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Abstract—Thanks to advancements in artificial intelligence and the Internet 
of Things (IoT), eHealth is becoming an increasingly attractive area for research-
ers. However, different challenges arise when sensor-generated information is 
stored and analyzed using cloud computing. Latency, response time, and security 
are critical concerns that require attention. Fog and Edge Computing technolo-
gies have emerged in response to the requirement for resources near the network 
edge where data is collected, to minimize cloud challenges. This paper aims to 
assess the effectiveness of Machine Learning (ML) and Deep Learning (DL) 
techniques when executed in Edge or Fog nodes within the eHealth data. We 
compared the most efficient baseline techniques from the state-of-the-art on three 
eHealth datasets: Human Activity Recognition (HAR), University of Milano 
Bicocca Smartphone-based Human Activity Recognition (UniMiB SHAR), 
and MIT-BIH Arrhythmia. The experiment showed that for the HAR dataset, 
the Support Vector Machines (SVM) model was the best performer among the 
ML techniques, with low processing time and an accuracy of 96%. In compari-
son, the K-Nearest Neighbors (KNN) performed 94.43, and 96%, respectively, 
for SHAR and MIT-BIH datasets. Among the DL techniques, the Convolutional 
Neural Network with Fourier (CNNF) model performed the best, with accuracies 
of 94.49% and 98.72% for HAR and MIT-BIH. In comparison, CNN achieved 
96.90% for the SHAR dataset.
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1 Introduction

IoT is the idea of interconnecting devices and physical objects via the internet [1]. 
Several applications have emerged through the combination of IoT technologies and the 
extensive computing and storage capabilities provided by cloud computing [2]. Intel-
ligent homes utilize IoT devices, like smart thermostats, lights, and security cameras, 
to enable remote control. Similarly, smart agriculture leverages IoT sensors to gather 
data, such as soil moisture and temperature, to optimize irrigation and fertilization pro-
cesses in farm fields. EHealth is among the most widely adopted uses of information 
and communication technology, and it has made significant contributions to healthcare 
delivery by providing high-quality care and ubiquitous access at a cheap cost. Also, is a 
particularly demanding application of IoT and cloud computing due to its direct impact 
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on human lives. Several eHealth applications [3] exist such as 1)Wearable fitness use 
sensors to gather data on a user’s physical activity, sleep, and other health-related met-
rics; 2) Remote monitoring systems use IoT devices, such as blood pressure monitors 
and glucose monitors, to gather data on a patient’s health; 3) Clinical decision support 
systems use data from electronic health records and other sources to provide healthcare 
with real-time guidance on diagnosis and treatment options; and 4) Public health man-
agement can be used to collect and analyze data on the health of a population, enabling 
the identification of disease trends and the development of targeted interventions to 
improve the health of the population. EHealth data is then transmitted to the cloud, 
where patients and healthcare providers for analysis and monitoring can access it. 
Cloud computing facilitates the storage, processing, and analysis of massive databases 
by enabling access to high-capacity servers. In eHealth applications, real-time record-
ing of clinical data, patient examinations, observations, and actions is often necessary. 
However, processing in the cloud can result in delays when transferring data from 
devices to cloud servers. In addition, this approach has a significant issue, particularly 
when data is stored in poorly secured systems and applications. Innovative solutions, 
like cloudlets, fog, and edge computing, aim to solve these challenges. Edge computing 
(EC) [4] improves IoT systems’ efficiency, reliability, and security by bringing compu-
tation and data storage closer to the source. This results in faster response times, reduced 
costs, lower latency, decreased bandwidth usage, and improved data security through 
local processing and storage. Several related edge computing paradigms have emerged, 
which vary based on the application type and deployment context [5]. Fog, Mobile 
Edge Computing (MEC), and Cloudlet are the most widely discussed. The Fog comput-
ing [6] paradigm is a virtualized platform that Cisco has introduced to enable IoT appli-
cations to operate directly at the network Edge. It was designed to provide low latency, 
location awareness, mobility, support for many nodes and users, a higher representation 
of streaming and real-time applications, and reduce security-related issues [3]. MEC 
[7] was standardized by the European Telecommunications Standards Institute (ETSI) 
to bring cloud computing capabilities closer to mobile subscribers. This is achieved 
by deploying computing services at the edge of the mobile network, usually through 
the base station. MEC is based on a virtualized platform and provides low latency ser-
vice, high bandwidth, real-time network information, and data location awareness. The 
concept of a cloudlet was initiated by Carnegie Mellon University (CMU) as a way to 
provide local, distributed computing resources for users who are located near the edge 
of the network. Cloudlets are small-scale, more resource-constrained virtualized data 
centers that can be deployed in a distributed way [8].

The term “eHealth” refers to a number of topics associated with using digital technol-
ogy in healthcare. Specifically, eHealth refers to the use of electronic tools and systems 
to support a variety of healthcare-related activities, including the collection, storage, 
and analysis of health data, the delivery of healthcare services, and the management of 
healthcare organizations. eHealth services are provided with the assistance of internet 
and are. They are to enhance the quality of life and ease health care delivery [9]. ML is 
a branch of artificial intelligence that includes learning algorithms to identify data pat-
terns and predict based on that data. In the context of eHealth systems, ML be utilized 
to analyze massive volumes of patient data to identify trends, predict outcomes, and 
support decision-making by healthcare providers.
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This research aims to investigate the utilization of ML and DL techniques for analyz-
ing eHealth data within low-capacity computing environments, such as Fog and Edge 
nodes. As a first step, we conducted a review of the current state of research on the use 
of ML and deep DL algorithms in Edge and Fog environments. This review helped us 
to identify the key approaches and techniques that have been developed in this area and 
to understand the challenges and opportunities they present for eHealth data analysis. 
Then, we proceeded to compare the most effective ML and DL techniques in state of 
the art using three eHealth datasets HAR, UniMiB SHAR, and MIT-BIH Arrhythmia. 
This comparison enabled our evaluation of the performance of the different approaches 
on a common eHealth dataset and to find opportunities to improve their effectiveness.

The section of the paper is structured as follows: After an Introduction, section II 
develops the related works, and section III presents the background ML techniques and 
performance metrics used in this study. In section IV, we compare the performance of 
baseline ML techniques based on three datasets. Finally, a conclusion and future work 
are presented in section VI.

2 Related works

IoT devices generate a large quantity of valuable data that can be evaluated and 
utilized to make predictions using machine learning techniques. This section reviews 
research studies that propose a multi-level architecture for ML-based data analysis in 
Edge, Fog, and cloud computing. This study focuses on using ML and DL in the context 
of eHealth and edge and fog computing.

A collaborative IoT eHealth was proposed in [10] based on SVM and Artificial 
Neural network (ANN) for arrhythmia detection. The models achieved an accuracy of 
84% and 94%, respectively, using patient ECG data. The proposed system is a collabo-
rative learning approach that leverages Edge/Fog layers to enhance latency, availability, 
and real-time analysis. A multimodal data analysis framework that uses Electroenceph-
alogram (EEG) and Resting-State Functional Magnetic Resonance Imaging (rs-fMRI) 
datasets are proposed in [11] to estimate and predict epileptogenic networks. They 
used the CNN model and Long Short-Term Memory (LSTM) for unsupervised feature 
extraction in EEG analysis and seizure prediction and then SVM for EEG classification 
achieving an accuracy of 98%. An architecture called HiCH based on the CNN algo-
rithm is proposed in [12]. The edge layer is designed to carry out the ECG classification 
with an accuracy that exceeds 96%. A three-layer system (sensor, Fog, Cloud layers) 
was built in [13] to identify and track patients’ cardiac arrhythmia. KNN was trained and 
executed at the Fog layer to classify arrhythmia types with an accuracy of 94.44%. An 
IoT Medical Things (IoMT) system was designed in [14] based on an Effective Training 
Algorithm for Deep Neural Network (ETS-DNN) algorithm. The system is composed 
of three-layer (Internet of medical things, Edge computing, and Cloud database server). 
The ETS-DNN model is planned to be executed in the Edge computing layer. Hybrid 
Modified Water Wave Optimization (HMWWO) was used to optimize the parameters 
of DNN. Different sizes of medical data collected from IoT devices were investigated 
to achieve the best performance of 99.91% for sensitivity, 99.42% for specificity, and 
99.89% for F-score in 8.82s, surpassing other methods like Genetic Algorithm-Based 
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Trained Recurrent Fuzzy Neural Networks (GA-TRFNN), Swarm Optimized Convo-
lutional Neural Network combined with the SVM algorithm (SCNN-SVM), Particle 
Optimized Feed Forward Back Propagated Neural Network (PFFBPNN), and Particle 
Swarm-Optimized Radial Basis Function Network (PSRBFN). A system for detecting 
psychological disorders is proposed in [15] using electroencephalogram (EEG) signals 
and psychological data. At the edge computing layer, EEG signals are preprocessed to 
reduce data delivered to the cloud and to save deep learning parameters. In the Cloud 
server, three deep-learning models are used to classify signals as normal or abnormal 
(pathological). The proposed system achieved 88.79% accuracy.

Mobile Health (MHEALTH) systems for HAR and bade on signal sensors, such as 
accelerometers and gyroscopes, were proposed in [16]. The system combines edge and 
cloud computing for IoT data analysis and is based on a three-layer architecture consist-
ing of an IoT sensor, edge, and cloud layer. Data were preprocessed at the edge for data 
reduction and sent to the cloud for further ML processing. Principal Component Anal-
ysis (PCA), Autoencoder (AE) was used for data reduction, and Feed Forward Neural 
Network (FFNN) algorithms for classification, and the system achieved an accuracy 
rate of 80%. In [17], a framework based on the AE model was presented to classify 
human activities. The Autoencoder (AE) model was trained using the edge’s processing 
capabilities and achieved an accuracy of 95.45%. As stated in reference [18], a HAR 
classification system is proposed to ensure privacy while transferring machine learning 
models from the Cloud to Edge nodes. KNN, SVM, and Sparse Representation-based 
Classification models were investigated and trained on various datasets, including 
well-established HAR datasets. The accuracy of the three machine learning techniques 
was 82%, 92%, and 88%, respectively. To offer minimal latency and memory at the 
edge of the network, a Binary Neural Network named BinaryDilatedDenseNet was 
proposed [19]. Using three HAR datasets, this model was compared to RCN-SVM 
using accuracy and F1-score metrics. This technique outperformed, with an accuracy of 
98.2% and F1 of 98.1%, while RCN-SVM achieved 97.4% for accuracy and F1-score. 
An architecture of four layers is designed in [20], including Body Area Network 
(BAN), mobile Edge, medical network, and AI medical Cloud. The Activity Detection 
System Optimization algorithm (ActDec-SysOpt) was suggested to experiment with 
this architecture based on Long Short-Term Memory (LSTM). The model was trained 
with UCI HAR, UniMIB SHAR, and HAPT dataset at the Edge node, while optimiza-
tion was conducted at the Cloud layer. The ActDec-SysOpt showed superior accuracy 
in all datasets, particularly in the UniMIB SHAR dataset, where it achieved a 91.87% 
accuracy, while KNN and SVM recorded 80.22% and 84.68%, respectively. To recog-
nize human activities in a smart home, a system based on three layers is defined in [21]. 
The sensor layer and edge layer are planned for further processing. The Cloud layer is 
designed to train the proposed CNN that achieved an accuracy of 94.7% compared to 
other popular methods such as the Naive Bayes (NB), Hidden Markov Models (HMM), 
Conditional Random fields (CRF), ensemble method, and pre-trained leave-one-out 
method with respectively 78.38%, 78.38%, 97.3%, 59.56%, and 37.84% accuracies. 
The authors presented in [22] a video surveillance system named Cloud-based Object 
Tracking and Behavior Identification (COTBIS) intended for Healthcare Smart Homes 
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(HSH) and Smart Architecture for Home Healthcare (SAHH) systems. The approach 
included four layers: An IoT-WBAN sensor, Fog/Edge computing, a Cloud, and a 
consumer layer. The fog/edge computing layer is designed to minimize execution time 
and network bandwidth. COTBIS achieved an accuracy of 94.5% in the 80s. In com-
parison, the HSH system and SAHH system performed 82.7% in the 170s and 85.5% 
in the 120s. Also, COTBIS was compared to other classifiers such as SVM, ANN, and 
Linear regression (LR), which achieved 90.32% in 81.32s, 87.09% in 85.87s, 80.64% 
in 83.54%, respectively. A HealthFog framework is presented in [23] to automatically 
analyze data from different IoT devices to classify heart disease. HealthFog is based 
on fog nodes to deploy and test the proposed model’s performance executed in Edge 
compute nodes.

A real-time system based on the K-means model is proposed to detect speech dis-
orders [24]. This model was trained with actual pathological audio recordings from 
remote monitoring of patients with Parkinson’s disease. The model is executed at the 
fog level, and the Intel Edison and Raspberry Pi computers are used. In the context of 
Edge computing, a healthcare system was proposed in [25] based on the CNN algo-
rithm (CaffeNet) for voice disorders identification and classification. Voice records are 
stored in the Edge Computing layer, and CNN CaffeNet performs with 98% accuracy. 
A Remote Patient Health Monitoring and Risk Assessment System (F-HMRAS) were 
proposed in [26] to detect mosquito-borne diseases and classify patients into infected 
and uninfected. This system used four layers: data collection, Fog Computing, Cloud 
Computing, and End users. The fog layer is designed for data analysis to reduce latency, 
and the Cloud layer is for data storage. F-HMRAS used The Fuzzy KNN (FKNN) clas-
sifier that achieved 95.9% accuracy outperforming the NB and RDT with 89% and 93% 
accuracy, respectively. A Fog-Cloud architecture was designed for health data analysis 
in [27]. The architecture included four layers: A Sensation Layer (SL), a classification 
layer based on Fog, a mining layer to store the data, and an application layer to provide 
the results to the user. The classifiers KNN, ANN, SVM, and NB performed an accu-
racy of 94.4%, 91.3%, 90.1%, and 96.5%, respectively. As mentioned in [28], an archi-
tecture based on three layers for classifying the patient’s behavior is designed. The Fog 
layer will perform the classification task to minimize the amount of data transferred to 
the Cloud. The Bayesian Belief Network (BBN) experiment achieved a precision of 
89.3%, a recall of 86.7%, and an F1-score of 88%. An Intelligent Health System [29] 
composed of five layers is suggested. The Hybrid Sensing System includes different 
types of sensors used for patient data collection. The Patient Data Aggregator (PDA) 
layer is a charge for measuring and obtaining sensor data. The Mobile/Infrastructure 
Edge Node (MEN), Edge, and Cloud layer provides additional storage and advanced 
data analysis capabilities for pattern detection and patient status monitoring. Lastly, the 
Monitoring and Services Provider layer represents the healthcare service provider and 
facilitates communication with medical professionals. The In the edge layer, Frequency 
Feature Classifier (FFC), Random Forest (RF), NB, KNN, and Classification/Regres-
sion Trees (REP-Tree), using cross-validation with k-folds five, were developed. The 
best-performing model is Frequency Feature Classifier (FF), with an accuracy of 97%.

According to this state-of-the-art, different systems using ML and DL techniques 
were designed in the context of setting up an eHealth and to take face to the Cloud 
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latency and security issues. Table 1 summarizes the findings according to the following 
criteria:

•	 Dataset: represents the dataset name if it is standardized.
•	 Technique: describes the used ML algorithm such as SVM, KNN, RF, NB, LR, etc.
•	 Performance: is a validation score used in the study such as Accuracy (Acc), Preci-

sion (Pr), Sensitivity (Sen), Specificity (Spe), F1-measure (F1), and ROC (R).

Table 1. ML and DL techniques comparison in the eHealth context

Ref. Dataset Technique Performance Location

[10] MIT-BIH ANN Acc: 94% Edge/Fog

[11] IRMf-rs, EEG LSTM+SVM Acc: 98%, Sen: 96%, Spe: 97% Edge

[12] MIT Arrhythmia CNN Acc: 97.2% Fog

[13] UCI KNN Acc: 94.44% Fog

[14] ECG data collected ETS-DNN Spe: 99.42%, Sen: 99.91%,  
F1: 99.89%

Edge

[15] EEG signals Three DL Acc: 88.79% Edge

[16] Mhealth HAR Autoencoder Acc: 97% Edge

[17] HAR Autoencoder Acc: 95.45% Edge/Cloud

[18] HAR KNN Acc: 90.26% Edge

[19] HAR BinaryDilatedDenseNet Acc: 98.2%, F1: 98.1% Edge

[20]

UniMIB SHAR

ActDec-SysOpt

Acc: 91.87%

Mobile EdgeHAPT Acc: 91.15%

HAR Acc: 89.96%

[21] Koyto1 CRF, CNN Acc: 97.03%, 94.70% Edge/Cloud

[22] Human Fall and 
Activities data

ANN Acc: 89.09% Fog/Edge

[23] Cleveland Ensemble Bagging Acc: 89% Edge

[24] Speech data K-means NA Fog

[25] Voices data CNN Acc: 98% Edge

[26] Symptoms Collected FKNN Acc: 95.9% Fog

[27] Health data BBN Acc: 96.9% Fog

Environmental data BBN Acc: 96.9% Fog

[28] Collected data BNN P: 89.3%, R: 86.7%, F1: 88% Fog/Cloud

[29] EEG FFC Acc: 97% Edge

Table 1 shows that the articles cover various areas, such as the recognition of human 
activities, cardiac diseases, voice disorders, and digital data analysis. Multiple tech-
niques are used for data processing and analysis, including ML methods such as SVM, 
KNN, and BNN and DL methods such as CNN, ANN, LSTM, DNN, and Autoencoder. 
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There is also a combination of LSTM and SVM (LSTM+SVM). The highest accuracy 
was obtained by CNN at 98%, followed by BBN at 96.9% and KNN at 94.44%. Most 
of the papers referenced in the state-of-the-art performed data analysis and processing 
at the edge computing layer because it is more effective than the Cloud due to the prox-
imity of sensors to compute nodes and the reduced need for additional RAM capacity in 
the Fog layer. Some works used the Edge layer for pre-processing and data preparation 
and Cloud Computing for ML processing.

3 Background of the approach

In this part, we focused on the different ML and DL techniques used for data analysis 
in the Cloud, Edge, or Fog Computing that are cited in the later works.

Support Vector Machines (SVM) is a supervised learning method with accom-
panying learning algorithms for regression and data classification analysis. SVM is 
a machine learning method that can be employed to create accurate predictions [30]. 
This model uses a hyperplane that classifies all learning vectors, allowing for robust 
data classification.

K-Nearest Neighbors (KNN) is a machine learning technique that is utilized in a 
variety of applications, including cybersecurity and used in statistics. The principle 
of the KNN algorithm is to classify unknown points according to their distances from 
known issues. This means finding the k nearest neighbors of a query in the training 
dataset and predicting the results [31].

Random Forest Algorithm (RF) algorithm is a method for classification and regres-
sion that combines multiple random decision trees and averages their predictions, used 
for a large number of datasets with various feature types, such as numerical, binary, and 
categorical [32].

Logistic Regression (LR) is a method for choosing the best and most parsimonious 
solution to describe and represents the relationship between an output variable and a set 
of independent variables [33].

Naïve Bayes (NB) is a classification technique that uses probabilities and has numer-
ous real-world applications, including but not limited to product recommendations, 
medical diagnosis, and controlling autonomous systems [34].

Autoencoder (AE) is an unsupervised learning DL algorithm. It is mainly used for 
data compression and learning a meaningful data abstraction [35].

Artificial Neural Networks (ANN) is a method of an ML model that can be used for 
classification, clustering, pattern recognition, and prediction in various disciplines [36].

Convolutional neural network (CNN) is the most popular and frequently used 
algorithm; it automatically finds essential features without human intervention. CNNs 
have been used in voice processing, facial recognition, and other applications [37].

Synthetic Minority Over-sampling Technique (SMOTE) is an oversampling 
method. This technique is based on an interpolation method to increase the number of 
new instances of the lesser class [38].
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4 Material and methods

Despite different models being proposed for classifying diseases and showing good 
performance, it remains challenging to determine the best ML and DL techniques for 
Edge computing. This is because many studies need to focus on processing time in 
Edge nodes, which is a crucial factor. Additionally, updating the systems with new 
data increases the overall cost, making it essential to consider this in evaluations. We 
propose to conduct experiments comparing various ML and DL techniques as shown 
in Figure 1 in the eHealth domain using three health-related datasets. The selection of 
these techniques is based on state-of-the-art research. The objectives are to compare the 
performance of these methods on the same three datasets and enhance accuracy while 
determining computational cost compared to baseline results. For ML, we will use 
SVM, KNN, RF, and LR; for DL, we will use CNN, ANN, AE, and CNNF.

Fig. 1. The proposed approach

4.1 Datasets

In this experiment, we utilized three datasets, which are outlined below. The HAR 
dataset is a balanced collection that examines human movements and activities, con-
sisting of 102,099 records and identifying six activities (standing, walking up, walking 
down, sitting, walking, and lying). The MIT-BIH Arrhythmia dataset consists of ECG 
recordings from 47 individuals, recorded at a 360 Hz sampling rate [39]. The UniMiB 
SHAR dataset is a compilation of data that encompasses 11,771 activities and falls 
performed by 30 individuals aged between 18 and 60. These instances are decomposed 
into 17 separate classes, further grouped into two more significant classifications: one 
that encompasses nine types of everyday activities and a second that contains eight 
types of falls [40]. Table 2 represents the description of each dataset.

Table 2. Dataset description

Dataset Size Type of Information Number of Data Number of Activities

MIT-BIH-ARRHYTHMIA 104Mo signal data 100,012 5

SHAR 119Mo sequential data 11,771 17

HAR 288Mo sequential data 102,099 6

iJOE ‒ Vol. 19, No. 07, 2023 191



Paper—Edge-Fog-Cloud Data Analysis for eHealth-IoT

4.2 Preprocessing

First, we performed preprocessing, which involved cleaning, formatting, and trans-
forming the data to make it more suitable for ML and DL models. The MIT-BIH 
Arrhythmia and UniMiB SHAR databases are unbalanced, requiring balancing tech-
niques such as Synthetic Minority Oversampling (SMOTE) and resampling. For the 
MIT-BIH dataset, we used the resampling method. At the same time, for SHAR, we 
employed the SMOTE technique to balance the class distribution by randomly increas-
ing the number of minority class examples.

4.3 Machine learning and DL models

To determine the best set of hyperparameters for the SVM, KNN, RF, and LR mod-
els, we used the Grid search cross-validation technique, which combines Grid search 
and cross-validation with 5-fold techniques. The method performs a grid search over 
specified hyperparameter values and uses cross-validation to assess the effective-
ness of each model. For each algorithm, we compiled a list of hyperparameters that 
improve performance. For the DL models, we used CNN, ANN, AE, and CNN with 
Fourier (CNNF), which performed better in the signal processing case, which is the 
focus of our work for the three databases. Table 3 displays the hyperparameters of 
our models.

Table 3. DL model parameters

Model Attributes’ Values

CNN Neuron =107862, Dropout=0.5, Optimizer= Adam, Activation Function=Relu, Loss  
Function= Categorical_crossentropy, Epochs=100, and Batch size=36.

ANN Neuron =9734, Dropout=0.5, Optimizer= Adam, Activation Function= SoftMax, Loss 
Function= Categorical_crossentropy, Epochs=100, and Batch size= 36.

CNNF Neuron=63972, Dropout=0.5, Optimizer= Adam, Activation Function= Relu, Loss  
Function= SoftMax, Epochs=100, and Batch size=36.

AE Neuron=9734, Dropout=0.5, Optimizer= Adam, Activation Function= Relu, Loss  
Function= SoftMax, Epochs=100, and Batch size=36.

4.4 Experiment results

To determine the relative effectiveness of ML and DL models, we employed several 
metrics, defined as follows.

Accuracy (Acc): Refers to the metric used to determine the accuracy of a 
prediction by calculating the ratio of correct predictions to the total number of predic-
tions made.

 Accuracy TP TN
TP TN FP FN

�
�

� � �
 (1)
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Precision (P): represents the percentage of positive predictions that were correct.

 Precision TP
TP FP

�
�

 (2)

Recall (R): the percentage of true positive cases correctly predicted.

 Recall TP
TP FN

�
�

 (3)

AUC: defines the probability that the classifier ranks a randomly selected fake user 
higher than a randomly chosen legitimate user.

Loss: is a main aspect of neural networks to evaluate how well your algorithm mod-
els your data set.

The performance results of the SVM, KNN, RF, and LR models, as well as the CNN, 
ANN, and CNNF models on the HAR, SHAR, and MIT-BIH datasets, are presented in 
Table 4. On the HAR database, the SVM and LR models achieved the best performance 
with 96% accuracy, precision, and recall, though they differ in AUC (96% for SVM and 
97% for LR). The execution time of the SVM model was 3.20s, while the LR model 
was slower at 16.56s. The KNN and Random Forest (RF) models had an accuracy and 
recall of 92%. The precision was 93%, while the AUC was 97% for KNN and 95% 
for RF. The performance of our KNN model was higher than the results of 90.26% 
reported in [18]. Among the DL models, the CNNF model achieved 94.44% accuracy, 
94.49% precision, 94.27% recall, and 90% AUC in 8.19s. Still, AE reaches the low 
result of 87.92% for accuracy, 88.32% for precision, 87.51% for recall, and 98.83% at 
the AUC level in 0.93s.

For MIT-BIH, the best performing ML applied is KNN with 96.9% for all metrics 
except the AUC, which reaches 98.64% within 0.10s, which is the least time compared 
to the other models. Our SVM model showed an accuracy of 90.29%, higher than 
the results reported in [10]. For DL models, CNNF reached an excellent accuracy of 
98.72%, a precision of 98.73%, a recall of 98.70%, and 99% for AUC. Our CNN model 
achieved an accuracy of 97.98%, more than the outcomes from the CNN proposed 
in [12]. Our ANN model took less than 0.39 seconds, but it still needs to be faster than 
the results obtained from the ANN model in [10].

Our results improved the accuracy compared to [20]. The experiments on the SHAR 
dataset indicate that the KNN performed the best, with an accuracy of 88.61%, pre-
cision of 88.73%, recall of 88.61%, and AUC of 88.82%. SVM had an accuracy of 
86.8%, which was higher than the result reported with the same dataset in [20].

Among DL models, CNN performed well with an accuracy of 96.90%, a precision 
of 97.10%, a recall of 96.77%, and an AUC of 99.15%.

In general, the performance of this database could be better [41]. However, the AE 
model did not produce satisfactory results even after using the SMOTE balancing 
method (30.46%) in accuracy. The database has 17 classes and 453 features, which 
requires more efficient preprocessing and feature extraction. Also, examine the correla-
tion between features to make a dimensional reduction. Some papers achieve excellent 
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and high performance, but their results may only apply to some classes [42] because this 
database consists of two parts (ADL and fall) which indicates that they only worked on 
one aspect, which shows it’s not the same dataset. Additionally, they may only consider 
a fixed data length, transforming it into a product matrix based on the temporal window 
size and the sliding step [43].

Table 4. Performance of models on HAR, SHAR, and MIT-BIH dataset

Dataset Techniques Accuracy Precision Recall AUC Mean Execution Time

HAR

ML

SVM 96% 96% 96% 96% 3.20s

KNN 92% 93% 92% 97% 0.20s

RF 92% 93% 92% 95% 4.61s

LR 96% 96% 96% 97% 16.56s

DL

CNN 91.52% 92.12% 91.21% 99.46% 8.10s

ANN 93.93% 94.18% 93.89% 99.37% 1.94s

AE 87.92% 88.32% 87.51% 98.33% 0.93

CNNF 94.44% 94.49% 94.27% 90% 8.19s

SHAR

ML

SVM 86.8% 87.62% 86.8% 93.54% 4.70

KNN 88.61% 88.73% 88.61% 88.82% 0.03

RF 87.03% 87.4% 87.04% 89.74% 8.13

LR 56.52% 56.61% 54.52% 52.13% 18.39

DL

CNN 96.90% 97.10% 96.77% 99.15% 19.50

ANN 93.98% 93.33% 92.98% 98.91% 3.67

AE 30.46% 31.20% 30.44% 84.26% 0.78

CNNF 92.28% 92.45% 92.19% 98.64% 20.95

MIT-BIH

ML

SVM 90.08% 90.29% 90.08% 92.55% 199.90

KNN 96.9% 96.9% 96.9% 98% 0.10

RF 92.44% 95.51% 95.44% 94.44% 98.15

LR 84.96% 85.05% 84.96% 89.95% 32.56

DL

CNN 97.98% 99.01% 99.03% 99% 1.88

ANN 96.40% 96.73% 96.05% 99% 0.39

AE 95.80% 96.16% 95.47% 99.59% 0.88

CNNF 98.72% 98.73% 98.70% 99% 1.95

This experiment demonstrates that among the Machine Learning models, KNN is 
the strongest in terms of high performance and speed. However, LR requires more time 
to process the data than the other three models. In the case of DL models, CNNF offers 
good results, though it takes longer compared to the ANN model, which is fast and 
provides acceptable performance.

Figure 2 depicts the ROC Curve (Receiver Operating Characteristic Curve), a met-
ric used to evaluate models using the AUC (Area Under the Curve). The SVM model 
for the HAR databases exhibits curves closer to 1 for most classes, indicating that the 
model is effective and provides improved classification with an AUC of 96%. For the 
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SHAR and MIT-BIH databases, the KNN model attains an accuracy of 96.9% with an 
AUC of 98% and an accuracy of 88.61% with an AUC of 88.82%, respectively.

Fig. 2. ROC-curve

To ensure our models are not overfitting, we evaluated their performance using the 
loss and accuracy curves. As shown in Figure 3, the training and validation data accu-
racy curve converge towards 1, indicating that accuracy increases with each epoch. The 
training loss and validation loss curves also decrease with each epoch and have a small 
gap. The final accuracy of the CNNF model for the HAR dataset is 94.44%, with a loss 
of 0.23, and it took 8.19 seconds to run. For the MIT-BIH dataset, the CNNF model 
achieved 98.83% accuracy and 0.03 for a loss in 1.95 seconds. The CNN model for the 
SHAR dataset had an accuracy of 96.90% and a loss of 0.15 in an unspecified time.

Fig. 3. Loss and accuracy of CNNF and CNN models

5 Conclusion and future works

This paper compares edge and fog computing-based architectures incorporating 
machine learning and deep learning algorithms to minimize latency, enhance data secu-
rity, and optimize bandwidth utilization at the sensor or local level. Data processing 
encompasses multiple layers, including IoT devices, fog or edge layers, and cloud lay-
ers, and employs machine learning techniques to enhance performance. Our experi-
mentation is based on three datasets: HAR, SHAR, and MIT-BIH, and compares the 
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results of different techniques. KNN has the best processing time and performance for 
the SHAR and MIT-BIH datasets, with an accuracy of 88.61% and 96.9%, respectively. 
For the HAR dataset, SVM outperforms other techniques with an accuracy of 96%. 
Among the DL techniques, CNNF achieves the best results for the HAR and MIT-BIH 
datasets, with an accuracy of 94.44% and 98.72%, respectively. The CNN model has 
96.90% accuracy for the SHAR dataset. In future work, we will focus on eHealth data 
analysis and propose a comprehensive architecture that guarantees data security, opti-
mizes task dispatch between the edge and cloud, and selects the appropriate ML or DL 
technique to provide a prompt and satisfactory response time.
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