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Abstract—An EEG signal is used for capturing the signals from the brain, 
which helps in localization of epileptogenic region, thereby which plays a vital 
role for a successful surgery. The focal and non-focal signals are obtained 
from the epileptogenic region and normal region respectively. The localization 
of epileptic seizure with the help of focal signal is necessary while detecting 
seizures. Hence, the present article provides detailed analysis of EEG signals. 
The Focal and Non-focal signals are decomposed using EMD-DWT. A com-
bination of EMD-DWT decomposition method in accordance with log-energy 
entropy gives an efficient accuracy in comparison to other entropy in differen-
tiating the Focal from Non-focal signals. The extracted features are subjected 
to SVM and KNN classifiers whose performance will be calculated and ver-
ified with respect to accuracy, sensitivity and specificity. At the end, it will 
be shown that KNN produces the highest accuracy when compared to SVM 
classifier.
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1 Introduction

Epilepsy is the fourth common disorder among the various neurological disorder 
affecting almost people of all ages. A spectrum condition which involves seizure of sev-
eral types that varies among peoples are referred to as epilepsy. A number of methods 
exists for detecting epilepsy with some limitations. Epilepsy is a neurological disorder 
[1]–[3] which comprises of recurrent seizures, that mostly affects the Central Nervous 
System (CNS) of our brain. Epilepsy is otherwise known as “seizure disorder”. It dis-
rupts the activity of the brain cells called neurons, which transmits the electrical and 
chemical signals. In a person with normal condition, these electrical and chemical sig-
nals acts on other neurons, muscles and glands to produce feelings, thoughts and actions; 
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whereas in a seizure condition, irregular firing of neurons takes place which causes 
excessive electrical activity resulting in loss of consciousness [4]–[7]. Epilepsy are  
characterized by unpredictable seizures and other causes such as head injuries, stroke, 
brain damage etc., as shown in the Figure 1. During the period of seizure, a person 
experiences abnormal behaviour, symptoms and sensations which also includes loss 
of consciousness. Epilepsy differs from seizure in such a way that [8] [9] a seizure 
comprises of a single event; whereas an epilepsy is characterized by more than 2 unpro-
voked seizures.

The various methods available for detection of epilepsy are MRI, PET and SPECT 
etc. But, [10]–[15] the accuracy levels of those methods were not up to the level; such 
that it could be further continued for the purpose of detection. Hence, this paved a way 
to a new method of detection using EEG electrodes.

Fig. 1. Various causes of epilepsy

An electroencephalogram (EEG) electrode is a 10–20 electrode lead system which 
is placed on the scalp for capturing the signals from brain. The patients with epi-
lepsy are recommended surgery as a part of curing the disorder, which are not cured 
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by medicine. For the successful epilepsy surgery, “localization of epileptogenic 
region,” a region that initiates the seizure; plays a vital role.The epileptogenic region 
is detected through analysis of EEG signals. Signals acquired from the epileptogenic 
region in the brain are called as the focal signal and that of obtained from the nor-
mal region of the brain are known as non-focal signal (Figure 2). The epileptogenic 
region in the brain, [16]–[18] found with help of focal signal is necessary for the 
purpose of detection of epileptic seizures. Hence, by differentiating the focal and 
non-focal signal, the process of detection is made serene. The Focal and Non-focal 
signals are decomposed using EMD-DWT. A combination of EMD-DWT decompo-
sition method in accordance with log-energy entropy gives an efficient accuracy in 
comparison to other entropy in differentiating the Focal from Non-focal signals. The 
extracted features are subjected to SVM and KNN classifiers whose performance 
will be calculated and verified with respect to accuracy, sensitivity and specificity. At 
the end, it will be shown that KNN produces the highest accuracy when compared to 
SVM classifier.

Fig. 2. Discrimination between focal and non-focal signal

2 Literature survey

Non-invasive EEG signal [19], [32] were made used in detecting epileptic seizure. 
It utilized wavelet decomposition for capturing morphology and spatial distribution 
to differentiate epileptic from non-epileptic seizure through Support Vector Machine 
algorithms. They tested 36 pediatric subjects which detected almost 131 of 139 seizure 
events and declared 15 false detection for a duration of 60 hours in clinical testing. 
Average sample entropy and Average variance [20] were used for classifying focal and 
non-focal signals. These features were made used as an input to LS-SVM classifier. 
In [21] Fuzzy Entropy were employed for detecting epileptic seizure. It obtained EEG 
signals from various epileptic states and obtained classification features which were 
trained and helped in classification using SVM.

In [22] EEG signals such as Focal and non-focal were classified based on Entro-
pies. IMFs were extracted by decomposing EEG signals. Entropy features obtained 
from IMFs were fed to LS-SVM for classifying EEG signals. Discrimination of focal 
from non-focal signal [23], [31] with the help of Focal and Non-Focal Index (FNFI). 
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They decomposed EEG signals into 6 levels using FNFI and measured the entropy fea-
tures using different classifiers such as KNN, PNN and LS-SVM. In [24] analysis of the 
two classes of EEG signals was done in EMD-DWT domain. Accordingly it obtained 
spectral entropy features which were fed as input to the KNN, primarily consists of 
log-energy entropy features. In [25] filters based on Discrete Fourier Transform for 
classifying two classes of EEG signals by computing the rhythms of EEG signals were 
proposed. They derived two features namely RMS and MF which acted as an input for 
LS-SVM for carrying out the classification of EEG signals into focal and non-focal 
signals.

In [26], [30] EEG signals are classified into focal and non-focal signals using IMFs 
which are obtained by disintegrating Electroencephalography signals through EMD 
were carried out. Polynomials and RBF Kernel as classifier for the purpose of classifi-
cation were used.

3 Methodology

The methodology involved in localization of epileptic seizure is carried out through 
a series of process (Figure 3). They are carried out in 3 main process- decomposition, 
feature extraction and classification. The process is initiated by collecting the dataset 
and the one being used here is accessed through an open source, [27] “Bern-Barcelona”. 
It consists of a collection of focal and non-focal dataset which individually consists of 
x and y signals. They are categorized as x, y and x-y signal of Focal and Non-focal 
signals. These initial processes are followed by the decomposition using Empirical 
Mode Decomposition (EMD) and Discrete Wavelet Transform (DWT). Further, dataset 
are decomposed using Empirical Mode Decomposition [28–29] so as to reduce the 
noise, if any present in the signals. A combination of EMD-DWT is being employed in 
this method as they produce a good performance in analysing non-stationary signal. By 
using EMD, the input signals are transformed into IMFs (Intrinsic Mode Functions). 
These IMFs are exported to decompose into sub-bands using DWT. The features of sub-
bands are extracted into 5 levels as d1–d4 and a4 in the process of feature extraction. It 
involves Log-energy entropy as a main feature and outcomes are computed for every 
level of the sub-bands. And, once done with all these processes, the extracted features 
are subjected to classification where the signals are classified into focal and non-focal 
signals using an appropriate algorithm.

The further steps involved in classifying the EEG signals will be discussed in the 
following section.
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Fig. 3. Flowchart depicting the stages involved in classification

The extracted features are processed for classification which is carried out in two 
modes namely, training mode and testing mode. For a comparison purpose, presently 2 
algorithms are made used for classifying the EEG signals. In training mode, 60 dataset 
comprising of focal and non-focal are trained via K-Nearest Neighbor (KNN) algo-
rithm as well as Support Vector Machine. Later, testing dataset with the trained dataset 
as input are tested by KNN and SVM. Finally, their performance in terms of accuracy 
are compared and verified.
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3.1 Steps involved in methodology

The input EEG signals are recorded using EEG electrodes as shown in Figure 4.

Fig. 4. Steps involved in classification of EEG signal

Dataset. The dataset from the EEG signal are collected from the open source web-
site known as Bern Barcelona. The dataset consists of two types of signals as discussed 
in the above section. Individually, the focal and non-focal consist of 3750 pairs (x & y) 
of recorded signal. Each of 3750 pairs consists of 10,240 samples (Figure 5) recorded 
for a duration of 20s. Initially, 60 pairs of focal and non-focal EEG signals are utilized 
for feature extraction &classification.

Fig. 5. Display of 10,240 samples in the workspace
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Focal x signal Non-Focal x signal

Focal y signal Non-Focal y signal

Focal x-y signal Non-Focal x-y signal

Fig. 6. Analysis of focal and non-focal signals

The x & y signals from the focal and non-focal EEG signals are separated and ana-
lysed. Later, these x & y signals are combined for analysing the EEG signals. Figure 5 
depicts the x, y and x-y focal signals in the first row, whereas the second row consists of 
x, y and x-y non-focal signals. The difference between focal and non-focal signals can 
be clearly observed on seeing the Figure 6.These signals after analysing are subjected 
to EMD-DWT based Decomposition and then feature extraction. From thereon, the 
features extracted are given as input to the classifier; to classify the EEG signals into 
focal and non-focal signals.
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EMD-DWT based decomposition. Decomposition is the main step in signal 
processing. It helps to integrate the high frequency signal into clear noiseless signal. 
It is processed by using Empirical Mode Decomposition (EMD) method. It is a method 
of fragmenting the signals without leaving the time domain. This method is highly suit-
able for the non-linear and non-randomness signals like EEG. The Fourier transform 
and wavelet are the other decomposition methods which are compared to the EMD 
decomposition.

Fig. 7. Decomposition using EMD

This process is mainly used for analyzing natural signals. From the original signal, 
it filters out function which form a complete and nearly orthogonal basis. This way of 
decomposing the signal shows that EMD is a method of completeness. EMD (Empiri-
cal Mode Decomposition) transforms the input signal x(t) into a set of IMFs (Figure 7). 
Intrinsic Mode Function is the main function that describes the signal, even though 
they are not necessarily orthogonal in nature. The Intrinsic Mode Functions (IMFs) 
are amplitude & frequency modulated oscillatory patterns. After the decomposing both 
focal and non-focal signal, the IMFs of five layer are taken into matrix and further the 
decomposition proceeds with Discrete Wavelet Transform (DWT) method.

The extracted IMFs (IMF 1 – IMF 5) are decomposed into sub-bands (Figure 8) using 
DWT. The motivation behind EMD-DWT method is that it analyses the non-stationary 
signal in an effective manner. The Discrete Wavelet Transform is the method which 
also process the signal in orthogonal nature, time – frequency based method which is 
highly needed for the decomposition process to provide a clear signal. Discrete wavelet 
transform are defined by Daubechies (DB) wavelets. An analysis of orthogonal multi-
resolution is generated by scaling function under DWT. At last, the four level of matrix 
are obtained from the EMD-DWT based decomposition. Hence from this, the signal 
multiresolution application is named which has the both EMD and DWT as decompo-
sition method.
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Fig. 8. Decomposition using DWT

Feature extraction. After the EMD-DWT based decomposition, the process of 
feature extraction are performed. The feature extraction is mainly used to reduce the 
number of resources which are needed for processing without losing the relevant infor-
mation. It can also reduce the amount of redundant data for a given analysis.

It is the process of extracting the main features or parameters from the decomposed 
signal, which gives the differential values that helps in differentiating focal from the 
normal signal. Here, the features based on entropy are extracted. Generally, entropy is 
a measure of randomness which helps in understanding the dynamics of EEG signals. 
Basically, it measures the complexity of the signals. The log-energy entropy method 
of feature extraction provides the most reliable features in classifying EEG of absolute 
minimal error as 0.01. In particular, the machine learning algorithm is implemented 
to distinguish between seizure and non-seizure activity where the Log-En (log-energy 
entropy) values known as signal features [23],[30] by which the EEG complexity is 
characterized. The matrix from the decomposition process acts as an input from which 
the features are extracted as x and y signal. The log energy entropy value for every five 
level of DB are calculated using the formula as,

 ( ,‘ ’)e wentropy a logenergy=  (1)

The calculated Log-energy entropy values for each and every level (d1–d4, a4) of 
60 dataset are trained and tested for classifying the EEG signals. Table 1 to 6 shows the 
values of Log-Energy entropy for a particular set of dataset. These values are subjected 
to classification using SVM and KNN algorithm.

Table 1. Entropy values for focal x-signals

Sub-Bands IMF 1 IMF 2 IMF 3 IMF 4 IMF 5

d1 –3.3124e+04 –1.1669e+05 –2.3685e+05 –4.4025e+05 –5.8935e+05

d2 –6.9048e+03 –5.8909e+04 –1.3843e+05 –2.5773e+05 –4.7574e+05

d3 –4.5030e+03 –5.4565e+03 –8.0436e+04 –1.5847e+05 –3.1935e+05

d4 –1.7489e+04 1.7361e+04 –2.2955e+04 –9.6008e+04 –1.9243e+05

a4 –2.4498e+04 1.8992e+04 4.2151e+04 4.7363e+04 4.0646e+04

iJOE ‒ Vol. 19, No. 07, 2023 107



Paper—A Novel SVM and K-NN Classifier Based Machine Learning Technique for Epileptic Seizure…

Table 2. Entropy values for focal y-signals

Sub-Bands IMF 1 IMF 2 IMF 3 IMF 4 IMF 5

d1 –3.1158e+04 –1.2088e+05 –2.3225e+05 –4.4177e+05 –5.8367e+05

d2 –6.1630e+03 –6.3243e+04 –1.3686e+05 –2.6371e+05 –4.6538e+05

d3 941.8583 –8.3406e+03 –8.0670e+04 –1.6250e+05 –3.0950e+05

d4 –1.0276e+04 1.6161e+04 –2.2693e+04 –9.8993e+04 –1.9195e+05

a4 –1.9668e+04 1.5324e+04 4.1070e+04 4.4918e+04 4.3687e+04

Table 3. Entropy values for focal x-y signals

Sub-Bands IMF 1 IMF 2 IMF 3 IMF 4 IMF 5

d1 –6.4282e+04 –2.3758e+05 –4.6910e+05 –8.8202e+05 –1.1730e+06

d2 –1.3068e+04 –1.2215e+05 –2.7528e+05 –5.2143e+05 –9.4112e+05

d3 –3.5612e+03 –1.3797e+04 –1.6111e+05 –3.2097e+05 –6.2885e+05

d4 –2.7766e+04 3.3522e+04 –4.5648e+04 –1.9500e+05 –3.8438e+05

a4 –4.4166e+04 3.4316e+04 8.3221e+04 9.2281e+04 8.4333e+04

It can be inferred from the Tables 1, 2 and 3 that the Log-energy entropy values are 
quite small for focal signals. In general, IMFs 3, 4 or 5 have greater values when com-
pared to 1 and 2. However, the values of x – y signal are smaller than that of computed 
individually (i.e.) x and y signal.

Table 4. Entropy values for non-focal x-signals

Sub-Bands IMF 1 IMF 2 IMF 3 IMF 4 IMF 5

d1 –4.1127e+04 –1.1528e+05 –3.5683e+05 –5.0125e+05 –6.0078e+05

d2 –1.7153e+04 –5.5112e+04 –1.8190e+0 –3.1708e+05 –4.9587e+05

d3 –2.4201e+04 –1.0874e+04 –1.1049e+05 –2.0036e+05 –3.4230e+05

d4 –3.8016e+04 1.8257e+04 –5.5476e+04 –1.3082e+05 –2.1672e+05

a4 –4.2690e+04 5.1831e+04 4.2898e+04 2.8726e+04 2.7835e+04

Table 5. Entropy values for non-focal y-signals

Sub-Bands IMF 1 IMF 2 IMF 3 IMF 4 IMF 5

d1 –4.1563e+04 –1.4872e+05 –3.6380e+05 –5.1239e+05 –6.3228e+05

d2 –1.7032e+04 –7.6540e+04 –1.8857e+05 –3.3150e+05 –5.3873e+05

d3 –1.4498e+04 –2.5142e+04 –1.1606e+05 –2.0718e+05 –3.8381e+05

d4 –1.8106e+04 1.1865e+04 –6.0979e+04 –1.3453e+05 –2.4484e+05

a4 –1.8692e+04 4.8002e+04 3.6183e+04 2.9122e+04 1.7301e+04
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Table 6. Entropy values for non-focal x-y signals

Sub-Bands IMF 1 IMF 2 IMF 3 IMF 4 IMF 5

d1 –8.2690e+04 –2.6400e+05 –7.2062e+05 –1.0136e+06 –1.2331e+06

d2 –3.4186e+04 –1.3165e+05 –3.7047e+05 –6.4858e+05 –1.0346e+06

d3 –3.8699e+04 –3.6016e+04 –2.2654e+05 –4.0754e+05 –7.2611e+05

d4 –5.6122e+04 3.0122e+04 –1.1645e+05 –2.6535e+05 –4.6156e+05

a4 –6.1383e+04 9.9833e+04 7.9081e+04 5.7848e+04 4.5136e+04

As in the case of focal signal, the same is followed in non-focal signal. It can be 
inferred from the Tables 4, 5 and 6 that the Log-energy entropy values are quite small 
for x, y and x – y non-focal signals. In general, the values of IMFs 3, 4 or 5 have greater 
values compared to 1 and 2 [24]. However, the values of x – y signal are smaller than 
that of computed individually (i.e.) x and y signal.

The Figure 9(a, b, c) indicates the box-plot representation of d4 sub-bands extracted 
from the EMD-DWT domain. Box plot represents the discriminating ability of entropy 
features. Here, the interquartile range, the red line indicates the median value for 
focal x and y signals of d4 are between 0 and –5 whereas for non-focal, the values are 
between –5 to –10. The log-energy values act as a feature vector to perform the classi-
fication process.

a) b)

c)

Fig. 9. Box-plot representation of log-energy entropy (a) d4 sub-bands for x-signal  
(b) d4 sub-bands for y-signal (c) d4 sub-bands for x-y signal
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4 Results and discussion

As discussed earlier, the process of classifying an EEG signal into focal and non-focal 
signal is carried out in 2 modes such as training and testing mode. Here in this paper, 
two classifiers have been used namely SVM classifier and KNN classifier.

4.1 SVM classifier

Figure 10 shows the Scatter Plot of SVM Classifier which represents the scattered 
signals on the plot. Basically, it consists of 5 predictors (d1–d4, a4) and 2 response 
classes (focal and non-focal). Usually they are plotted against 2 predictors and here 
it is plotted between d1 and d2 that can be changed according to our convenient. 
The incorrect values are mostly scattered out of the focus which is clearly evident from 
Figure 10.

Figure 11 provides a comparison with respect to accuracy among various types 
of SVM classifiers which includes Medium Gaussian SVM, Fine Gaussian SVM, 
Cubic SVM, Quadratic SVM and Coarse Gaussian SVM. It can be noted that the Fine 
Gaussian SVM trains the data with the highest accuracy of 62.3% when compared to 
other SVM algorithms.

Fig. 10. Scatter plot of SVM classifier
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Fig. 11. Comparison of accuracy among various SVM classifiers

Fig. 12. Confusion matrix of Fine Gaussian SVM

Figure 12 shows Fine Gaussian SVM classifier values plotted between true class 
and predicted class of both predictors (i.e) focal and non-focal signal. It also provides 
the True Positive (TP) rate which defines the correct predicted rate of focal as 68% & 
non-focal as 57% and the False Negative (FN) rate which defines the wrong values 
of focal & non-focal as 32% and 43% respectively. Figure 13 shows the Region of 
Convergence (ROC) Curve of Fine Gaussian SVM classifier which represents the per-
formance of a classification model. The red spot on the curve denotes the position of 
current classifier with False Positive rate as 0.43 towards x-axis and True Positive rate 
as 0.68 towards y axis.

The Area under the Curve (AUC) summarizes the ROC curve which measures the 
ability of a classifier to differentiate between various classes. The higher the AUC, the 
better will be the performance of the model at distinguishing between the positive and 
negative classes.
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Fig. 13. ROC curve of Fine Gaussian SVM

Fig. 14. Parallel coordinates plot of Fine Gaussian SVM classifier
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From the Figure 14 of Parallel Coordinates plot, it is analyzed that the sub-band of 
d1 has true values whose values lies between +1.0 std and –1.5 std and the corrected 
values gradually increases at d3 sub-band. Finally, at approximation band it is shown 
that the corrected values are equally distributed at each range of std between +2.0 std 
and –2.0 std.

Fig. 15. Outcome of trained model using Fine Gaussian SVM

Figure 15 shows the output of Fine Gaussian SVM which consists of classification 
of focal and non-focal data using the trained model. Depending upon the outcome, their 
performance will be evaluated in terms of accuracy.

Table 7. Analysis of signals with respect to increasing data for SVM

No. of Testing Data 20 Data 40 Data 60 Data

Signal Focal Non-Focal Focal Non-Focal Focal Non-Focal

Total 10 10 20 20 30 30

True value 2 4 7 12 14 21

False value 8 6 13 8 16 9

For testing, the data were gradually increased and with an increase in data at every 
stage, the capability of recognizing the true values increased. Initially, 20 data were 
taken and subsequently were increased in steps of 20. At a certain stage, when 60 data 
were taken, the values got saturated and became constant. Table 7 tabulates the analysis 
made while increasing data.

Figure 16 provides a graphical representation that gives a clear idea how their per-
formance got enhanced with an increase in data. Their performance are calculated and 
tabulated in Table 9. By using SVM classifier, it obtained an accuracy of 58.33%.
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Fig. 16. Depicting the analysis of signals with an increase in data for SVM

4.2 KNN classifier

Figure 17 shows the Scatter Plot of KNN Classifier which represents the scattered 
signals on the plot. Basically, it consists of 5 predictors (d1–d4, a4) and 2 response 
classes (focal and non-focal). Usually they are plotted against 2 predictors and here 
it is plotted between d1 and d2 that can be changed according to our convenient. 
The incorrect values are mostly scattered out of the focus which is clearly evident from  
Figure 17.

Figure 18 provides a comparison with respect to accuracy among various KNN clas-
sifiers which includes Medium KNN, Fine KNN and Cubic KNN. It can be noted that 
the Medium KNN trains the data with the highest accuracy of 54.6% when compared 
to other KNN algorithms.

Figure 19 shows Medium KNN classifier values plotted between true class and 
predicted class of both predictors (i.e) focal and non-focal signal. It also provides the 
True Positive (TP) rate which defines the correct predicted rate of focal as 72% & 
non-focal as 37% and the False Negative (FN) rate which defines the wrong values of 
focal & non-focal as 28% and 63% respectively. Figure 20 shows the Region of Con-
vergence (ROC) Curve of Medium KNN classifier which represents the performance 
of a classification model. The red spot on the curve denotes the position of current 
classifier with False Positive rate as 0.63 towards x-axis and True Positive rate as 0.72 
towards y axis.
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Fig. 17. Scatter plot of KNN classifier

Fig. 18. Comparison of accuracy among various KNN classifier

Fig. 19. Confusion matrix of medium KNN
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Fig. 20. ROC curve of medium KNN

Fig. 21. Parallel coordinates plot of medium KNN classifier

116 http://www.i-joe.org



Paper—A Novel SVM and K-NN Classifier Based Machine Learning Technique for Epileptic Seizure…

From the Figure 21 of Parallel Coordinates plot, it is analyzed that the sub-band of 
d1 has true values whose values lies between +0.2 std and –1.0 std and the corrected 
values gradually increases at d3 sub-band. Finally, at approximation band it is shown 
that the corrected values are equally distributed at each range of std between +1.2 std 
and –2.0 std.

For testing, the data were gradually increased and with an increase in data at every 
stage, the capability of recognizing the true values increased. Initially, 20 data were 
taken and subsequently were increased in steps of 20. At a certain stage, when 60 data 
were taken, the values got saturated and became constant. Table 8 tabulates the analysis 
made while increasing data. Figure 22 provides a graphical representation that gives a 
clear idea how their performance got enhanced with an increase in data. Their perfor-
mance are calculated and tabulated in Table 9. By using KNN classifier, it obtained an 
accuracy of 75%.

Table 8. Analysis of signals with respect to increasing data for KNN

No. of Testing Data 20 Data 40 Data 60 Data

Signal Focal Non-Focal Focal Non-Focal Focal Non-Focal

Total 10 10 20 20 30 30

True value 3 6 10 13 21 24

False value 7 4 10 7 9 6

Fig. 22. Depicting the analysis of signals with an increase in data for KNN

Comparison between SVM and KNN classifier

Case 1: Comparison between SVM and KNN for 20 data
Initially, when 20 data were taken, it correctly predicted the focal (i.e) True Positive 

(TP) as 2 in the case of SVM whereas 3 in the case of KNN (Figure 23).
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Case 2: Comparison between SVM and KNN for 40 data
Later, when 40 data were taken, it correctly predicted the focal (i.e) True Positive 

(TP) as 7 in the case of SVM whereas 10 in the case of KNN (Figure 24).
Case 3: Comparison between SVM and KNN for 60 data
Finally, when 60 data were taken, it correctly predicted the focal (i.e) True Positive 

(TP) as 14 in the case of SVM whereas 21 in the case of KNN (Figure 25).

Hence, from all the 3 cases mentioned above, it is understood that the number of data 
plays a crucial role in this process of classification. It is also inferred that, in all the 3 
cases, KNN predicts the highest number of TP value.

Fig. 23. Comparison between SVM and KNN for 20 data

Fig. 24. Comparison between SVM and KNN for 40 data
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Fig. 25. Comparison between SVM and KNN for 60 data

The obtained values of True Positive (TP), True Negative (TN), False Positive (FP) 
and False Negative (FN) for both SVM and KNN can be noted from Table 7 and 8 
respectively. Based upon TP, TN, FP and FN, their performance in terms of accuracy, 
sensitivity and specificity are calculated using the below formulae and are tabulated in 
Table 9.

ACCURACY:

 Accuracy TP TN
TP TN FP FN

�
�

� � �
�100%  

For SVM,

 Accuracy = 14 21
14 21 16 9

100 58 33�
� � �

� � . %  

For KNN,

 Accuracy = 21 24
21 24 9 6

100 75�
� � �

� � %  

SENSITIVITY:

 Sensitivity TP
TP FN

�
�

�100%  

For SVM,

 Sensitivity �
�

� �
14
14 9

100 60 87. %  
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For KNN,

 Sensitivity �
�

� �
21

21 26
100 77 77. %  

SPECIFICITY:

 Specificity TN
TN FP

�
�

�100%  

For SVM,

 Specificity �
�

� �
21

21 16
100 56 76. %  

For KNN,

 Specificity �
�

� �
24
24 9

100 72 73. %  

Table 9. Performance of SVM and KNN classifier

Parameters
Classifier

SVM KNN
Accuracy 58.33% 75%
Sensitivity 60.87% 77.78%
Specificity 56.76% 72.73%

The above tabulated performance of SVM and KNN classifier is graphically repre-
sented in Figure 26 for an easy understanding. Thus from Table 9 and Figure 26, it is 
affirmed that KNN provides the highest accuracy of 75%, sensitivity of 77.78% and 
specificity of 72.73%.

Fig. 26. Depicting the comparison between SVM and KNN in terms  
of evaluating parameters
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5 Conclusion

In this paper, the classification of EEG signals into focal and non-focal signal were 
carried out through KNN method whose performance was calculated and verified in 
terms of their accuracy, sensitivity and specificity. It was also inferred that with an 
increase in data at each and every point, the performance parameters were enhanced 
and later got saturated after a certain specific point. Further, KNN classifier obtained 
the highest accuracy of 75%, sensitivity of 77.78% and specificity of 72.73% while 
SVM classifier obtained accuracy of 58.33%, sensitivity of 60.87%, and specificity of 
56.76%. Thus it can be stated that KNN classifier provided the highest accuracy when 
compared to SVM classifier.
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