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Abstract—It is no secret that the rise of the Internet and other digital technol-
ogies has sparked renewed interest in AI-based techniques, especially those that 
fall under the umbrella of the subset of algorithms known as “Machine Learn-
ing” (ML). Electronic innovations have enabled us to comprehend the universe 
beyond the limits of human cognition. The difficult nature of a high-dimensional 
dataset. Although these techniques have been regularly employed by the medical 
sciences, their adoption to enhance patient care has been a bit slow. The avail-
ability of curated diverse data sets for model development is all examples of 
the substantial hurdles that have delayed these efforts. The future clinical accep-
tance of each of these characteristics may be affected by a number of limiting 
conditions, such as the time and resources spent on data collection and model 
development, the cost of integration relative to the time and resources spent on 
translation, and the potential for patient damage. In order to preserve value and 
enhance medical care, the goal of this article is to evaluate all facets of the issue 
in light of the validity of using ML methods in cancer, to serve as a template for 
further research and the subfield of oncology that serves as a model for other 
parts of the discipline.
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1 Introduction

Machine learning (ML) methods and their accompanying use cases have been 
steadily expanding over the past two decades. There are many examples of ML’s sub-
tle but pervasive presence in our daily lives, from shopping suggestion software to 
advanced image and speech recognition systems. The presence of ML techniques is 
also felt in the workplace by scientists and doctors, in the form of a plethora of algo-
rithms and ML-based tools that assist and, in some cases, have come to replace human 
practice in the biomedical sciences [1, 2].
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The term “machine learning” (ML) is used to describe a wide range of computa-
tional methods that help computers “learn,” or improve their proficiency at a given 
activity, over time. The ML method relies on a large amount of data that the computer 
system iteratively examines in an effort to minimize the difference between its forecast 
and the expected result [3, 4].

The breakthroughs in computing and digital technology that made machine learning 
approaches possible also greatly increased data-acquisition and data-storage capabili-
ties in a variety of scientific study disciplines, thereby ushering in the so-called ‘Big 
Data’ movement. In turn, the enormous quantity of data made it possible for ML meth-
ods to be effectively applied in various fields. ML is becoming increasingly prevalent in 
the medical practice, and oncology is no exception. This is true across the board, from 
approaches that aid in diagnosis by uncovering complicated patterns in screening data 
to expert systems that decide treatment recommendations [5, 6]. Figure 1 shows the 
block diagram of Machine Learning algorithm.

Fig. 1. The block diagram explains the working of Machine Learning algorithm

Since a few decades ago, the fields of medical radiology and oncology have fol-
lowed the customary practice of gathering data in separate silos, where it is then kept 
in a variety of formats. On the other hand, drawing conclusions from such a massive 
resource has proven to be difficult. Despite this, there were a few noteworthy achieve-
ments in the sector that had taken use of the data repositories [7, 8]. In recent years, the 
tide of deep learning has been hastened by unrelenting efforts made by the information 
technology industry to incorporate open-source tool innovations [9, 10]. The pioneer-
ing open-source efforts by leaders in both industry and academia were unheard of in 
recent history [11, 12].

To be more specific, recent progress in the convolutional deep neural community has 
included the demonstration that machine intelligence is on par with or exceeds human 
perception by identifying image groupings [13]. The present-day success of deep neu-
ral networks indicates a paradigm shift from old machine learning methods, which 
relied on features extracted by humans

Although deep learning networks now contain convolutional layers, the entire 
learning process can be deemed entirely automated. Fully connected layers were for-
merly used in regular detection or classification layers. Adaptive learning has greatly 
benefited the improvement of network-based learning [14, 15]. These ML techniques 
provide the possibility of tackling difficult problems, but their implementation has a 
checkered history. Among these were the system’s complicated implementation, the 
need for more contextual information, and the negative connotation of the backbox. As 
a result of these setbacks, unanticipated outcomes have occurred, often referred to as 
“AI winters” [16].
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In this study, we discuss the development of ML approaches, the difficulties inherent 
in their application to the medical field, and the elements that contribute to their trust-
worthy use in oncological research. To boost trustworthiness, reproducibility, and user 
confidence in clinical research and care acceptance, we conclude with suggestions for 
future AI/ML model development.

2 Potential implications of machine learning in oncology

In the field of cancer research, an early diagnosis and accurate prognosis of a specific 
cancer type have become essential requirements since they can improve the subsequent 
clinical management of patients. Because of how critical it is to accurately categories 
cancer patients into high or low risk groups, a significant number of research teams in 
the biomedical and bioinformatics fields are focusing their attention on the applica-
tion of ML approaches. As a result, these methods have been applied with the purpose 
of modelling the development of malignant disorders as well as the therapy of those 
conditions. In addition, the capacity of machine learning techniques to extract signifi-
cant features from complicated datasets demonstrates the significance of these features 
[17–19].

There is significant potential for ML in the field of oncology. It can also be uti-
lized to help with diagnosis and early intervention, as well as to derive risk cohorts, 
forecast prognosis, inform treatment strategies, and aid in prognosis prediction [20]. 
Approaches that are driven by the data that are collected from patients can help us gain 
a better knowledge of cancer and how it affects individuals, given the growing number 
of patient records that are now available. It is a laudable project that will be altered 
how cancer care is delivered, even though ML poses several difficult technological and 
organizational hurdles [21–23]. Figure 2 shows the potential applications of machine 
learning in oncology.

3 Diagnosis and early detection

It is impossible to make an accurate diagnosis of cancer without analyzing large 
amounts of clinical data, such as gene expression, radiological imaging, histology, or a 
combination of these. Cancer biomarkers in gene expression profiles have been analyzed 
using ML since the early 2000s. Recent developments in computer vision have allowed 
for raw images to be analyzed and diagnosed. [24, 25]. Because mammograms are so 
useful in detecting breast cancer, it has served as a natural forerunner in this field. There 
has been a lot of development in mammography-based diagnosis recently, but related 
work dates to 1995 [26, 27]. Analogous methods have been used to detect lung cancer 
using CT scans. The many uses of imaging in diagnostics, and the potential of image-
based diagnostics in the field of histology have also been investigated [21, 28, 29].
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Fig. 2. Applications of machine learning in oncology

By integrating trends among patients across a potentially long-time horizon, ML 
may also be useful for early cancer identification. Although the importance of early 
cancer detection is well acknowledged, it is difficult to achieve due to the subtlety and 
individual variability of the variables that are indicative of cancer onset. Breast den-
sities in mammography and computed tomography (CT) scans of the lungs have both 
been utilized in conjunction with computer vision techniques to provide predictions 
about the likelihood of a future diagnosis of cancer [21, 30]. While other researchers 
have used EMR data to predict pancreatic cancer risk in a high-risk cohort, others have 
concentrated on identifying cancer susceptibility using gene expression data. Cancer 
screening practices and policies might be improved with the help of these early warn-
ing systems. Most importantly, they may allow for quicker treatment and better health 
results for patients [21, 22].

4 Cancer classification and staging

Cancers are often classified according to the stage at which they are detected. It has 
far-reaching ramifications for treatment guidelines and patient care because it often 
determines eligibility criteria for clinical trials and prognostic estimations. Since they 
were created in 1977, the American Joint Committee on Cancer (AJCC) guidelines 
have been seen as the best way to stage cancer in clinical settings Particularly, the 
TNM classification permits stage categorization based on a small number of parame-
ters, including primary tumor size (T), affected lymph nodes (N), and the existence of 
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metastases (M). This ease of use is especially useful for cancer classification schemes, 
which can then function with minimum data collection in order to establish a consis-
tent and widely acknowledged set of features. Clinically generated cut-off values are 
used in these methods, despite the fact that they may be missing key clinical aspects. 
Recognition of the system’s limitations has stimulated exploration of new avenues of 
inquiry [21, 31, 32].

Staging cancer is a method used to divide patients into distinct risk groups. AI pro-
vides a chance to designate staging criteria directly from data, which could lead to more 
accurate prognostic difference between stages. Patients can be divided into prognostic 
groups, for instance, with the help of a model that forecasts disease-free survival. And 
so, in a way, this becomes the de facto way to categorize cancer [21].

This method has been used to study a variety of cancers, including pancreatic can-
cer and intrahepatic cholangiocarcinoma. Patient stratification is improved over the 
AJCC technique in all of the methods, despite their differences, because of the use of 
large-scale data to discover new predictors. These works make use of the possibility 
to analyze possibly thousands of patients at once, parsing a large number of features 
simultaneously, which was not possible when the AJCC was first established [33, 34].

The standard method for cancer staging involves using a supervised learning frame-
work to predict survival, and then using an analysis of the predictors to establish staging 
criteria. Separate cohorts within cancer types can be identified with the help of unsu-
pervised learning as well. Even though the algorithm does not take survival directly 
into account, it has been applied to lung cancer and breast cancer with similar results: 
the resulting subgroups had distinct prognoses [21]. Subgroups can be derived without 
an explicit outcome, which is useful because assessing survival is notoriously noisy 
and complex. To divide cancer patients more broadly into clinical groupings, cluster-
ing provides a fresh perspective. It has also proven possible to employ unsupervised 
learning to find cancer-related gene signatures. Scientists have used this to get insight 
into the many different types of cancer profiles. The discovery of such groups opens the 
door to enhanced disease knowledge and individualized approaches to therapy plan-
ning [35, 36].

5 Predicting and evaluating treatment response

Prescriptive insights are another benefit of ML. Alternative treatment selections and 
patient monitoring can be improved with the help of individual predictions of response 
and harmful effects. The increasing availability of cell line data has allowed for wide-
spread drug sensitivity prediction based on genetic profiles, and genomic data have 
played a key part in this effort. Pan cancer analysis and more specific interactions, such 
as the response to leucovorin, fluorouracil, and oxaliplatin in patients with colorectal 
cancer, have both made use of genomic information to predict clinical response mea-
sures [21, 37, 38].

Patients undergoing neoadjuvant chemotherapy have had their response predicted 
using ML, radiomics has been utilized to treat NSCLC, and breast cancer patients have 
been treated using a mix of clinical and imaging data. There has been additional work 
to identify treatment-related side effects, both at the medication level and at the patient 
level [39, 40].
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When evaluating tumor response, ML can be utilized instead of the standard two- 
dimensional tumor assessments based on RECIST. As a result of practical consider-
ations, such as utilizing features that could be reasonably measured by radiologists, it 
was necessary to rely on two-dimensional measures. Some researchers have discovered 
that RECIST may not properly track progress in patient outcomes; hence this method 
is not without its flaws. In the same way that ML has been used to improve diagnostic 
imaging, it has also been utilized to automatically detect RECIST criteria in patients 
with NSCLC. Response assessment sequences of CT scans for non-small cell lung can-
cer (NSCLC) and volumetric measurements of magnetic resonance imaging (MRI) for 
brain tumors are two examples of RECIST alternatives introduced in other publications 
[21, 41].

6 Evolution of machine learning methods in oncology

For a long time now, data mining and the identification of recurring patterns and 
dependencies have been essential parts of ML approaches to AI. Quantitative methods 
have proven useful in the last decade, but clinical science [22, 23]. The rule-based sys-
tem MYCIN, developed in the 1970s at Stanford University, was the first significant 
application of AI in medicine. Using patient data and laboratory measurements, the sys-
tem would identify the presence of germs and provide treatment recommendations. In 
the 1980s and 1990s, radiologists used computer-aided diagnosis and detection based 
on image analysis, thanks to the initial success of AI technologies in the medical field. 
With the advent of the computer and the information era, however, this optimism faded, 
giving way to the prospect of progress in most people and cynicism in a few others. 
Revitalized enthusiasm can be attributed to the recent development of AI techniques 
and their application in medicine, particularly through the use of machine intelligence 
[23, 42].

There is apprehension about the benefits of ML in healthcare settings because of the 
unknowns that come with new technologies. Concern about being replaced by machines 
is a major source of anxiety for medical professionals. Even though most healthcare 
decisions are reached through consensus in general, tumor boards in oncology are a 
classic working example of this. The role of ML will be to assist the practitioner in 
making decisions, much like having a personal smart assistant that can quickly sift 
through vast amounts of data, make instantaneous comparisons, and offer immediate 
advice [22].

To compensate for incorrect judgments brought on by variations in the test pop-
ulation or other sources of bias in training [43, 44]. There is also the argument that 
people’s knowledge is biased because it is based on their experiences and the charac-
teristics that they can see in the data. To get the most out of an AI system, it is best to 
completely automate the decision-making process, as machines learn to follow a set of 
rules [23]. Most neural architecture-based AI systems still in use today rely heavily on a 
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corporate-developed codebase, which ideally needs to be trained, tested, and validated 
across medical centers to reduce overtreatment (false negatives); until then, It’s possi-
ble that keeping human specialists in the process is inevitable.

When architectures first became available, the image-centric sciences (radiology/
pathology) were among the first to exploit them [45]. One translational use of deep 
learning convolutional neural network (CNN) is in the detection of skin lesions (mela-
noma) using images. These programs are promoted as a screening and diagnostic assis-
tance that can be used right at the front lines. AI has also been put to use in the detection 
of diabetic retinopathy using retinal fundus photographs, an application that has proven 
useful for expansion into areas with fewer medical facilities [22, 46].

The detection of polyps in colonoscopy images using deep networks has been demon-
strated to be effective [46]. In pathology, there are a number of uses; for example, in a 
recent study, researchers demonstrated the ability to detect tumor-infiltrating lympho-
cytes (TIL) in a variety of cancer types on whole slides [23]. The AI methods like His-
toQC and DeepFocus are being used in the real world to standardize and improve the 
quality of whole slide imaging, which has the potential to enhance detection abilities 
[47]. Numerous radiological applications have been found to be helpful [48], with one 
recent study demonstrating the ability to spot malignant nodules in screening CT scans. 
Despite the potential of these methods to enhance detection and care for patients, they 
have been hampered by a lack of “high quality” curated datasets [23].

Methods in machine learning: ensuring their validity and repeatability.
Even while recent advances in deep learning analyses have shown promise in clini-

cal research, the actual impacts on ordinary clinical care may still remain speculative. 
Although many studies have claimed clinical translation, most of these are based on 
historical data that presumably pertains to older technologies, and medical research 
is always progressing [49]. Internal and external validation of ML approaches may be 
required for ML-related clinical applications to increase the likelihood of being benefi-
cial for routine patient care with some degree of prospective (or live) training. Several 
guidelines have been proposed that detail the most effective ways to advance AI for use 
in healthcare [50].

Transparency in reporting multivariate prediction models for prognosis or diag-
nosis (TRIPOD) [51] is one such relevant guideline that offers a reliability score for 
multivariate analysis. There have been more nuanced proposals for radiological appli-
cation, such as the Checklist for Artificial Intelligence in Medical Imaging (CLAIM) 
[52]. MI-CLAIM (Minimum information about clinical artificial intelligence model-
ing) [53] proposes additional guidelines specific to oncological applications. Radia-
tion oncology/medical physics, among others, are just two examples of the many 
proposed domain-specific uses by numerous societies [54]. The use of AI and ML in 
cancer care is likely to become standard once these guidelines are implemented [22]. 
Figure 3 demonstrates the validation and repeatability of ML methods.
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Fig. 3. Validation and repeatability of ML methods

7 Clinical implementation and economic impact

For ML methods to be validated in the clinic, doctors must work closely with the 
researchers to ensure that they have a thorough understanding of the system and a 
non-perspective experts on the method’s functionality, which will help them notice and 
identify possible erroneous results. Most published work lacks inclusion criteria or con-
sistency that allows comparison between research, and a recent analysis of AI-related 
articles reveals no or minimal economic clinical assessment [55]. Initial investment, 
operational cost for an AI system, and a tangible return in terms of patient care, which 
may comprise a decrease in medical errors, etc., will form the backbone of the deploy-
ment process in a clinical setting. Examination of these features is important since they 
affect clinical uptake. More detailed genetic analysis at the cellular level and other 
similar methodologies [22, 23].

Adopting AI technologies to existing treatment in a clinical setting will require 
tight integration with the existing Electronic Medical Record (EMR) process. Clini-
cal cost-benefit analyses are often necessary at the institutional level whenever even 
a minor change to the present workflow needs a clinician’s time for system evalua-
tion or more staff time. Many targeted biopsies are taken during a single office visit 
in breast and genitourinary oncology clinics, to provide just two examples. Adaptive 
learning-based clinical judgments will play a part in the treatment and management of 
diseases, and AI systems will bring with them the promise of increased optimism in 
healthcare [22, 23].

It may still be necessary for the clinical expert to engage with the human patient, 
learn about the patient’s unique circumstances, and decide in tandem with the patient; 
taking into account the latter’s unique psychological make-up, cultural background, and 
social preferences. Machines will make decisions that are supplementary to those made 
by humans, with humans typically making the final clinical call [43]. Some familiarity 
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studies have analyzed the ways in which these tools are being used in healthcare gener-
ally and oncology in particular, placing special emphasis on the reliable (ethical) appli-
cation of AI approaches [44]. Although it is likely that new technologies will benefit 
from having a human expert in the loop, it is important to ensure that they are being 
used in the right context [23, 44].

8 Reliability and evaluation of ML methods

There has been resurgence in discussion on the governance of AI models in the med-
ical sciences as well as their interpretability; these issues have been aggravated using 
models that cannot be explained by utilizing deep neural networks [56]. On the other 
hand, it is not required of the majority of practitioners that they grasp the workings of 
the system. As a point of comparison, driver must be capable of driving a vehicle safely 
and effectively based solely on past knowledge. Whereas it’s true that a mechanic is an 
expert who is well-versed in the nuances of the system, they’re not the only one. It is 
not uncommon for consumers to control a vehicle (whether it is mechanically driven 
or driven by AI) without being required to have any expertise about the technology 
[22, 23].

In order to save lives, it is essential that the models we use improve clinical 
decision-making and minimize unintended negative outcomes. Below is a list of gen-
erally regarded competitors TRIPOD, CLAIM, MI-CLAIM, which were developed 
by a broad survey of academic and industry professionals’ perspectives and are cited 
in the latest consensus statements that give criteria to evaluate multivariate statistical 
approaches [52, 53]. A recent review of ML approaches in oncology gives insights 
and recommended practices [34], although ML methods have yet to catch up. New 
restrictions from the Food and Drug Administration (FDA) on AI systems underline 
the importance of performance accuracy and additional clinical value if the method is 
to be trusted [57, 58].

It is generally agreed that models should be created with a large and varied popu-
lation, and that methods should be tested on a separate dataset to ensure they produce 
accurate and reliable results. Model transparency in cancer may be hindered by the 
incomprehensible complexity of ML models, especially deep learning networks. Typ-
ically, a model that functions within the scope of a disease or molecular subtype is 
developed through the tried-and-true processes of training and validation. The emerg-
ing set of AI-based methods challenge this common sense. Pre-trained deep network 
models have been used to effectively claim to provide disease risk assessment in oncol-
ogy [59], and these models are being trained on photos of everyday objects (cats, dogs, 
toilets, etc.) from mixed contexts. Previously, the most effective deep networks, which 
contained over 650,000 neurons and nearly 60 million parameters, require a tremen-
dous amount of data to train. Since there aren’t many carefully managed public datasets 
for oncology, researchers have resorted to transfer learning to train their networks to 
discriminate between different diseases. It’s possible that these methods have a solid 
technical foundation for training massive deep networks, but they’re definitely going 
against the grain [21, 23].
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The greatest level (level 4) as assessed by the TRIPOD statement would be met 
if clinical models could be reproduced by an independent research group, either by 
re-implementing the approach or by using the same code base to generate (near to) 
equivalent findings [60].

The first step in assessing variability to acquire confidence in the employment of a 
method may be to test the approach’s repeatability in a technically repeated variations 
in extracted metrics can be expected when scanning the same patient multiple times 
using most methodologies, such as imaging, due to differences in patient position, as 
determined by reconstruction operations and delineations procedure. To assess the 
volume metrics [61] and other quantitative imaging aspects [62], it was crucial to be 
able to estimate reliable metrics in repeated patient scans. Quantitative characteristics 
may be impacted by patient-related factors (motion, respiration, etc.), which are widely 
known to be a potential source of variation. Features collected at the lesion level must 
be robust enough to resist some change without impacting the clinical judgment, detec-
tion, or risk assessment. The experimental variability of an omics-based biomarker is 
comparable to that of a biomarker produced in the basic sciences. The greater amount 
of time spent on development has enabled for the assay refining that has reduced vari-
ability to a more manageable percentage [63]. Therefore, ML techniques must undergo 
a progression in order to achieve sufficient reproducibility and repeatability [64, 65].

9 Ethical use of AI methods

The rise of AI and the popularity of its approaches have prompted a wider discussion 
on the ethics of applying AI in general. According to a recent evaluation by UNESCO 
[66], it has been stated that AI approaches can produce biased results that are erroneous 
and discriminatory. Artificial intelligence algorithms are used frequently to locate sought 
individuals and spot possible societal disruptions individuals in the context of popula-
tion surveillance. It is common for some groups to be singled out as possible matches, 
especially in countries like the United States. False positives in identity verification have 
led to widespread scepticism about the reliability of modern technologies [67].

The capacity to explain how a clinical model works, defines its structure and param-
eters, and articulate its underlying assumptions are all prerequisites for its acceptance. 
Transparency can be achieved through clear model definition and subsequent model 
validation, as described in a recent consensus statement that outlines the requirements 
of a decision-making model in healthcare [23, 69]. There is a concerted attempt to 
uncover aspects and attributes that may be accountable for a machine decision [67], 
sometimes known as the “black box method,” which is commonly connected with ML 
model techniques. Models may have to record the deficiency, quantify the risk of false 
detection or uncertainty. The term “explainable artificial intelligence” (XAI) refers to 
a group of techniques that go beyond mere interpretability and transparency. Some 
of these strategies have concentrated on visualization, such as saliency or activation 
maps [68], while others have employed approximations like LIME (Local Interpretable 
Model- Agnostic Explanations) to get closer to the truth. Using SHAP values, a concept 
borrowed from game theory that tends to assign an importance value for a feature, in a 
particular forecast, is an interesting strategy that finds traction to reduce bias. Although 
it may be necessary for an ideal clinical decision support system, it must be stressed 
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that interpretability is only a first step toward better explaining the model. Moreover, 
interpretability does not indicate causality [22, 23].

10 Discussion and conclusion

Most research projects employ some form of learning strategy, and those strategies 
can be roughly classified as either supervised or unsupervised [70]. Thanks to recent 
developments in deep networks [71], artificial intelligence may soon surpass human 
cognition. These techniques have expanded from their initial use in radiological sci-
ences [23] to other oncological-omics datasets [72]. Many deep learning networks have 
been primed for the context of interest using a smaller cohort and trained on smaller 
data sets or random iterations of training data. Recent developments in Few-Shot learn-
ing methods have raised hopes for the potential of these AI approaches in low-volume 
contexts [73].

Users and clinical practitioners face a huge issue when trying to evaluate the trust-
worthiness of these network techniques for therapeutic use. Recent retinopathy detec-
tion system had various ground level concerns, including failed expectations owing 
to quality and user level issues. These problems highlight the fact that there are real 
obstacles to the successful implementation of AI technology [23].

Certainly, typical of all technological implementations, to date automobile recalls 
are recognized as adequate repair method and other technologies improve any short-
coming [74]. Future adoption hinges on how the technology is perceived by people, 
but it also requires decisive action to address existing and emerging issues for it to be 
reliable.

In this decade, the high-tech industry has led the way in implementing new method-
ologies, such as the usage of massive code bases that have been painstakingly adapted 
for oncological data, with an unknown extent of reprocessing, all in an effort to discern 
and go beyond human levels of perception. The results of these methods are consistent 
across hitherto unexplored data types. The necessity for open disclosure of codebase, 
datasets used for training, and reprocessing processes to reach desired output has been 
cited to increase transparency and dependability of these deep network discoveries in 
recent work [75]. Permitting an open and unbiased evaluation of the validity and repro-
ducibility of these methods may be important.

We have reached a crossroads in cancer due to the use of ML techniques, and this 
has led to several arguments among oncologists about how the AI systems are either 
a) inexplicable, or b) a threat to their livelihood since they believe machines can do a 
better job than people. While it’s possible that these networks can’t be explained, once 
we give them enough data to learn from, they’ll be put to good use. Examples of useful 
recommendations include recommending further product support after a customer has 
made a purchase and using facial recognition software to reunite lost family mem-
bers. Clinical systems must be either transparent or interpretable to allow for flexible 
multi-expert input to be considered in AI judgments. As it has been clear that AI tech-
nologies will have far-reaching effects on human civilization in a variety of ways, it 
has also become clear that ethical use of technology with some oversight is important 
for adaptation. Because of the potential for AI technology to have far-reaching conse-
quences, UNESCO commissioned a paper on the ethical use of AI technologies [23].

120 http://www.i-joe.org



Paper—The Evolution and Reliability of Machine Learning Techniques for Oncology

In medicine, a federated model that updates the model utilizing data from many 
silos has shown promising results. There is much promise in the recent application of 
distributed learning across numerous centers located on three continents to construct 
a strong clinical model. Due to the complexity of medicine and oncology in partic-
ular, robots may not be able to totally replace human involvement in diagnosis and 
treatment, necessitating a multi-stage process beginning with creation and ending with 
widespread adoption of the resulting technologies. Artificial intelligence (AI) systems 
will play an increasingly important role in oncology, assisting doctors with diagnostics 
and treatment decisions and raising hopes for the development of new therapies and 
the discovery of effective treatments for previously incurable diseases. Figure 4 shows 
advantages and disadvantages of ML method [76, 77].

Fig. 4. Advantages and disadvantages of ML method

Final thoughts we anticipate that the use of AI techniques will provide a significant 
chance to overcome the current limitation of our ability to understand the complexities 
of the human mind and to automate previously manual tasks. Due to the intricacy of 
cancer, these methodologies, together with ML methods, are going to remain and will 
be of great use to the professional medical sector. In order to increase the openness and 
trustworthiness of ML and deep approaches in the medical sciences, we have developed 
the following based on a review of the relevant literature and actual research findings. 
Both centralized and federated/distributed learning models, which draw from a wide 
variety of data silos, have the capacity to deliver a varied cohort of patient records for 
the purpose of model training. The difference between the two types of models is in how 
they access those data silos. Putting together a group of people who have nothing in 
common with each other and testing it on a large number of patients in a remote place. 
In addition to having the ability to observe the structure of a model that contains a deep 
neural network; one must also have the ability to trust the model’s outputs, at least to 
some extent, also the installation of a wide range of AI components in a responsible 
manner and with some kind of oversight. Testing artificial intelligence models multiple 
times to determine whether or not they can be depended on to provide the same results 
each time. A model that is open and honest about its structure, the data sets it uses, and 
the training weights it uses is transparent and frank. a quality assurance program that is 
possible to be put into action and whose results can be tracked in real time.
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Lung cancer diagnosis, skin cancer diagnosis, and breast cancer brain tumor detec-
tion are only some of the pathology-based diagnostic tasks that have benefited from the 
use of convolutional neural networks. Table 1 demonstrated recent studies in machine 
learning algorithms are used in cancer detection and diagnosis.

Table 1. Several machine learning algorithms are used in cancer detection and diagnosis

References Cancer Type Algorithms Performance Accuracy

Osman 2017 [78] Breast Two-Step-SVM Accuracy: 99.1%

Latchoumi & Parthiban 2017 
[79]

Breast WPSO-SSVM Accuracy: 95.2%
Sensitivity: 97.57%
Specificity: 93.45%

Kumar et al., 2017 [80] Breast Voting classifier and SVM-
Naive Bayes-J48

Accuracy: 97.1%

Vijayarajeswari et al., 2019 [81] Breast SVM Accuracy: 94%

Faisal et al., 2018 [82] Lung MLP, Decision Tree and SVM Accuracy: 90%

Bhandary et al., 2020 [83] Lung MAN and EFT classifier Accuracy: 97.2%
Sensitivity: 98.1%
Specificity: 95.3%

Makaju et al., 2018 [84] Lung Watershed segmentation and 
SVM

Accuracy: 92%
Sensitivity: 100%
Specificity: 50%

Singh and Gupta, 2019 [85] Lung k-nearest neighbours and 
SVM classifiers

88.5%

Lohman et al., 2020 [86] Brain GLSZM and SVM-RFE Accuracy: 70%
Sensitivity: 100%
Specificity: 40%

Wang et al., 2020 [87] Brain Texture LASSO Accuracy: 79.2%
Sensitivity: 75.0%
Specificity: 91.7%

Zhang et al., 2018 [88] Brain RUSBoost Accuracy: 86.6%
Sensitivity: 99.07%
Specificity: 97.93%

Gao et al., 2020 [89] Brain GLCM, GLSZM and SVM Accuracy: 93.33%
Sensitivity: 100%
Specificity: 90%

Murugan et al., 2019 [90] Skin SVM, Random Forest and 
kNN Classifiers

Accuracy: 89.4%
Sensitivity: 91.1%
Specificity: 87.7%

Banasode et al., 2021 [91] Skin SVM Accuracy: 96.9%
Sensitivity: 95.7%
Specificity: 90.2%

Farooq et al., 2016 [92] Skin GLCM and HOG Accuracy: 97.8%
Sensitivity: 75%
Specificity: 65%

Vaishnavi et al., 2016 [93] Skin GLCM Accuracy: 98%
Sensitivity: 96.3%
Specificity: 95%
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