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Abstract—The Brain-Computer Interface (BCI) is a scientific field aimed 
at helping people with neuromotor disabilities. Among the current drawbacks 
of BCI research is the need for a cost-effective software instrument for sim-
ple integration with portable EEG headsets, the lack of a comparative assess-
ment approach of various techniques underlying recognizing the most precise 
BCI control signal–voluntary eye-blinking, and the need for EEG datasets 
allowing the classification of multiple voluntary eye-blinks. The proposed BCI 
research-related virtual instrument accomplishes the data acquisition, processing, 
features extraction, and the ANN-based classification of the EEG signal detected 
by the NeuroSky embedded biosensor. The developed software application auto-
matically generated fifty mixtures between selected EEG rhythms and statistical 
features. The EEG rhythms are related to the time and frequency domains of the 
raw, delta, theta, alpha, beta, and gamma. The extracted statistical features contain 
the mean, median, standard deviation, route mean square, Kurtosis coefficient, 
mode, sum, skewness, maximum, and range = maximum-minimum. The results 
include 100 EEG datasets to classify multiple voluntary eye-blinks: 50 datasets 
with 4000 recordings and 50 with 800 recordings. The LabVIEW application 
determined the optimal ANN models for classifying the EEG temporal sequences 
corresponding to detecting zero, one, two, or three voluntary eye-blinks.

Keywords—brain-computer interface, EEG signal, artificial neural networks, 
LabVIEW application

1 Introduction

Brain-Computer Interface is a multidisciplinary research field, which comprises 
achievements in related scientific and technical areas: artificial intelligence, computer 
science, mechatronics, signal processing, neuroscience, and psychology. The fun-
damental aim of a brain-computer interface system is related to helping people with 
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neuromotor disabilities who cannot communicate with the outside environment by 
using natural paths, such as muscles and peripheral nerves.

This paper proposes a novel BCI research-related virtual instrument to acquire, pro-
cess, and classify the electroencephalographic (EEG) signals necessary to implement 
a Brain-Computer Interface system (BCI). Although the EEG signals classification 
process mainly focuses on detecting multiple voluntary eye-blinks, the implemented 
algorithm provides flexibility and robustness to recognize different signal patterns cor-
responding to other mental tasks related to the Brain-Computer Interface research field.

Regarding the main contribution brought by the BCI research related virtual instru-
ment presented in this paper, a novel approach by leveraging the LabVIEW graphical 
programming environment of developing several original code sequences allows the 
users to acquire, analyze and classify the raw EEG signal acquired from the embedded 
biosensor of the portable EEG NeuroSky headset. The proposed unique and robust 
experimental paradigm involves various stages accomplished by the software system 
based on LabVIEW. Moreover, the current paper describes training or testing dataset 
preparation, an essential phase in the machine learning-based application.

The current research aims to provide an efficient, automated, unique solution that 
integrates all the following sections: data acquisition, processing, and classification of 
the EEG signals. The proposed LabVIEW based solution consists in flexible, robust, 
simple to use, user-friendly and cost-effective virtual instruments aimed for BCI 
projects that can be also conducted by young researchers. Moreover, the proposed BCI 
versatile and customizable framework provides universal usefulness and general pur-
pose by attracting researchers from non-technical fields. The previously developed BCI 
universal platforms – BCI2000, OpenViBE and EEGLAB – are not anymore up-dated 
to the newest versions of portable EEG headsets or require advanced programming 
experience. The recognition of EEG patterns related to the classification of multiple 
voluntary eye-blinks constitutes the testing method of the developed system. The eye-
blinks are artifacts across the raw EEG signal. According to scientific literature [1–13], 
eye-blinks were considered precise control signals in a brain-computer interface appli-
cation. Likewise, this paper provides a large number of EEG datasets including mul-
tiple mixtures between EEG rhythms and features necessary for classifying simple, 
double and triple eye-blinks. Across scientific literature, there is low evidence of papers 
delivering EEG datasets for classifying the multiple voluntary eye-blinks used as com-
mands for BCI systems.

Regarding the structure of the current paper, Section 2 provides some detailed 
insights about the experimental software environment by developing the LabVIEW 
application, Section 3 shows the obtained results, and Section 4 analyzes the outcomes 
by comparing them with previous similar achievements. Finally, Section 5 comprises 
some conclusions about the overall project work and highlights the future research 
directions.
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2 Experimental software environment

2.1 An overview of the proposed LabVIEW application based on a state 
machine paradigm involving the acquisition, processing, and classification 
of the EEG signal detected from the embedded sensor of Neurosky

The main original contribution of this paper is the proposal of a novel research 
approach on the development of a portable brain-computer interface system. An orig-
inal LabVIEW application addresses this challenge by implementing several custom 
virtual instruments aimed to integrate the following three stages: the acquisition, the 
processing, and the classification of the EEG signal detected from the embedded sensor 
of the NeuroSky Mindwave Mobile headset.

Fig. 1. An overview of the proposed LabVIEW application aimed for the acquisition,  
processing, and classification of the EEG signal used in a brain-computer interface

The proposed LabVIEW application is consisting of a State Machine paradigm 
accomplishing the following functionalities (see Figure 1):

•	 Manual Mode of data acquisition for displaying the EEG signal (raw, delta, theta, 
alpha, beta, and gamma) both in time and frequency domain;

•	 Automatic Mode of data acquisition for recording the EEG temporal sequences 
associated with particular cognitive tasks necessary for the preparation of the EEG 
datasets;

•	 Processing the obtained EEG temporal sequences by the extraction of statistical fea-
tures and the assignment of proper labels corresponding to each of the four classes: 
0 – No Eye-Blink; 1 – One Eye-Blink; 2 – Two Eye-Blinks and 3 – Three Eye-Blinks;

•	 The automatic generation of a series of EEG datasets based on the proposed mix-
tures between the EEG signals (raw, delta, theta, alpha, beta, and gamma) in time and 
frequency domains and the extracted statistical features (arithmetic mean, median, 
mode, skewness and others);

•	 The training of a neural networks models either by setting specific hyperparameters 
or by searching the optimized hyperparameters applied on each EEG dataset deliv-
ered from the previous stage;
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•	 The evaluation of each trained neural networks model by running it to classify 
other EEG dataset that can be delivered by using a similar procedure as previously 
described regarding the proposed mixtures between EEG signals and statistical 
features.

2.2 The EEG signal acquisition and processing

Figure 2 shows the proposed experimental paradigm or the algorithm underlying the 
automatic mode of EEG data acquisition.

Fig. 2. A diagram representing the block instructions underlying the implementation of 
Data Acquisition in the Automatic Mode – first view showing all the steps leading  

to obtaining the raw EEG signal (time and frequency domain) and extracting  
the EEG rhythms (gamma, beta, alpha, theta, and delta)
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If the ‘Target Time = 80 (seconds)’, ‘Time Interval = 2 (seconds) and ‘Samples to 
Read = 512’, then it will result in 80 temporal sequences of EEG signals, each of them 
having a length equal to 1 second of recording or it is equivalent with the acquisition 
of 512 samples. Each second will result in a 1D array or a set of 512 samples for every 
one of the 12 EEG signals (both time and frequency domain).

Accordingly, when the chronometer stops, indicating the finish of the EEG signal 
acquisition in automatic mode, 12 × 2D arrays will be returned. They consist of six 
types of EEG signals in the Time Domain (see Figure 3) and six types of EEG signals 
in the Frequency Domain (FFT – Peak – see Figure 4): raw, delta, theta, alpha, beta, 
and gamma. A 2D array is a matrix containing 80 rows (temporal sequences) and 
512 columns (512 samples).

Fig. 3. A diagram representing the block instructions underlying the implementation of 
EEG Data Acquisition in the Automatic Mode – the second view showing  

the five EEG rhythms obtained in the time domain

Fig. 4. A diagram representing the block instructions underlying the implementation of 
EEG Data Acquisition in the Automatic Mode – the third view showing  

the five EEG rhythms obtained in the frequency domain

2.3 The preparation of the EEG temporal sequences

Before applying the algorithm aimed at preparation the EEG acquired data, every 
one of 12 × 2D arrays contains: N rows and ‘Samples to Read’ Columns = 80 rows and 
512 columns  80 temporal sequences of 512 elements. Table 1 shows every one of 
the 12 × 2D arrays (both time and frequency domain of raw, gamma, beta, alpha, theta, 
delta) before the preparation of the EEG data.
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After applying the algorithm of preparation of the EEG acquired data, every one 
of 12 × 2D arrays contains: ‘N divided by Time Interval’ rows and ‘Time Interval 
multiplied by Samples to Read’ Columns = 40 rows and 2 × 512 columns = 40 rows 
and 1024 columns  40 sequences of 1024 elements. Table 2 shows every one of the 
12 × 2D arrays (both time and frequency domain of raw, gamma, beta, alpha, theta, 
delta) after the preparation of the EEG data. Further, it results in the extraction or cal-
culation of features (for example: mean, median, standard deviation) from every one of 
the 40 sequences, each of them containing 1024 elements.

Table 1. Structure of the 2D arrays (time and frequency domain of all EEG signals)  
before the preparation of the EEG acquired data

Temporal Sequence Samples to Read –  
First Index …. Samples to Read –  

The Last Index
i = 0 0 …. 511
i = 1 512 .... 1023
i = 2 1024 …. 1535
i = 3 1536 2047
…. …. …. ….

i = 38 19456 …. 19967
i = 39 19968 …. 20479

…. …. …. ….
i = 78 39936 …. 40447
i = 79 40448 …. 40959

The algorithm of preparation of the acquired EEG data includes three stages. The first 
stage is related to using the predefined ‘Read Delimited Spreadsheet VI’ to read each of 
the 12 × 2D arrays containing 40960 samples corresponding to the EEG rhythms previ-
ously saved .csv files. The second stage consists of implementing a customized VI aiming 
at converting each of the 12 × 2D arrays into 12 × 3D arrays, the third dimension results 
from the separate extraction of two rows or two sequences composed of 1024 samples. 
The third stage is related to the implementation of another customized VI to achieve 
the conversion of each of the 12 × 3D arrays into 12 × 2D arrays by removing the third 
dimension because the previously extracted two rows or two sequences should form a 
single row or a single sequence and all the resulted rows/sequences determine a 2D array.

Table 2. Structure of the 2D arrays (time and frequency domain of all EEG signals)  
after applying the preparation of the EEG acquired data

Temporal Sequence Samples to Read –  
First Index … . Samples to Read –  

The Last Index
i = 0 0 …. 1023
i = 1 1024 …. 2047
…. …. …. ….

i = 19 19456 …. 20479
…. …. …. ….

i = 39 39936 …. 40959
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2.4 The label assignment for each EEG temporal sequence by visually 
checking the graphical display in time and frequency domains

After the preparation of EEG data is finished (see Figure 5), the user can manually 
set the label for each EEG temporal sequence by visually checking the graphical dis-
play in time and frequency domains. Figure 5 shows the options and settings related to 
checking the raw EEG signal. Other tabs/graphical windows with similar content assess 
each EEG rhythm (delta, theta, alpha, beta, and gamma).

Fig. 5. A sequence of the front panel – EEG raw signal – showing various options allowing the 
label assignment for each EEG temporal sequence by visually checking the graphical display in 

time and frequency domains

Therefore, a numerical index can be incremented or decremented by implement-
ing original LabVIEW programming functions to switch between the EEG temporal 
sequences. Then, by selecting the corresponding virtual button, the user can insert the 
label associated with the currently displayed EEG temporal sequence. To remove a 
wrong value inserted by mistake, the user can select the button allowing the deletion 
of that label.

Further, each label saved in a numerical array generates the EEG datasets aimed for 
training and testing a neural network model. Using the ‘Statistics Express VI’ included 
by the ‘Signal Analysis Express VIs’ LabVIEW functions palette, it results in the calcu-
lation of the statistical features. They determine the content of the EEG datasets stored 
for each EEG temporal sequence. According to Figure 6, there result in the follow-
ing statistical features: arithmetic mean, median, mode, the sum of values, root mean 
square (RMS), standard deviation, variance, Kurtosis, skewness, maximum, minimum, 
and range (maximum-minimum).
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Fig. 6. The settings corresponding to ‘Statistics Express VI’ included by  
the ‘Signal Analysis Express VIs’ LabVIEW palette

As previously stated, the working principle of the proposed LabVIEW application 
is applied to classify multiple voluntary eye-blinks, although it provides the benefit 
of processing and recognizing various EEG patterns associated with other cognitive 
tasks. This way, the user should set the label of an EEG temporal sequence to one of the 
following values: 0 (if no eye-blink was detected), 1 (if one eye-blink was detected), 
2 (if two eye-blinks were detected), and 3 (if three eye-blinks were detected) displayed 
in Figure 7.

Fig. 7. An example for the LabVIEW display of the EEG temporal sequences associated with 
each label: 0 – no eye-blink; 1 – one eye-blink; 2 – two eye-blinks and 3 – three eye-blinks

2.5 The generation of training and testing EEG dataset

Multiple mixtures between the selected EEG signals and the extracted features are 
necessary to generate the training and testing EEG dataset. The boxes from the top 
side of Figure 8 represent 12 × 2D_arrays, each of them containing 40 rows and 1024 
columns or 40960 samples. Also, these boxes represent:

•	 6 × 2D arrays for Time Domain – Waveform_Y_Data of Raw, Gamma, Beta, Alpha, 
Theta, and Delta;

•	 6 × 2D arrays for Frequency Domain – FFT_Peak of Raw, Gamma, Beta, Alpha, 
Theta, and Delta.

Figures 8–10 show the graphical diagrams explaining the process of the EEG dataset 
generation.
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The first customized subVI, called ‘Process 2D arrays_Sequences’, was developed 
to insert all the 12 × 2D_arrays into one 3D array, whose structure includes: 12 pages 
corresponding to the 12 EEG signals, 40 rows associated to the 40 temporal sequences, 
and 1024 columns related to the 1024 samples.

The second customized subVI, called ‘Process 3D_Array_Signals_SubVI’, was 
implemented to extract only those 2D arrays corresponding to the previously selected 
signals by using the checkboxes. Therefore, the resulting 3D array comprises pages 
equal to selected signals, 40 rows, and 1024 samples.

Fig. 8. First view of the diagram representing the block instructions underlying the generation 
of training or testing dataset based on multiple mixtures between the selected  

EEG signals and the extracted features

The third customized subVI, called ‘Process 3D Array_Signals_Highlighted_
SubVI’, was created to enable feature extraction by calculating the specified statistical 
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measurements against the previously selected signals. Thus, by adding a new dimen-
sion, the resulted 4D array is consisting of: a certain number of volumes equal to the 
number of selected signals, 40 pages corresponding to the 40 temporal sequences, a 
certain number of rows equal to the number of the extracted features, and one column 
related to the single value of each feature.

Fig. 9. The second view of the diagram representing the block instructions underlying the 
generation of training or testing dataset based on multiple mixtures between the selected  

EEG signals and the extracted features

Fig. 10. The third view of the diagram representing the block instructions underlying the  
generation of training or testing dataset based on multiple mixtures between the selected  

EEG signals and the extracted features
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Fig. 11. Fourth view of the diagram representing the block instructions underlying the  
generation of training or testing dataset based on multiple mixtures between the selected  

EEG signals and the extracted features
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Fig. 12. Fifth view of the diagram representing the block instructions underlying the  
generation of training or testing dataset based on multiple mixtures between the selected  

EEG signals and the extracted features

The fourth subVI, called ‘Process 4D Array_Signals_Highlighted_Features_
Extracted’ (see Figure 11), was developed to re-organize and reduce the dimensionality 
of the obtained data by the generation of one 3D array that is comprising of: 40 pages 
associated with the 40 temporal sequences, a certain number of rows equal to the num-
ber of the selected signals and a certain number of columns equal to the number of the 
extracted features.

The fifth subVI, called ‘Process 3D Array_Signals_Highlighed_Features_Extracted’, 
was implemented as a final stage of re-organization and reducing the dimensional-
ity of the obtained data by the generation of a 2D array that is consisting of 40 rows 
corresponding to 40 temporal sequences, a certain number of columns involving the 
number of selected signals and the number of the extracted features. The generated 2D 
array included numerical elements that were converted into String type. Then, a .csv 
file representing the training/testing dataset stores the 2D array_ Signals_Highlighted_ 
Features_Extracted (see Figure 12) of string elements. The .csv file is consisting of 
a table with 11 columns (Sequence; Mean_Raw; Mean_Alpha, Mean_Beta; Median_
Raw; Median_Alpha; Median_Beta; RMS_Raw; RMS_Alpha; RMS_Beta; Label) and 
40 rows.

2.6 Training a NN model for the EEG signals classification by setting certain 
hyper-parameters

This phase involves applying the generated dataset to the classification process based 
on artificial neural networks (NN). Using the default subVIs included by the ‘Analytics 
and Machine Learning’ (AML) toolkit results in the classification process.

‘Aml_Read CSV File. vi’ is used to open the CSV file and read the training data-
set. ‘Load Training Data (2D Array).vi’ is used to load the dataset for training the NN 
model.
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‘Normalize. vi’ is used to normalize the training data with the 2-Score or Min-Max 
Method. Normalization is related to scaling each value of the training dataset in the 
specified range. The ‘Normalize. vi’ has two parameters: one shot and batch.

‘Initialize Classification Model (NN).vi’ initializes the parameter of the classifica-
tion algorithm: neural networks (NN). The user should set a specific value for every 
hyperparameter: the number of hidden neurons, the hidden layer type (Sigmoid, Tanh 
or Rectified Linear Unit functions), the output layer type (Sigmoid or Softmax func-
tion), the cost function type (Quadratic or Cross-Entropy function), tolerance and max-
imum iteration.

According to the AML LabVIEW toolkit, the ‘hidden layer type’ is related to the 
activation function applied to the neurons from the hidden layer type. Table 3 defines 
the available activation functions. According to Table 4, Sigmoid and Softmax are the 
two activation functions available in the neurons regarding the ‘output layer type.’ 
Table 5 shows the mathematical formulas for the supported cost functions type.

Tolerance or max iteration parameter value constitutes the criteria determining train-
ing stops or fitting the neural networks model. The tolerance specifies the training error, 
and the max iteration specifies the maximum number of optimization iterations. The 
default value for tolerance is 0.0001. The default value for max iteration is 1000.

Table 3. Information about the available activation functions determining the hidden layer type 
set as a hyper-parameter included by the ‘Analytics and Machine Learning’ toolkit

Function Type Definition Description

Sigmoid f x
e x

( ) �
� �

1
1

x – the activation value of the hidden neuron

Tanh f x x( ) ( )= tanh x – the activation value of the hidden neuron

ReLU f x x( ) ( , )= max 0 x – the activation value of the hidden neuron

Table 4. Information about the available activation functions determining the output layer type 
set as a hyper-parameter included by the ‘Analytics and Machine Learning’ toolkit

Function Type Definition Description

Sigmoid f x
e x

( ) �
� �

1
1

x – the activation value of the output neuron

Softmax
f x e

e

x

j

n
x

i

j

( ) �

�

�� 1

x – the activation value of the output neuron
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Table 5. Information about the available cost functions type set as a hyper-parameter included 
by the ‘Analytics and Machine Learning’ LabVIEW toolkit

Function Type Definition Description

Quadratic error
l
t y� �

1 2( ) t – the target value, y – output value, l – number of 
training samples

Cross-entropy f x
l

t lny
j

n

j j( ) � �
�

�

�
�

�

�

�
�

�
�1

1

t – the target value, y – output value, l – number of 
training samples and n – number of classes

Likewise, the user can set the ‘Cross-Validation Configuration,’ which is an input 
cluster containing the following elements: a Boolean control called ‘enable’ (used to 
enable or disable cross-validation in training model), number of folds (defining the 
number of sections that this VI divides the training data into) and metric configuration 
(average method: micro, macro, weighted or binary).

‘Train Classification Model. vi’ is used to train a classification model. ‘Aml_save 
Model to JSON.vi’ is used to save the model as a JSON file. It converts the trained 
model to a JSON string to save the trained model to a file.

According to the documentation of the AML LabVIEW toolkit, by enabling the 
‘Cross-Validation Configuration,’ confusion matrix and metrics are returned as out-
put values of the ‘Train Classification Model. vi’. The default number of folds is 3, 
meaning that the test data consists of one section and the training data comprises the 
remaining sections. The metric configuration parameter determines the evaluation met-
ric in cross-validation—the neural networks models trained by the proposed LabVIEW 
application involved ‘weighted metric configuration’ type.

Figure 13 shows the entire structure of the previously described AML functions 
used to enable the setting of hyperparameters for training the neural networks model. 
Figure 14 shows the graphical user interface of this LabVIEW programming sequence.

Fig. 13. A sequence of the block diagram displaying the corresponding  
LabVIEW programming functions used to enable the setting  
of hyperparameters for training the neural networks model
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Fig. 14. A sequence of the front panel showing the graphical window corresponding to training 
the neural networks model for the EEG signal classification by setting certain hyper-parameters

2.7 Training the NN model for the EEG signals classification  
by searching the optimal hyper-parameters

All the information presented in the above section – Classification by setting the 
parameters – are also applicable to the current section – Classification by searching the 
optimal parameters. Nevertheless, there is a single exception related to the ‘Initialize 
Classification Model (NN).vi.’ According to Figure 15, the user should specify multi-
ple values for each hyper-parameter so that the ‘Train Classification Model. vi’ could 
use a grid search to find the optimal set of parameters. This technique is underlying 
the training of the neural networks models from the current research paper because 
it is more reliable, efficient, and straightforward by enabling the option ‘Exhaustive 
Search’ to determine those metrics (accuracy, precision, recall, and F1 score) with all 
the possible mixtures between hyper-parameters. It will result in a mixture including 
the optimal hyper-parameters necessary to get the highest values for the metric speci-
fied in the ‘Evaluation Metric’ parameter. If the option ‘Random Search’ was enabled, 
the ‘number of searchings’ parameter indicates testing only some possible mixtures 
between hyper-parameters.

Moreover, the graphical user interface from Figure 15 displays the number of  
correctly/incorrectly detected samples/temporal sequences, calculated by taking into 
account the mathematical formulas for the metrics described in Table 6.

The current research analyzed 50 generated artificial neural networks-based models, 
and each of them needed a training time interval between 1 and 3 hours.
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Fig. 15. A sequence of the front panel showing the graphical window corresponding to training 
the NN model for the EEG signal classification by searching the optimized hyper-parameters

Table 6. The mathematical formulas for the evaluation metrics (accuracy, precision,  
f1 score, recall) described in the documentation of the AML LabVIEW toolkit

Function Type Definition Description

Accuracy
Acc TP TN

P N
�

�
�

�
TP – number of true positive cases
TN – number of true positive cases
FP – number of false-positive cases
FN – number of false-negative cases
P – number of real positive cases
N – number of real negative cases

Precision
Prec TP

TP FP
�

�
�

F1 Score
F TP

TP FP FN
1 2

2
�

� �

Recall
Rec TP

TP TN
�

�
�

2.8 The deployment/testing of the trained NN classification model

The LabVIEW programming sequence underlying this phase consists of specific 
virtual instruments presented in this section. First, ‘aml_Read CSV File. vi’ is used 
to open and read data and labels from the .csv file containing the testing EEG data-
set. Secondly, the developer calls the ‘aml_Read Model from JSON.vi’ to open and 
read the trained Neural Networks classification model. Thirdly, ‘Load the test data file 
(2D Arrays).vi’ is necessary to load or extract the data and labels in a format appropriate 
for the deployment of the model. Fourthly, ‘Deploy Feature Manipulation Model. vi’ 
aims to preprocess the testing data by applying a trained feature manipulation model. 
Fifthly, ‘Deploy Classification Model. vi’ handles the classification of the testing data-
set by applying the trained classification model and returning the predicted labels of 
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input data. Sixthly, ‘Evaluate Classification Model. vi’ plays an essential role in assess-
ing the classification model by comparing the predicted labels with initially set labels 
of the input data. Finally, it will result in evaluation metrics (accuracy, precision, recall, 
and F1 score) for the trained and tested neural networks model.

3 Results

The proposed research virtual instrument aims to acquire, process, and classify the 
EEG signals corresponding to neuronal patterns elicited by different cognitive tasks. 
The eye-blink is considered an artifact across the EEG signal, but it can also be con-
sidered a precise control signal in a brain-computer interface application. A simple 
spike pattern that increases and decreases the biopotential characterizes the voluntary 
eye-blink resulting from an ordinary effort. Therefore, if it does not require a higher 
amplitude or a strong effort, then the voluntary eye-blink is associated with a general 
pattern that could be easy to detect even by visual checking of the EEG signal.

Thus, the classification of multiple voluntary eye-blinks is a testing method of the 
working principle underlying the proposed BCI research related virtual instrument 
based on the processing of the EEG temporal sequences consisting of multiple mix-
tures between several EEG rhythms (raw, delta, theta, alpha, beta, gamma) in Time 
and Frequency Domains and certain statistical features (mean, median, RMS, stan-
dard deviation, mode, the sum of values, skewness, Kurtosis coefficient, maximum and 
range = maximum-minimum).

During the experiments conducted in the current research work, there resulted in 
4000 temporal EEG sequences from a single subject (female, 29 years). The duration 
of each session of EEG data acquisition was 1 minute and 20 seconds. For example, 
during every period equivalent to 80 seconds, at each time interval of 2 seconds, the 
subject had to accomplish one of the following four tasks: avoid the voluntary eye-
blinks, execute one voluntary eye-blink, perform two voluntary eye-blinks and achieve 
three voluntary eye-blinks.

The results of the current research paper consist of 25 sessions of EEG data acqui-
sition, each of them including 40 EEG temporal sequences. A session of EEG data 
acquisition set to 80 seconds corresponds to recording a series of 40 EEG temporal 
sequences. Therefore, there resulted in 25 × 40 = 1000 EEG temporal sequences for 
each of the four classes: 0 – No Eye-Blink Detected; 1 – One Eye-Blink Detected;  
2 – Two Eye-Blinks Detected and 3 – Three Eye-Blinks Detected.

In fact, for the training dataset generation, the subject has been involved in 4 × 25 
sessions of EEG data acquisition, enabling the recording of the 4 × 25 × 40 = 4000 EEG 
temporal sequences corresponding to the previously mentioned four classes.

Otherwise, for the generation of the testing dataset, the subject has been also 
involved in 4 × 5 sessions of EEG data acquisition, enabling the recording of the 
4 × 5 × 40 = 800 EEG temporal sequences corresponding to the previously mentioned 
four classes. The duration of each session of EEG data acquisition was 80 seconds. 
Figure 16 shows the previously described general structure. Both training and testing 
datasets include a column that is assigned the labels.
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Therefore, by visually checking the graphical representation of each EEG temporal 
sequence, the corresponding label is assigned. Moreover, if the initial aim was to get 
40 sequences associated with a specific class (for example, one eye-blink), it mistak-
enly resulted in only 35 correctly executed sequences. Other correctly five sequences 
acquired during another session kept as an alternative could replace the remained 
wrongly five sequences. Another original application achieved automatic replacement 
by implementing customized programming sequences in LabVIEW.

Firstly, each generated dataset allowed the initializing, configuring, and training of 
a specific machine learning (ML) based model to associate the labels with a series of 
features. Then, it should be able to classify a new input correctly.

Fig. 16. An overview of the proposed paradigm for performing the experimental sessions  
to get the datasets used for both training and testing of the neural networks model  

of voluntary multiple eye-blinks classification

Secondly, another generated dataset allowed the testing and validation of the previ-
ously obtained model deployed on testing data, including labels initially set. The eval-
uation of the model is related to the comparative analysis between the estimated labels 
(calculated by the model) and the initially set labels (included by the testing dataset). 
It will also result in the following evaluation metrics: accuracy, precision, re-call, and 
F1 score.

There were generated 50 .csv files corresponding to 50 training sets or 50 multiple 
mixtures of selected EEG signals and extracted features to initialize, configure and train 
50 models (saved as .json files) based on artificial neural networks techniques. There 
resulted in also 50 .csv files describing the content of the 50 training sets. Each train-
ing set is consisting of 4000 temporal sequences, based on the following assignments: 
1000 sequences corresponding to Label – 0 (No Eye-Blink Detected), 1000 sequences 
associated with Label – 1 (One Eye-Blink Detected), 1000 sequences related to  
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Label – 2 (Two Eye-Blinks Detected) and 1000 sequences linking to Label 3 (Three 
Eye-Blinks Detected).

Further, it is necessary to deploy the previously obtained 50 neural networks models 
(.json files) on different 50 testing datasets saved as 50 .csv files. The structure of the 50 
testing datasets is the same as the structure of the 50 training datasets.

4 Discussion

The targets of analyzing the previously described results are the following:

– To identify which of the available ten EEG rhythms are associated with getting NN 
models with the highest accuracy in the training or testing phases;

– To identify which of the available ten statistical features are associated with getting 
NN models with the highest accuracy in the training or testing phases;

– To identify which hyper-parameters are associated with getting NN models with the 
highest accuracy in the training or testing phases;

– To identify how many correctly/incorrectly samples are detected by the NN models 
with the highest accuracy in the training or testing phases.

The first highest accuracy of a neural networks-based model is 0.99 for uploading a 
training dataset comprising three EEG rhythms (raw, beta, and gamma) and all the ten 
available statistical features. The hyper-parameters characterizing the NN model with 
the first highest accuracy of 0.99 are the following: number of hidden neurons = 20; 
hidden layer type = Tanh; output layer type = Softmax; cost function = Cross-entropy; 
number of input neurons = 30; average method = Weighted. Additionally, from the 
Total = 4000 samples, 3942 samples were correctly detected, and 58 were incorrectly 
detected.

The second-highest accuracy of the neural networks-based models is 0.98 for 
uploading the 16 training datasets composed of the following groups of selected EEG 
rhythms:

– all 12 signals in time and frequency domains;
– only the six signals in the time domain;
– raw;
– raw, delta, theta;
– raw, alpha, beta, gamma;
– raw, delta, theta, gamma;
– raw, beta, gamma;
– raw, delta, theta, alpha.

These training datasets are composed of the following groups of extracted statistical 
features:

– all the ten statistical features;
– mean, median, RMS, standard deviation, Kurtosis Coefficient;
– median, RMS, standard deviation, Kurtosis Coefficient;
– median, RMS, standard deviation, Kurtosis Coefficient, mode, sum, skewness.
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The hyper-parameters characterizing the NN model with the second-highest accu-
racy of 0.98 are the following:

– The number of hidden neurons is between 5 and 500, as it follows: 5; 10; 20; 50; 
200; 500;

– Hidden layer type: ReLU; Sigmoid; Tanh;
– Output layer type: Sigmoid; Softmax;
– Cost function: = Cross-entropy for all the NN models/training datasets.
– Number of input neurons is between 10 and 120, as it follows: 10; 12; 15; 16; 20; 

21; 24; 28; 40; 42; 60; 120;
– Average method = Weighted for all the NN models/training datasets.

In addition, regarding the NN models that reported a training accuracy of 0.98, from 
Total = 4000 samples, the pairs of correctly – incorrectly detected samples are as fol-
lows: 3912 – 88; 3916 – 84; 3924 – 76; 3925 – 75; 3926 – 74; 3927 – 73; 3929 – 71; 
3930 – 70; 3933 – 67; 3935 – 65; 3937 – 63;

The third-highest accuracy of the neural networks-based models is 0.95 for upload-
ing three training datasets composed of the following groups of selected EEG rhythms:

– only the six signals in the frequency domain;
– Raw, Delta, Theta in the frequency domain.

These training datasets are composed of the following groups of extracted statistical 
features:

– all the ten statistical features;
– median, RMS, standard deviation, Kurtosis, Mode, Sum, Skewness;

The hyper-parameters characterizing the NN model with the third-highest accuracy 
of 0.95 are the following:

– The number of hidden neurons is between either 50 or 100

Hidden layer type: ReLU; Tanh;

– Output layer type = Sigmoid for all the NN models/training datasets;
– Cost function: = Cross-entropy for all the NN models/training datasets;
– Number of input neurons is between 21 and 60, as it follows: 60; 42; 21;
– Average method = Weighted for all the NN models/training datasets.

In addition, regarding the NN models that reported a training accuracy of 0.95, from 
a Total = 4000 samples, the pairs of correctly/incorrectly detected samples are as fol-
lows: 3803 – 197; 3799 – 201; 3790 – 210.

The first highest accuracy of a neural networks-based model is 0.97 for uploading 
four testing datasets. The groups of selected EEG rhythms and the extracted statisti-
cal features composing these testing datasets were included above to the equivalent 
training datasets. The above paragraphs described the hyper-parameters characterizing 
the corresponding NN models.
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In addition, regarding the NN models that reported a testing accuracy of 0.97, from 
a Total = 800 samples, the pairs of correctly – incorrectly detected samples are as fol-
lows: 778 – 22; 775 – 25; 776 – 24; 773 – 27.

It results that the second-highest accuracy of a neural networks-based model is 
0.96 for uploading five testing datasets. The groups of selected EEG rhythms and the 
extracted statistical features composing these testing datasets were included above to 
the equivalent training datasets. The above paragraphs described the hyper-parameters 
characterizing the corresponding NN models.

In addition, regarding the NN models that reported a testing accuracy of 0.96, from 
a Total = 800 samples, the pairs of correctly – incorrectly detected samples are as fol-
lows: 770 – 30; 768 – 32; 768 – 32; 766 – 34; 765 – 35.

It results that the third-highest accuracy of a neural networks-based model is 0.95 for 
uploading six testing datasets. The groups of selected EEG rhythms and the groups of 
extracted statistical features composing these testing datasets were included above to 
the equivalent training datasets. The above paragraphs described the hyper-parameters 
characterizing the corresponding NN models.

In addition, regarding the NN models that reported a testing accuracy of 0.95, from 
a Total = 800 samples, the pairs of correctly – incorrectly detected samples are as fol-
lows: 763 – 37; 759 – 41; 761 – 39; 763 – 37; 761 – 39; 762 – 38.

Considering the previous analysis, the same 20 neural networks-based models 
reported almost similar highest accuracy values both in the training phase (0.99; 0.97; 
0.95) by uploading datasets consisting of 4000 recordings each and in the testing phase 
(0.97; 0.96; 0.95) by uploading datasets consisting of 800 recordings each.

Further, to determine the first high-performance NN models from the top 20, the sum 
of the correctly detected samples obtained at the training phase and the correctly detected 
samples at the testing phase was calculated. Then, considering that the maximum sum 
of correctly detected samples is 4800 (4000 samples for the training phase and 800 
samples for the testing phase), it results in the overall accuracy of the top 20 NN models.

Thus, the NN model that reported the highest accuracy of 98.13% was trained and 
tested by uploading a dataset comprising all the possible mixtures between the raw, 
beta, and gamma EEG rhythms and all the ten statistical features. Accordingly, the 
maximum number of correctly detected samples was 4710 out of 4800.

The results obtained by the current research confirm, bring complete information, 
reveal new insights, add improvements, and thoroughly explore the stages underlying 
the classification of voluntary eye-blinking also addressed in other scientific articles: 
[8], [9], and [10]. According to the paper [8], the extracted features were: maximum 
amplitude, minimum amplitude, and the Kurtosis coefficient. According to the paper 
[9], the extracted features were: Kurtosis coefficient, maximum amplitude, and mini-
mum amplitude. According to the paper [10], the extracted features were: minimum 
value, maximum value, median, mode, and standard deviation.

The future versions of the presented LabVIEW-based virtual application for BCI 
research should also include additional features, such as average power spectral den-
sity, average spectral centroid, and average log energy entropy, addressed by [14]. 
These features were extracted from alpha and beta EEG rhythms, previously analyzed 
in time and frequency domains to classify three mental activities: quick math solv-
ing, do nothing (relax), and playing a game [14]. Moreover, an extensive comparative 
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analysis could complete the current discussion about research regarding the values of 
statistical features and EEG rhythms associated with each of the four detected states: 
no eye-blink, one eye-blink, two eye-blink, and three eye-blink. Regarding the content 
of the 19th dataset, a comparison is possible between the values of Mean_Raw, Mean_
Beta, and Mean_Gamma. A separate set of values is corresponding to each of the four 
previously described states. In the same way, there can be determined and compared the 
values of Median_Raw, Median_Beta, and Median Gamma and all the other statistical 
features corresponding to the four different states of voluntary eye-blink classification.

In contrast with the current research that analyzes various mixtures between the 
selected EEG signals and the extracted statistical features, as well as different archi-
tectures of NN models, the papers [8], [9], and [10] focuses on the experimentation 
of a single method of features extraction and a specific classification technique that is 
considered optimal.

The paper [8] proposes a binary classifier based on Probabilistic Neural Network 
(RBF = Radial Basis Function). The EEG signal was acquired at 480 Hz sampling 
frequency, filtered by applying Butterworth Band Pass, detrended, normalized, and seg-
mented into windows with 480 samples each.

The paper [9] reports the neural networks with the highest performance: R = 0.8499 
for FFBP (Feed-forward backpropagation) and R = 0.90856 for CFBF (Cascade-forward 
Backpropagation).

Regarding the paper [10], the authors designed an artificial multi-layer neural net-
work with backpropagation, considering the following structure: input layer containing 
48 neurons based on the extraction of 6 features, three hidden layers, and one output 
layer including only one neuron. The used activation function is the binary sigmoid.

Moreover, the current paper reported higher values for accuracy than those from 
the previous scientific articles [8], [9], and [10]. Nevertheless, due to the execution 
of experiments during pandemic restrictions, both training and testing datasets from 
this paper were obtained based on the raw EEG data acquisition from a single subject, 
which could be a limitation that can influence the overall results. Therefore, the plan is 
to implement and assess an updated version of the presented BCI research-based virtual 
instrument by involving several healthy or disabled subjects of different categories, 
including age, profession, psychological traits, and intellectual background.

Otherwise, the current paper’s advantage is the convenience of using the most 
affordable portable EEG headset with only one embedded biosensor for quick set-up 
and efficient neuronal biopotentials monitoring. The other scientific articles [8], [9] 
and [10] presented experimental activities that involved the following EEG expensive 
devices: a wireless biomedical monitor, called BioRadio with four channels [8]; RMS 
EEG 32 Super System with two Ag-AgCl electrodes [9] and OpenBCI Cython with 
eight channels [10].

Nevertheless, the future version of the presented virtual instrument related to BCI 
research should be updated to handle more EEG channels to classify complex mental 
activities efficiently or even manage hybrid BCI systems [15–17]. Moreover, the aim is 
to use, as much as possible, the most inexpensive portable EEG headsets, for example, 
Muse and Emotiv Insight, to ensure the simple-to-use working principle and availabil-
ity for the researchers with minimal experience related to the Brain-Computer Interface 
field. Although using a commercial portable headset seems to be the most straightfor-
ward solution, it is still necessary to implement a customized communication protocol 
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enabling the universal EEG data acquisition in a user-friendly software environment, 
such as LabVIEW.

Overall, the proposed solution aims for BCI research in the beginning stage by 
proving a standalone, simple to use virtual instrument with a user-friendly graphical 
interface accomplishing all the necessary fundamental functions: EEG data acquisition, 
processing, features extraction, and classification.

5 Conclusions

This paper proposed a BCI research-related LabVIEW virtual instrument to acquire, 
process, and classify the EEG signal detected by the embedded sensor of NeuroSky 
Mindwave Mobile headset, second edition. The artificial neural network-based tech-
niques facilitated the classification process by using the versatile functions included 
by the ‘Analytics and Machine Learning’ toolkit. Its functionality was customized to 
remove the randomization of EEG data.

The new approach described in this paper is consisting of original programming 
sequences implemented in LabVIEW. The LabVIEW application aims to recognize 
EEG signal patterns corresponding to different cognitive tasks efficiently. This paper 
presented the classification of multiple voluntary eye-blinks.

The application developed in the current research is consisting of different states. The 
first one allows the manual and automatic acquisition mode. The second one enables the 
processing of the EEG raw signal. The third one is related to preparing the 50 EEG training 
datasets with 4000 recordings each and 50 EEG testing datasets with 800 recordings each 
based on the generation of 50 multiple mixtures. Thus, there result in 50 multiple selections 
between ten EEG rhythms and ten statistical features. The selected EEG rhythms include 
time-domain: raw, delta, theta, alpha, beta, gamma, and frequency domain – Fast Fourier 
Transform with Peak parameter applied on the same signals. The extracted statistical fea-
tures are the following: mean, median, route mean square, standard deviation, Kurtosis 
Coefficient, mode, summation, skewness, maximum, and range = maximum – minimum.

The use of the LabVIEW application developed in the presented work resulted in 
automatically identifying the most relevant multiple mixtures. Further, the training EEG 
datasets facilitated the initialization, configuration, and obtaining the 50 artificial neural 
networks (ANN) based classification models. After that, the trained ANN models are 
deployed on the testing EEG datasets to result in evaluation metrics, such as accuracy 
and precision. The final phase is a comparative assessment to determine the highest 
values of accuracy reported by the training of the top 20 ANN models (0.99; 0.97; 0.95) 
and the testing of the same 20 ANN models (0.07; 0.96; 0.95). Accordingly, it analyzed 
the corresponding mixtures between the selected EEG rhythms and the extracted statis-
tical features underlying the datasets used for training and testing the 20 ANN models. 
Also, the hyperparameters were listed to generate the top 20 ANN models reporting the 
highest accuracy. Determining the maximum sum of the correctly detected samples in 
the training and testing phases resulted in the high-performance ANN model with an 
accuracy equal to 98.13% that can correctly recognize 4710 out of 4800 samples.

Future research directions are related to further improvements regarding the 
LabVIEW-based system’s assessment by enabling different EEG signal patterns 
classification. Furthermore, the intention is to add more types of signals and more  
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significant features. Likewise, other versatile applications of Brain-Computer Interface 
will surely need more flexibility achieved by the execution of training processes based 
on Supported Vector Machines or Logistic Regression models. Therefore, a future 
BCI-related research project should also consider the ‘Analytics and Machine Learn-
ing’ LabVIEW toolkit, including these two methods.
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