantum computers. Quantum computers are applying the 
principles of entanglement and superpositions to the data unit, i.e., the bit to build the 
quantum bit. There are several approaches to physically implementing quantum com-
puters such as photonic and silicon-based circuitry. However, the development is not 
moving fast as it has been anticipated due to entropy and noise problems. On the other 
hand, the logical aspects of a quantum computer are mature enough to be implemented 
as soon as a full-scale quantum computer is available. The advantages of a quantum 
computer can be shown by the phenomenal calculation speed and the data amount to be 
handled in a single calculation. The high speed and huge data processing ability of 
quantum computers are due to the nature of the method of conveying information itself, 
such that, instead of the binary representation of the data (i.e., classical bit), quantum 
bits within the quantum gates exchange information timelessly. The property of a quan-
tum state makes one quantum computer hold calculation power equivalent to all exist-
ing classical computers (i.e., quantum supremacy) [25]. Quantum computers and 
computation are superior due to the nature of quantum information and quantum logic. 
Although the quantum computation field of study is relatively a new branch of applied 
mathematics, however; the physical and mathematical advancements of quantum com-
puters are motivating the researchers to race toward implementing a unique type of 
logic gates and physical hardware. Nowadays, limited quantum bits computers are 
already serving in specific high technology applications such as pharmacy, and chemi-
cal interactions in next-generation batteries. It is anticipated that quantum computers 
will be available for public use with full capability at the end of the 21st century. The 
use of quantum computers for medical diagnostics can play a vital role in terms of the 
implementation of fast and systematic machine-based diagnostics of malignant tumors 
which are treatable if they can be diagnosed in the early stages. Breast cancer is the 
most frequent malignant tumor amongst women. It is a dominant cause of female mor-
tality and is considered a serious public health problem all over the world. Current 
treatments for breast cancer include surgery, chemotherapy, immunotherapy, and radi-
ation therapy. Breast cancer incidence and death rates increase with age but are mortal-
ity rate decrease significantly if it can be detected in the early stages, before the 
metastasizing phase. The eradication and therapeutic success of breast cancer are 
related to tumor stratification and dissemination. Breast tumors whether they are benign 
or malignant are distinguished into four major classes, based on size, age, node involve-
ment, and tumor grade. These stages are 1; consists of the well-defined and localized 
tumor mass, characterized by poor invasion properties. Stage 2 and 3, corresponds to an 
increased tumor volume and acquisition of invasive phenotype. The metastasis dissem-
ination and huge tumor size with invasive phenotype are classified as stage 4. Chemo-
therapy, radiation, and targeted therapies have made major advances in patient 
management over the past decades, but refractory diseases and recurrence remain com-
mon. The early-stage diagnostic will lead to treating cancer before the metastasis stage, 
at which cancer will attack different organs by migrating through lymph nodes. A mam-
mogram is one of the popular tests for breast cancer early detection. Mammograms 
have been used efficiently to reduce the mortality rate of women with breast cancer. 
Early detection is based on the oncologist’s exam of the x-ray image and then examin-
ing the suspicious tissue by taking a biopsy. However, due to the limitation of highly 
trained medical staff, cancer false positive is common in mammogram image detection 
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as well as false negative [26–28] due to the misconception of less-skilled eyes for the 
masses in the image. Another point worth mentioning is that mammogram is an X-ray 
image that take short time to be made, yet the speed of mass examination is related to 
how many doctors exist and their level of experience. Therefore, CAD is a promotion 
point as a necessary way to reduce diagnostic time [29–31] and decrease cost per test 
by reducing the number of specialists in the mammogram testing unit in hospitals 
(This reduction will lead to remobilizing the manpower to other sections within the 
hospital which will lead to double the efficiency of the hospital’s workforce) as well as 
the reduction of the number of false-positive by double-checking the X-ray image by 
the doctor and the computer. This paper is examining the use of QNN to build an 
“ultra-intelligent machine”. To attain this goal, the following Key questions should be 
answered: Firstly, how to build a QNN and how to transform the classical data from 
plane mammogram images to become quantum data. The second key question is how 
to evaluate the learnability of QNN. The third question is, how is implementing a 
benchmarking of learnability evaluation of QNN? The final question is: can we deduce 
that, QNN is able to perform successful mammography diagnostic in the future accord-
ing to the current investigation? As such, this study introduced the learnability factors. 
Furthermore, a series of numerical investigations were conducted to examine the vari-
ous aspects that govern AI with QNN. Moreover, a hybrid model of CCNN and QNN 
is introduced to allow the implementation of quantum logic in the near future instead of 
waiting for a fully capable quantum computer to conduct breast cancer early detection 
for mammography. The layout of the paper is the following. Section 2 deals with the 
learning of classical and quantum neural networks. Whereas section 3 discusses the 
layout of quantum and classical neural networks and mammogram data structure. 
In section 4, we will present the results and discuss the outcome. Finally, the conclusions 
are presented in section 5.

2	 Classical and quantum neural network

The core of a successfully implemented machine learning system is simple. Infor-
mation nowadays is not just conception only; it is a physical entity too. Nature around 
us gathers information at the subatomic level, in which the line between information 
and physical matter can interchange, extrapolate, and convert. Electronic communi-
cation technologies, from Samuel’s revolutionary bubbles machine in 1809 to the fast 
fiber optics connections, rely on summarizing the information in simple possible unit 
codes from codes. Revolutionized computation was achieved by adopting a binary state 
(0 and 1) to represent information. The unit binary code necessitates special handling 
to produce useful information, such that the interpretation and processing will need a 
logic unit designated to the binary process. The binary system is one of the most reli-
able sources of information transition recently. Despite the advancement of modern 
classical computers and information transfer infrastructure, the classical computers 
established based on a binary system are limited compared to the complex nature of 
real-world information exchange and physical problems. To be solved on classical com-
puters, simulations and other issues needed first to be simplified to a certain degree to be  
solvable with maintaining a reasonable degree of accuracy. This limitation is intrigu-
ing for the researcher to revolutionize the methodologies to approach the informatics 
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of real-world problems. The advancement of physics has introduced more sophisti-
cated ways to exchange information, i.e., quantum informatics. The quantum state is a 
semi-timeless way of exchanging information [32–34]. Driven by the power of informa-
tion, it was a belief in the 19th century that the physical state could be changed without 
energy loss by changing the information of the subatomic system and controlling the 
disorder to make order (equilibrium of the physical system) [35]. The information in the 
quantum world has unique properties that need a different approach than classical infor-
mation logic. Machine learning is the transcending form of the neural network, which was 
immersed first in the form of a “logic theorist program” that was invented in 1956 [36]. 
The neural network process generally starts by discretizing the problem (Χ) (as shown in 
Figure 1) to be distributed as simple subsystems, then fitting each subsystem to arbitrary 
function ψ. Functions output will be submitted to a comparator Ω which judges the data 
based on its probability function the gives the generalized output of the subs ystems Ψ.

Fig. 1. Machine intelligence process unit

Machine learning is a network of node clusters; each node has a weighted sub-function 
to be tuned. This tuneable sub-function is representative of a fraction of the analyzer 
model. The node’s output mimics neural cells by adopting an activation function to 
control the output with predefined criteria. Activation function can take the form of rec-
tified linear, Sigmoid, or hyperbolic. These nodes called neurons are clusters into stacks 
called layers which can be dense layers or unique function layers such as convolution 
layers. Training of the neural network is performed by tuning each neuron’s weights 
for the optimum value that fits the training data. Here, optimization algorithm selection 
plays a significant role in training success. With increasing the training rate, data loss 
for each prediction will drop. If the data is insufficient or the neural network is designed 
poorly, the fit convergence cannot reach sufficient value. In this case, the under-fitting 
problem is occurring. Contrary to the under-fitting problem, the overfitting problem 
occurs when the convergence is satisfied for the model; however, the neural network 
has the poor capability to predict and recognize input data that is not in the training set. 
Quantum machine learning is a subject of the quantum computation branch that has been 
gaining attention in recent decades, which emerged from quantum computations. Quan-
tum computation has emerged from the statistical implementation of the work of quan-
tum theory as the work of Helstorm [37] and Holevo [38]. Quantum computer concepts 
were researched by many researchers, such as Benioff [39] and Fynman [40–41].  
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Quantum computers, due to their design, have the upper hand in extensive data 
analysis [42]. Quantum computers unit information, i.e., a quantum bit (Qbit), shares 
the same characteristics of quantum concepts, such that it is in a simple state of a linear 
superposition of 0 and 1 [43–44]. To understand the behavior of computation in the 
quantum neural network, we will introduce a basic mathematical notation that is com-
monly used to express computation in a quantum environment. In other words, Dirac’s 
bra (〈|〉) ket notation is used to represent quantum states as vectors, where |〉 and 〈|  
represent a column vector and the conjugate transpose of a vector, respectively as 
shown in Figure 2.

Fig. 2. Under and overfitting problem of neural network

Accordingly, the fundamental quantum states |0〉 and |1〉 can be expressed in Dirac’s 
notation respectively as:
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The standard quantum operator representation of Pauli matrices can be defined as:
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which are Hermitian and unitary. The unitary operator on the two-dimensional 
Hilbert space, spanned by the basis {|0〉, |1〉} is defined by 1̂ = |0〉〈0| + |1〉〈1|, which 
takes the form of an identity matrix(I). Now we have the representation of unitinforma-
tion within the quantum computers, so special logic operator controllers i.e., quantum 
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gates, are needed to interpret and operate a program using this quantum unit. Quantum 
gates are represented mathematically with a set of matrices representing the probability 
of a unified state within the estate. The Walsh-Hadamard transform unitary operator is 
an Example of quantum gates that map the basic unites to superposition state, given by:

	 

 

1 3

2WHU
σ σ+

= 	 (5)

In addition to the above definition, we define the binary alphabet by A2 = {0, 1}, and 
for a set of L-length binary strings greater than 1, we denoted it by AL

2 . After these basic 
definitions, we now turn to address some of the fundamental quantum computation 
properties in the neural network. A quantum neuron is a basic unit in a quantum neural 
network (QNN). A neural firing operator that describes the firing of a two-level neuron 
[29–30] is given by:

	 



31
2

F F
σ−

=


	 (6)

Where F is the firing frequency of neurons in Hertz, the eigenvectors of this operator 
are given by :

	  , 0,1F s sF s s= = 	 (7)

Therefore, these two eigenvectors |0〉 and |1〉 correspond to neural activity where fir-
ing frequency 0 Hz and 1 Hz, respectively. In other words, two quantized energy levels 
can be obtained from each neuron Hamiltonian and can be expressed in Eq. 9 [29–30]:

	  2H Fπη= 	 (8)

Consequently, the energy levels associated with eigenvectors |0〉 and 2ηF, respec-
tively. In terms of neural networks with L-neurons, Eq. 7 can be generalized to be:

	 
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Where LF  the firing frequency field operators of Lth neurons and any pair of neural 

firing operators commute; that is for  , 1, 2 , , 0L KL K d F F = =  . Thus, the total neural 
firing frequency operator is given by:
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In terms of eigenvalue for neural network (10) can be written as:
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The quantum circuits implemented a dynamics L-neuron QNN is a chain of uni-
tary operators. The exception is that the conditional unitary operator implemented for 
the operator follows the link of neural structure. Only conditional operators respect  
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network processing direction and topology can be implemented in QNN. Mathemati-
cally, we can express an N-length quantum computational that propagates forward in a 
chain comprised of a sequential product of unitary operators as:

	    

1 1N NO U U U−= 
	 (12)

The chain in Eq. 12 represents the unitary forward operation, where it is applied such 
that U1 is the first operator and UL is the final. The backward propagation of the network 
is the conjugate transpose of Eq. 12 given by:

	   
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Formally, given the general initial quantum neural field dynamics density of QNN 
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Where r, s represents the input firing patterns and r′, s′ the output patterns for the neu-
rons, respectively. Moreover, the computation process propagates backward and forward 
of the chain, such that the propagation in the forward direction from begging to the end 

system corresponds to the amplitude   

1 1 |N Nr U U U r−〈 | 〉′
 and   

1 1

† † †

N Ns U U U s−〈 | 〉′| 

represents backward prorogation amplitude. When r′ ≠ s′ the system is unbalanced 
and doesn’t reach the final solution, this is called mismatching between output firing 
dynamics. In other words, the computation amplitude   

1 1N Nr U U U r−〈 | | 〉′
  in the for-

ward direction does not match the computation amplitude   

1 1

† † †

N Ns U U U s−〈 | 〉′| 
 in 

the backward direction, which violates computation in quantum respective. However, 
when r′ = s′ this means the computed output in both directions are matched, and the 
final density operator is a diagonal component for each ′ ∈s Ad

2  can be expressed as:
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Eq.15 tells us that the final output firing pattern for a neuron ′ ∈s Ad
2  is the weighted 

sum average of the initial pair firing pattern propagated in forward and backward of the 
computational system chain.
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In the computer context, this both-direction propagation is the primary result of QNN 
based on a quantum circuit (which can be generalized to any quantum system exhibiting 
both-direction propagation). In a computer since perspective, the propagation forward 
and backward can be explained as dynamics prob and response, respectively; returning 

to Eq. 14 the term   

1 1N Nr U U U r−〈 | | 〉′
  represents the response from the beginning 

to the end of the system computation; while the term   

1 1

† † †

N Ns U U U s−〈 | 〉′|   represents 
the response from the beginning to the end of the system computation; where output 
firing s′ and input firing s are linked. As we mentioned above, when s′ ≠ r′ a mismatch 
between prob and response occurs, and there is no solution can be found; while when 
s′ = r′ this means the prob and response are matched, which produces an echo with 
intensity given in Eq. 15. The computation, in this case, can be described as searching 
for a solution for a computational system, where the alternative output for specific 
prob results in specific intensity as a response. This process occurs simultaneously; 
the computation between both directions is simultaneous to reach the final solution. 
The mentioned fundamental characterizes the quantum computation system and is not 
limited to the QNNS process.

3	 Materials and methods

Mammogram image data set is provided by [45] for 6 breast abnormality classes: 
calcification, circumscribed masses, spiculate masses, architectural distortion, asym-
metry, and healthy breast images. The data set consists of the training set of 45000 
images for all the previously mentioned 6 classes and 7500 images as the validation set. 
Each image is of size 1080 by 1080 pixels. MATLAB was implemented to investigate 
CNN design and perform training. Because quantum-based libraries provided by quan-
tum computer service providers (such as IBM and GOOGLE) are built with Python, 
the Python version of the optimal MATLAB CNN was used as a baseline comparison 
program with QNN. Quantum gates formation and QNN were built using python lan-
guage. For classical coding, CNN was built with multi-stages of convolutional layers 
to compress the data stream to the throttle point (as shown in the machine learning 
architecture in Figure 3). Images are needed to be resized to decrease the pixel numbers 
to smooth the training; add to that, reducing pixel numbers is necessary to perform 
training with reasonable computer resources. Using raw images of high resolution will 
necessitate an increase in the node’s number inside the neural network, which will not 
necessarily improve the model recognition ability.

As such, in our research, input images were compressed to 256 by 256 pixels and 
uploaded using the computer unified device architecture’s library (CUDA) to enable the 
parallelization of tensor multiplication. Several CNN models were built to adjust the 
optimal neuron number, starting from 50 million neurons to 2 million neurons.

The best CNN design and the optimal number of neurons are evaluated based on the 
model’s learnability and validation. Learnability is the most important aspect of machine 
learning, such that it will show if the program or the set is in fact, machine intelligence 
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or not. The learnability can be evaluated by the behavior of the machine learning to data 
and the change of its architecture in a way that it should always show the symptoms of 
acquiring the information. One of the easiest symptoms to be measured is the under and 
overfitting of the machine model to the training data. For example, a neural network 
by design might not converge sufficiently to give a valid model. This phenomenon can 
be referred to as underfitting. Underfitting can happen for many reasons, such as poor 
design models or insufficient data. On the other hand, if the learning rate is converged 
too much, the model recognizes the training set flawlessly. Yet, it lacks the ability to 
recognize the new images that the model is never experienced in the training phase. 
This phenomenon is called overfitting. Overfitting can happen due to the lack of train-
able neurons in each training cycle. The transformation from underfitting to overfitting 
of the neural network strongly indicates the successful learnability of the implemented 
network design. On the other hand, our QNN was built using the Python language 
framework associated with the Cirq library as a quantum circuit framework [44–48]. 
Cirq library allows to perform of quantum computation on classical computers by 
assimilating the Qbit by its representative classical bits. This is the only way to test 
full-scale quantum programming due to the lack of usable quantum computers at the 
current time. However, due to the nature of Qbit, a huge amount of storage is needed 
due to the complex nature of Qbit and its phenomenal information capacity. As such, 
performing full-scale, and high or even moderate resolution image training with QNN 
on classical computers is extremely difficult due to the lack of computational resources 
to perform superposition, therefore; images must be sufficiently compressed to allow 
the computer to perform a quantum-based search algorithm. In this paper, QNN work 
frame is as follows: The first step is to load the images into the model and store the data 
in the RAM as tensors of classical bits. Because quantum computation handles only 
quantum data, it is inevitable to transform classical bits into Qbit using the Cirq library, 
which is the second step of the QNN work-frame. Transformation is performed by map-
ping bits into a Qbit matrix using the transform function based on tensor products of 
Bits [49–54]. The third step is to build the quantum circuit of sequential quantum gate 
formations, as shown in Figure 4. In this paper, a quantum circuit consists of a series 
of Ising gates that show good recognition ability. Starting from 50 x 50 pixels image 
compression, QNN simulation consumed computer resources before training started. 
In this research for our QNN design investigation, our model could not work for the full 
training and validation sets unless the image compression was extremely to 4 x 4 pixels 
(as presented in Figure 5). After compression, the classical bits are transformed to the 
Qbit using the previously mentioned method. After wrapping up the compressed train-
ing data set in terms of the quantum state (i.e., Qbit), the training of the qubit will start. 
The final training matrix will be exported and saved to be implemented in the prediction 
program. Our QNN algorithm is summarized in Figure 6.
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Fig. 3. Classical convolution neural network architecture

Fig. 4. Ising quantum computation circuit for mammogram image-based cancer detection
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Fig. 5. Image compression representation before full-scale QNN training

Fig. 6. QNN identification algorithm

4	 Results and discussion

In this section we are showing the results of our investigation of the use of CCNN 
and QNN

4.1	 The investigation of CCNN models

As been previously explained in the material and method section, CCNN was 
examined through several designs by increasing the neuron count from 2 million to 

72 http://www.i-joe.org



Paper—Investigation of Early-Stage Breast Cancer Detection using Quantum Neural Network

50 million. A high number of neurons is needed, so mammogram image classification 
is difficult even for human eyes. On 50 million neurons, the model show overfitting, as 
shown in Figure 7.

Fig. 7. Classical neural network overfitting

While with 2 million neurons, the model shows underfitting behaviour (as shown in 
Figure 8).

Fig. 8. Classical neural network underfitting

Such a shift from underfitting to overfitting proves that the CCNN has a successfully 
learnability [55]. As shown in Figure 9, the best natural network was the 1.4 million neu-
rons model, while 50 million nodes now showed more than 53% accuracy (Figure 10).

Fig. 9. Accuracy history of the best classical neural network model
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Fig. 10. Accuracy history of the under-fitted classical neural network model

4.2	 The investigation of QNN models

The capacity to learn is the most crucial component that measures the feasibility 
of using QNN as a mammogram diagnostic tool. The machine learning’s response to 
input and the modification of its design in such a manner that it consistently displays 
the signs of learning may be used to assess the learnability. The under- and overfitting 
of the machine model to the training data are used as intuitive signs to validate the QNN 
learnability. As such, using the same analogy to examine QNN as an image classifier, a 
model showed a transformation from underfitting (Figure 11) to overfitting (Figure 12). 
As mentioned earlier, because QNN was simulated on a classical computer, the image 
must be highly compressed to give the required RAM and CPU resources for construct-
ing a Qbit. Although the mammogram images were highly compressed, QNN could 
reach converged after 5 training trials to achieve 58% accuracy (Figure 13) with stead 
learning speed. Even though the training of highly compressed images, QNN showed 
sign of learnability by transforming the loss from underfitting to overfitting. This sign 
has proven the ability to use a large model of the QNN on a full-scale quantum com-
puter to produce a robust CAD model. Also, QNN showed a high tendency to achieve 
a high fitting level with just several training cycles. This is an anticipated result due to 
the nature of the quantum gate operations.

Fig. 11. Quantum neural network underfitting
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Fig. 12. Quantum neural network overfitting

4.3	 The investigation of CCNN and QNN models using same data set

To verify the learning ability of quantum and classical models in fair terms 
(i.e., examine both models under similar conditions), in this section we performed the 
CCNN and QNN evaluation for the training and validation data sets that have similar 
data compression and for the same number of samples for both models.

Fig. 13. Classical and quantum network predictability

Because it is impossible to train both QNN and CNN using the 45000 images with 
reasonable image compression, down-sampling of the full-scale data was examined 
to show which model is faster in achieving stable accuracy growth. Two data sets 
were chosen for this study. The first set has 600 training images, and the second set of 
1200 images. Both training cases have a validation set of 300 images. This choice was 
selected to ensure CCNN’s fair learning chance and QNN stability during testing, so if 
the number of samples is chosen over 2000, it will lead to the overload of the computer 
memory. As such, for the data set of 600 images for the training set and 300 images for 
the validation test are compressed to 50 x 50 pixels (as shown in Figure 14), and used 
for both CCNN and QNN models.
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Fig. 14. Image compression for the new data set

Training for this data set showed a remarkable convergence time of QNN compared 
to CCNN (as shown in Figure 15). Validation accuracy for QNN showed superior per-
formance compared with CCNN. CCNN showed fluctuation in validation accuracy, 
which can be interpreted as underfitting for the classical model. By increasing the 
training set to 1000 images to decrease the classical model’s underfitting; QNN main-
tains its superiority compared to CCNN, as shown in Figure 16.

Fig. 15. Classical and quantum network accuracy for 600 images data set

Mathematically speaking, the ability to parallelize the calculation process within the 
Qbit will lead to decreasing the nonlinearity due to continuous bidirectional feedback 
of neurons, as well as compressing the calculation process with maintaining robustness. 
For the foregoing reasons, QNN can achieve rapid, stable accuracy with a shorter time 
and fewer samples than CCNN.

Fig. 16. Classical and quantum network accuracy for 1000 images data set
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It is valid to say that QNN can give a reasonable prediction model for a much smaller 
data set than CNN. Applying QNN on a fully capable quantum computer will provide 
faster training with smaller data set. Under such circumstances, QNN will provide fast 
mass medical imaging diagnostic with a minimum false negative.

5	 Conclusion

In this research, we performed an investigation of early breast cancer detection using 
quantum computation by training mammogram images to a designed QNN model. 
The QNN model was successfully used to train actual mammogram data sets for com-
parison. The investigation demonstrated effectiveness in terms of training and data 
recognition. In comparison to CCNN as a mammogram image diagnostic, our study 
demonstrates the advantage of QNN in effectively training and delivering a viable 
model for less time and high accuracy. From this investigation, we conclude that the 
anticipated availability of real and robust quantum computers for commercial use will 
be a strong asset for robust mass mammogram detection successfully for a signifi-
cantly short time with high accuracy. In other words, the main question discussed in 
this paper is whether it is possible to implement in theory, specific real data of early 
cancer detection in a quantum-based has been answered positively. It can be said that 
this objective was achieved by satisfying the criteria of learning for the designed QNN 
model. In addition, we conclude that QNN may provide a credible prediction model 
with a significantly smaller data set, unlike CCNN, which makes QNN an anticipated 
tool for performing mass medical imaging diagnostics with a low false-negative rate.

5.1	 Data availability

All results in this paper are calculated by using in-house MATLAB and Python 
codes. The code cannot be shared this time as it is used in ongoing work. However, all 
results can be reproduced by adopting the same assumptions.
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