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Abstract—The speech signal that is received in real-time has background 
noise and reverberations, which have an impact on the quality of speech. 
Therefore, it is crucial to reduce or eliminate the noise and increase the intel-
ligibility and quality of speech signals. In this study, a proposed method that is 
the most effective and challenging in a low SNR environment for three types 
of noise are removed, including washing machine, traffic noise, and electric 
fan noise, and clean speech is recovered. with three samples of noise which are 
mixed and added to the clean speech signal with a lower level of SNR value 
fixed at (−5, 0, 5) dBs, that noise source takes equal weights. The enhancement 
of the corrupted speech signal is done by applying a fully connected and convo-
lutional neural network-based denoising algorithm and comparing their perfor-
mance. The proposed network shows that a fully connected network (FCN) has 
less elapsed time than a convolutional network (CNN) while still achieving better 
performance, demonstrating its applicability for an embedded system. Also, the 
results obtained show that, overall, the CNN is better than the FCN regarding 
maximum coloration, PSNR, MES, and STOI.

Keywords—speech enhancement, deep learning, fully connected network, 
convolutional network, signal-to-noise ratio (SNR)

1 Introduction

Under diverse communication circumstances like speech, speech signals are contin-
uously distorted by numerous noises. The effect of noise on the sound signal quality 
is an important issue for many communication companies due to the demand for the 
best quality in voice and video technology. The speech signal is hampered by many 
types of noise, including white noise, traffic noise, babble noise, additive noise, and 
channel noise [1]. Noise reduction or speech enhancement are common terms used 
to describe how to deal with background noise [2]. The two primary categories of 
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speech enhancement techniques are: traditional techniques and deep learning-based 
techniques. The traditional techniques include estimating the noise by Wiener filtering, 
which removes the additive noise [3], and spectral subtraction [4]. In order to improve 
speech signal, Lim and Oppenheim compressed the bandwidth, which marginally 
cleaned the noisy speech signal [5]. A class of minimum mean-square error (MMSE) 
estimators were employed by R. Martin [6] to improve the short-time spectral coeffi-
cients of a noisy speech signal. These estimators are based on super Gaussian densities, 
which result in an improved signal-to-noise ratio. The authors in [7] proposed a method 
for improving single-channel speech that is semi-supervised using non-negative matrix 
factorization (NMF). In recent years, Deep Neural Network (DNN) based speech 
enhancement has also gained popularity and produces significantly better results than 
traditional techniques [8], [9]. Deep neural networks (DNNs) are used in more recent 
techniques, such as those described in [10–12], to describe the nonlinear relationship 
between noisy and clean speech inputs. These techniques have enabled the use of 
non-stationary audio environments [13], and can be further classified into two types: 
mapping-based techniques, such as those found in [14–16], which use the log power 
spectra as the input and output signal of DNN, and masking-based techniques [17–19], 
which estimate a mask to perform denoising. Pandey and Wang formed complex spec-
tral mapping for improving speech with enhanced cross-corpus generalization [20]. 
Xie et al. [21] proposed a complex recurrent variational autoencoder for improving 
speech signals. The computing procedure is substantially more intensive in con-
ventional analogue models than it is in DNN. Therefore, a DNN-based strategy is a 
much better option for speech enhancement. Studies on single-channel and supervised 
multi-channel speech enhancement, for example, have been conducted [22–24]. These 
studies demonstrate how speech enhancement performance improves as the number 
of channels rises. In [25–27] and [28–29], a fully convolutional neural network (FCN) 
was used to improve multi-channel speech, whereas multiple recordings were used 
directly in the time domain. Neural networks have surpassed traditional techniques 
in several fields, providing enough data and sufficient hardware [30]. Deep neural 
networks (DNN) have the ability for generalization, which is one of their main advan-
tages. This implies that a trained net could use previously unheard speech or samples to 
apply its knowledge of speech enhancement. This is crucial for both real-time deploy-
ment and training. The deep neural network system for speech enhancement uses the 
short-time Fourier transform (STFT) [31], [32], due to its simplicity, natural similarity 
to the auditory processes occurring within the human ear, and the availability of effec-
tive windowing techniques for the time-domain synthesis of the modified speech. This 
is because it has a lower computational complexity thanks to the use of a fast Fourier 
transform (FFT). Even though powerful DNNs can be used to improve speech, doing 
so comes at the expense of increasing complexity. In this work, we compare fully con-
nected and convolutional DNNs to demonstrate how we can improve speech quality 
and intelligibility with simpler architectures and come to a conclusion about which of 
them is best suited for enhancing voice signals. The speech signal is processed using a 
denoising approach after random noise has been added for the evaluation. The objec-
tive measurements are short-time objective intelligibility (STOI) [33], signal-to-noise 
ratio (SNR) [34], mean square error (MSE) [6], peak signal-to-noise ratio (PSNR) and 
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maximum correlation (MC) are taken into consideration as figures of merit [30] for 
performance evaluation and comparison.

2 Speech enhancement based a deep neural network 
methodology

A Deep Neural Network (DNN) is a machine learning model, consisting of com-
puting units called artificial neurons. DNNs are used in many different applications, 
including computer vision and speech processing. DNNs can make use of both the tem-
poral and frequency information contained in an input signal, and produce an output 
that is more enhanced than the original signal. Figure 1 represents a block diagram and 
the main stages in the deep neural network. In suggested methodology, two different 
network types, fully connected and convolutional are used for the same task. Figure 2 
illustrates how supervised deep learning-based voice denoising works. A network is 
taught to cut down on noise by using clear speech signals as its output or target signals. 
A speech + noisy speech signal n(t) can be expressed as

 N(t) = C(t) + Ns(t) (1)

where clean speech is represented by C(t) and noise is represented by Ns(t).
Since the target signal C(t) and the noise signal Ns(t) are typically not correlated, It 

is obvious that the clean speech can be recovered when the noise has been removed. 
The clean speech signal is the desired signal.

Fig. 1. The deep neural network

A block diagram of the system for improving speech is shown in Figure 2. The deep 
neural network maps the noisy spectral features to the clean spectral features (DNN).
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Fig. 2. A deep neural network based sound enhancement methodology

With window lengths of 256 samples, window overlaps of 75%, no zero-padding, 
and a Hamming window for analysis, the DNN is trained on 8 kHz samples of nosiy 
speech. The noisy speech is transformed into the STFT domain. During the training 
stage, labels are used to quantify prediction loss based on features that were extracted 
from the clean speech signals using STFT. The neural network relies on the features 
derived from the noisy speech inputs as predictors, together with the targets, throughout 
its training phase. The magnitude spectra of noisy and clean speech sounds, respec-
tively, represent the predictor and target network signals. The augmented signal’s mag-
nitude spectrum, which is the network’s output, is scaled using the mean and standard 
deviation from the training phase. Based on what the predictor gives, as a result of the 
regression network, the mean square error between the input target and the output is 
decreased. Following the joining of the modified output magnitude spectra and the pre-
viously acquired noisy signal phase, the improved speech is converted back to the time 
domain. Due to the predictor input consisting of 8 consecutives noisy STFT vectors, 
each STFT output estimate is created using the current noisy STFT and the 7 prior noisy 
STFT vectors.
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3 Experimental and datasets

For the purpose of evaluating the efficacy of the suggested strategy, five regularly 
employed objective performance criteria were taken into account. These measures 
include mean square error (MSE), peak signal-to-noise ratio (PSNR), short-time objec-
tive intelligibility (STOI), signal-to-noise ratio (SNR), and maximum correlation (MC). 
By contrasting the improved speech with the matching clean speech, evaluation met-
rics are obtained, which measures the subjective quality of the speech. For the STOI 
metric, the ideal values can be found in the range [0, 1], where the upper border of the 
range. Better performance is indicated by higher CM. A small value of MSE means the 
mean square error between clean and denoise speech which is greater than 0. A higher 
PSNR means better speech quality. The dataset used in the experiment is a subset of the 
Mozilla Common Voice dataset [35–38]. Clean speech utterances are taken from the 
common voice. It consists of 2806 recordings. Short sentences are equally divided into 
three sounds: a male and two female voices. In our experiment, 2000 recordings were 
chosen as the target speech for training. Another 403 recordings are selected for testing, 
and another 403 recordings are selected for the validation set. Three different noises 
(N1-Wishing machine, N2-Traffic noise, N3-Electric fan) are used as noise signals for 
the speech samples. At first, it began with a small speech signal, like someone speaking 
a little phrase from the MCV dataset. A clean speech set with three samples of noise, 
which are mixed and added to the clean speech signal with lower levels of SNR value 
fixed at (−5, 0, 5) dBs, where the noise source takes equal weights. Table 1. provides 
additional specific information about the network’s parameters.

Table 1. Implemented DNN model configuration

Parameter Range

Hidden layers in FCN •	 2 Layers (1024 neurons + batch Normalization Layer + RELU 
Activation Function in each Layer).

•	 1 Layer (129) with regression Layer.
•	 Number of Weights is 2237440.

Hidden layers in CNN •	 6 layers (([9 8] × 18, [5 1] × 30, [9 1] × 8, [9 1] × 18, [5 1] × 30, 
[9 1] × 8) with Stride [1 100]) + batch Normalization Layer + 
RELU Activation Function in each Layer).

Validation data 1%

Epochs 3

Mini batch size 128

Learning Option Adam

Shuffle never

Initial Learn Rate 1 × 10−5

Learn Rate Drop Factor 0.9

Max Iteration 27549

Iteration per Epoch 9183

Input Nodes 129 × 8

Output Nodes 1
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All speech signal proceeds are sampled at (8 kHz) with an input frequency of 
(48 kHz) and a weighted segment of eight. The training data takes about a half hour to 
process. The sentences are resampled to 48 kHz and extracted with the STFT features 
with the frame length set to 5 seconds. A model configuration process by using two 
methods of deep learning, fully connected neural (FCN) and convolutional neural net-
work (CNN), and a comparison of the results obtained by the two methods to get the 
best enhancement of speech signal. After the training process, the network can model 
three classes of noise suitable for denoising the speech signal.

4 Results and discussion

The training is done based on various parameters to filter out the undesired noise 
while keeping the quality of the speech signal. The most important parameters are short-
time objective intelligibility (STOI), signal-to-noise ratio (SNR), mean square error 
(MSE), peak signal-to-noise ratio (PSNR), and maximum correlation (MC). The results 
of speech signal enhancement (MSE, PSNR, STOI and maximum colouration) based 
on CFN and CNN with SNR (−5, 0, 5) dBs shown in Tables 2–4 below.

Table 2. Results of speech signal enhancement (MSE, PSNR, STOI and maximum colouration) 
based on CFN and CNN with SNR (5 dB)

SNR = 5 dB

SNR Speech 
Signal

MSE (10−4) PSNR STOI Max. Colouration

CNN FCN CNN FCN CNN FCN CNN FCN

N1 S1 12 14 28.11 27.33 0.89 0.87 97.04 97.68

S2 10 13 26.79 26.02 0.90 0.88 96.72 96.98

S3 14 17 28.37 27.59 0.91 0.90 96.84 97.58

N2 S1 9.5 11 29.72 29.18 0.88 0.86 97.76 97.53

S2 8.7 9.3 28.76 25.50 0.91 0.89 97.54 97.01

S3 10 13 29.77 28.39 0.92 0.91 97.60 98.32

N3 S1 1.67 4.18 37.28 33.29 0.97 0.94 99.18 98.69

S2 1.87 3.98 35.47 32.18 0.96 0.94 99.15 98.32

S3 2.74 6.44 35.38 31.68 0.97 0.95 98.94 98.45

From the results in Tables 1–3, it is shown how a fully connected neural (FCN) and 
convolutional neural network (CNN) can obtain similar results in the performance of 
parameter intelligibility, while in FCN the value of mean square error (MSE) is less and 
better than CNN with SNR (−5, 0, 5) dBs for three types of noise chosen. It is also noted 
that the CNN is better than FCN in term of maximum coloration in the lower level of 
SNR value fixed at (0, 5) dBs.
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Table 3. Results of speech signal enhancement (MSE, PSNR, STOI and maximum colouration) 
based on CFN and CNN with SNR (0 dB)

SNR = −5 dB

SNR Speech 
Signal

MSE (10−4) PSNR STOI Max. Colouration

FCN CNN FCN CNN FCN CNN FCN CNN

N1 S1 305 430 14.66 13.77 0.600 0.599 64.33 65.74

S2 294 401 13.50 12.16 0.606 0.590 60.64 61.70

S3 376 501 14.01 12.78 0.635 0.633 61.97 62.11

N2 S1 125 103 18.53 19.37 0.589 0.652 60.67 71.45

S2 116 94 17.55 18.46 0.629 0.696 64.83 71.18

S3 153 124 17.92 18.84 0.665 0.704 69.20 72.22

N3 S1 13 18 20.46 26.94 0.874 0.855 95.78 99.52

S2 12 17 27.32 25.98 0.882 0.852 95.67 94.49

S3 16 23 27.83 26.22 0.897 0.877 96.60 94.60

Table 4. Results of speech signal enhancement (MSE, PSNR, STOI and maximum colouration) 
based on CFN and CNN with SNR (−5 dB)

SNR = 0 dB

SNR Speech 
Signal

MSE (10−4) PSNR STOI Max. Colouration

CNN FCN CNN FCN CNN FCN CNN FCN

N1 S1 78 77 20.56 20.62 0.790 0.784 92.44 91.65

S2 72 70 19.63 19.74 0.793 0.790 89.79 88.97

S3 94 86 20.03 20.45 0.814 0.818 89.77 90.44

N2 S1 37 54 24.77 24.14 0.780 0.783 91.34 91.85

S2 34 30 22.88 23.43 0.805 0.809 91.25 90.89

S3 42 39 23.51 23.91 0.832 0.824 91.80 94.45

N3 S1 3.9 6.54 33.51 31.35 0.937 0.912 98.38 97.91

S2 3.6 6.15 32.56 30.30 0.942 0.920 98.61 97.33

S3 5.4 9.26 32.40 0.10 0.953 0.934 99.08 97.87

Figures 3–5 give more details about the test results of using the FCN and CNN 
in speech enhancement by measuring the mean square error (MSE) for three sounds 
(S1, S2, and S3) for different input SNR at (−5, 0, 5) dBs, with three selected noises 
(N1-Wishing machine, N2-Traffic noise, and N3-Electric fan).
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Fig. 3. Mean square error (MSE – Y-axis) for three sounds (S1, S2, and S3) for different input 
SNR (X-axis) at (−5, 0, 5) dBs for N1-Wishing machine

Fig. 4. Mean square error (MSE – Y-axis) for three sounds (S1, S2, and S3) for different input 
SNR (X-axis) at (−5, 0, 5) dBs for N2-Traffic noise
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Fig. 5. Mean square error (MSE – Y-axis) for three sounds (S1, S2, and S3) for different input 
SNR (X-axis) at (−5, 0, 5) dBs for N3-Electric fan

Figures 6–8 are present the speech objective Intelligibility for FCN and CNN in 
speech enhancement by determining the STOI for three sounds (S1, S2, and S3) for 
different input SNR at (−5, 0, 5) dBs, with three selected noises (N1-Wishing machine, 
N2-Traffic noise, and N3-Electric fan).

Fig. 6. Intelligibility measure (STOI – Y-axis) for three sounds (S1, S2, and S3) for different 
input SNR (X-axis) at (−5, 0, 5) dBs for N1-Wishing machine
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Fig. 7. Intelligibility measure (STOI – Y-axis) for three sounds (S1, S2, and S3) for different 
input SNR (X-axis) at (−5, 0, 5) dBs for N2-Traffic noise

Fig. 8. Intelligibility measure (STOI – Y-axis) for three sounds (S1, S2, and S3) for different 
input SNR (X-axis) at (−5, 0, 5) dBs for N3-Electric fan

The results are in Table 5. Present the comparison between the run time of a fully 
connected network (FCN) which has less elapsed time than a convolutional network 
(CNN), it’s clear that FCN is faster by about three times than CNN to process, extract 
The features, and enhance the speech signal in the system.
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Table 5. Variation of validation RSMS and Elapsed time for FCN 
and CNN with SNR (5, 0, −5) dB

SNR = 5 dB

Noise
FCN CNN

Validation RSMS Elapsed Time Validation RSMS Elapsed Time

N1 (Wishing machine) 2.446 52 min, 39 sec 1.998 175 min, 58 sec

N2 (Traffic noise) 2.584 48 min, 54 sec 2.177 185 min, 12 sec

N3 (Electric fan) 2.242 48 min, 28 sec 1.653 177 min, 30 sec

SNR = 0 dB

N1 (Wishing machine) 3.588 48 min, 48 sec 3.494 184 min, 24 sec

N2 (Traffic noise) 4.060 51 min, 34 sec 4.278 180 min, 52 sec

N3 (Electric fan) 2.679 47 min, 57 sec 2.164 180 min, 56 sec

SNR = −5 dB

N1 (Wishing machine) 5.978 49 min, 4 sec 6.655 186 min, 25 sec

N2 (Traffic noise) 6.751 49 min, 41 sec 7.730 180 min, 28 sec

N3 (Electric fan) 3.680 44 min, 44 sec 3.160 180 min, 54 sec

5 Conclusion

Using deep learning for speech enhancement has recently attracted attention due to 
its effective and accurate performance. Two techniques of noise removal are done by 
modelling the signal speech based on the convolution neural network (CNN) and the 
fully connected network (FCN). A clean speech set with three samples of noise, which 
are mixed and added to the clean speech signal with a lower level of SNR value fixed 
at (−5, 0, 5) dBs. The noise source takes an equal weight. To evaluate the viability 
of the suggested strategy, five performance metrics were taken into account. These 
metrics consist of short-time objective intelligibility (STOI), signal-to-noise ratio 
(SNR), mean square error (MSE), peak signal-to-noise ratio (PSNR), and maximum 
correlation (MC). In order to quantify the subjective speech quality, evaluation metrics 
are obtained by contrasting the improved speech with the comparable clean speech. 
Overall, the convolution neural network (CNN) has better performance than the fully 
connected network (FCN) concerning the mean square error (MSE) and short-time 
objective intelligibility (STOI), while the FCN is three times faster than CNN, and it 
has a smaller elapsed time compared with CNN.
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