
Paper—Applying Optimized Algorithms and Technology for Interconnecting Big Data Resources in…

Applying Optimized Algorithms and Technology
for Interconnecting Big Data Resources

in Government Institutions

https://doi.org/10.3991/ijoe.v19i08.39661

Genc Hamzaj1, Artan Mazrekaj2(), Isak Shabani2

1SouthEast European University, Tetovo, North Macedonia
2University of Pristina, Prishtina, Kosovo
artan.mazrekaj@uni-pr.edu

Abstract—The quality of the data in core electronic registers has constantly
decreased as a result of numerous errors that were made and inconsistencies in
the data in these databases due to the growing number of databases created with
the intention of providing electronic services for public administration and the
lack of the data harmonization or interoperability between these databases. Eval-
uating and improving the quality of data by matching and linking records from
multiple data sources becomes exceedingly difficult due to the incredibly large
volume of data in these numerous data sources with different data architectures
and no unique field to create interconnection among them. Different algorithms
are developed to treat these issues and our focus will be on algorithms that han-
dle large amounts of data, such as Levenshtein distance (LV) algorithm and
Damerau-Levenshtein distance (DL) algorithm. In order to analyze and evaluate
the effectiveness and quality of data using the mentioned algorithms and making
improvements to these algorithms, through this paper we will conduct experi-
ments on large data sets with more than one million records.

Keywords—data quality assessment, Levenshtein distance (LV) algorithm,
data quality improvement

1 Introduction

High data quality has become a crucial component of data management within a
business institution or organization. Since the beginning of the twenty-first century, there
have been numerous notable technological advancements in the information technology
sector, including cloud computing, the Internet of Things, IoT technologies-based
Healthcare [12], and social networking. The advancement of these technologies has
caused the rise of the volume of data in an exponential way [1]. In order to provide
electronic services for public administration, such is online recruitment, a huge number
of databases were created [11]. However, because these databases were not connected
or their data was not standardized, this resulted in a high number of mistakes and inac-
curacies, which decreased the quality of the data.

4 http://www.i-joe.org

https://doi.org/10.3991/ijoe.v19i08.39661
mailto:artan.mazrekaj@uni-pr.edu

Paper—Applying Optimized Algorithms and Technology for Interconnecting Big Data Resources in…

Since the electronic services provided directly depend on the quality of the data
that is available, analyzing and improving the quality of data contained in information
systems is an important and difficult process for e-government entities. When we try to
offer electronic services, since data are saved in different data sources, it is a necessity
to interconnect datasets from these data sources using appropriate algorithms specifi-
cally when interconnection is obliged to be done without existing unique field for inter-
connection. There are numerous current algorithms for data matching and connecting
records between various data sources so it is very important to decide which algorithm
is better to use for assessing quality and performance of data during treatment of the
datasets. We will concentrate on advanced algorithms that handle enormous amounts
of data, such as the Levenshtein distance (LV) algorithm and the Damerau-Levenshtein
distance (DL) algorithm.

2 Related work

Ensuring the highest quality data is achieved through continuous actions of measure-
ment, analysis and improvement of data quality. In general, DQ assessment includes
of numerous phases that an organization, users, and developers must perform, shown
in Figure 1 [2]:

Fig. 1. Process to insure high quality data [2]

When you have data and datasets located in different sources with different structure
of the data, the main challenge is to integrate and relate these data sources without hav-
ing any unique field with the aim to offer better e-services.

2.1 Algorithms for matching and linking records from multiple resources

In order to perform data matching and linking from different sources, different exist-
ing algorithms can be used, which greatly facilitate this process. The data collected

iJOE ‒ Vol. 19, No. 08, 2023 5

Paper—Applying Optimized Algorithms and Technology for Interconnecting Big Data Resources in…

from different sources often do not have good quality, so the intention is to improve this
data with the main aim of providing better e-services.

Some of these algorithms are:

•	 Levenshtein distance algorithm
•	 Damerau Levenshtein distance algorithm
•	 Optimal String Alignment
•	 Q – gram distance
•	 Longest Common Substring
•	 Jaccard distance Cosine distance.

The Levenshtein distance is an algorithm used to measure the difference between
two given sequences. Informally, the Levenshtein distance is the minimum number
of operations or modifications (e.g. Insertion, Deletion or Substitution) required for a
single-character of the first word until it will be the same as the second word [3].

According to Nikhil Babar, through the Levenshtein algorithm it is possible to deter-
mine the least amount of operations required to change one string and turn this string
into another. It can be calculated effectively using below approach [3]:

•	 In order to initialize a matrix, the (m, n) cell’s distance between a word’s m- and
n-character prefixes must be determined.

•	 The upper left to bottom right corners of the matrix can be filled in.
•	 An insert or a deletion is represented by each hop, whether it is horizontal or vertical.
•	 Normally, the cost for each operation is set to 1.
•	 If both characters in the row and column match, it will be either one or zero. Every

cell always attempts to reduce local costs.
•	 In this situation, the Levenshtein distance between the two words is represented by

the number in the lower right corner.

According to Rishin Haldar and Debajyoti Mukhopadhyay, following steps must be
taken by the Algorithm 1 [4]:

Algorithm 1: The Levenshtein Distance Algorithm
Step 1: Initialization phase
 1. a) Set n to be the length of s, set m to be the length of t
 2. b) Construct a matrix containing 0..m rows and 0..n columns
 3. c) Initialize the first row to 0..n
 4. d) Initialize the first column to 0..m
 Step 2: Processing phase
 5. a) Examine s (i from 1 to n)
 6. b) Examine t (j from 1 to m)
 7. c) If s[i] equals t[j], the cost is 0
 8. d) If s[i] doesn’t equal t[j], the cost is 1
 9. e) Set cell d[i,j] of the matrix equal to the minimum of:
 10. i) The cell immediately above plus 1: d[i-1,j] + 1
 11. ii) The cell immediately to the left plus 1: d[i,j-1] + 1
 12. iii) The cell diagonally above and to the left plus the cost: d[i-1,j-1] + cost
Step 3: Result
Step 2 is repeated till the d[n,m] value is found

6 http://www.i-joe.org

Paper—Applying Optimized Algorithms and Technology for Interconnecting Big Data Resources in…

The Damerau Levenshtein distance represents a variant of another form of the
Levenshtein distance, where it pertains to algorithms of the Edit type. As was pre-
viously mentioned, the “edit-distance” category determines how distinct two strings
are by turning one string to the other and calculating the operations needed. The
Damerau-Levenshtein distance, compared to the classic Levenshtein distance, during
the character edit, in addition to operations such as Insert, Delete and Substitution, also
uses the transposition operation [5].

Wagner and Fischer [6] created a trace notion as a function of cost in several struc-
tures, in order to simplify the process of finding the distance between the first string
and the second string.

This trace can be illustrated as a diagram as in the Figure 2.

Fig. 2. DL trace example [6]

In Algorithm 2 it is presented the pseudocode of the Damerau Levenshtein algo-
rithm, where the H value is calculated, whereas last_row_id[c] represents the last trace
of character c in A and last_col_id represents the last trace of ai in B [7].

Algorithm 2: Damerau Levenshtein Distance Algorithm
 1. DL(A[1:m], B[1:n])
 2. for j ← 0 to n do
 3. H[-1][j] ← maxVal; H[0][j] ← j
 4. end for
 5. for i ← 1 to m do
 6. H[i][-1] ← maxVal; H[i][0] ← i
 7.last_col_id ← -1
 8. for j ← 1 to n do
 9. diag ← H[i-1] [j-1] + c(A[i],B[j])
 10. left ← H[i] [j-1] +1
 11. up ← H[i-1] [j] +1
 12. k = last_row_id[B[j]], l = last_col_id
 13. transpose ← H[k-1] [l-1] + (i - k - 1) +1 + (j - l -1)
 14. H[i][j] ← min{diag, left, up, transpose}
 15. if A[i] = B[j] then
 16. last_col_id ← j
 17. end if
 18. end for
 19. last_row_id[A[i]] ← i
 20. end for
 21. return H[m][n]

iJOE ‒ Vol. 19, No. 08, 2023 7

Paper—Applying Optimized Algorithms and Technology for Interconnecting Big Data Resources in…

3 Improvements of algorithms for matching and linking records
from multiple resources

Many researchers used different ways and methods with the aim of improving algo-
rithms for matching and linking records from multiple resources.

According to H.N. Abdulkhudhur & I.Q. Habeeb, Levenshtein’s algorithm is the
most used algorithm for finding words that are most similar to the incorrect word based
on a certain lexicon. By sequentially contrasting the letters of the incorrect word with
the characters of the correct word from a lexicon, it calculates a sequence of operations
that fill the cells of an array. Such actions will be done millions of times for each wrong
word to create the list of viable options. In order to reduce this large number of oper-
ations created due to the comparison of the characters of the incorrect word and the
lexicon words, the authors propose an improved Levenshtein algorithm. Compared to
Levenshtein’s algorithm, the proposed so-called ILA-OT algorithm, based on experi-
mental results, has a reduction in processing time of 32.43% [8].

From Figure 3, it can be seen that in terms of processing time, the proposed ILA-OT
algorithm is faster than the LA algorithm in percentage by about 32.43%, while not
changing the number of comparisons between both algorithms with the total number of
the comparisons as shown in Figure 4, with 100% accuracy [8].

Fig. 3. Processing time LA and ILA-OT [8]

Fig. 4. Accuracy between LA and ILA-OT [8]

8 http://www.i-joe.org

Paper—Applying Optimized Algorithms and Technology for Interconnecting Big Data Resources in…

According to Z. ZHAO & Zh. YIN, extending the transposition procedure in the
current method reduces the number of edit operations. Improving the algorithm in such
a way that by enabling transposing isolated symbols even after the calculation position
and not only before the calculation position, then as a result a better edit distance can
be obtained [9].

According to Shama Rani & Jaiteg Singh, by removing stop words such as “also, is,
am, are, they, them, their, was, were” etc., Levenshtein’s edit distance algorithm can be
modified and improved [10].

The following conditions lead to the removal of stop words [10]:

•	 Each manuscript has around 20–25% stop words
•	 Eliminating stop words increases the effectiveness of the document
•	 Text mining and searches do not benefit from stop words
•	 Aim is to reduce indexing.

Levenshtein’s Edit distance algorithm is utilized to calculate the inputs and the
amount of words in all the manuscripts, as shown in Table 1. The time taken to calculate
Levenshtein’s distance with Stop words is shown in Table 2. The time taken to compare
documents is calculated in milliseconds [10].

Table 1. Text length of Document A and B with and without using stop words [10]

Text Length of
Document A

Text Length of
Document B

Document A after
Removing Stop Words

Document B after
Removing Stop Words

51 62 27 38

103 90 59 53

203 192 124 119

395 410 242 233

798 750 470 474

Table 2. Length of time needed to determine LV distance once stop words are removed [10]

Text Length of
Document A

Text Length of
Document B

Time Taken to Calculate Levenshtein’s
Distance Withstop Words (In Milliseconds)

51 62 14

103 90 16

203 192 23

395 410 62

798 750 218

Figure 5 compares the lengths of Document A and the identical document after the
stop words were deleted. Additionally, Figure 5 shows the text length with and without
stop-words [10].

iJOE ‒ Vol. 19, No. 08, 2023 9

Paper—Applying Optimized Algorithms and Technology for Interconnecting Big Data Resources in…

Fig. 5. Document A and B by using or avoiding stop-words [10]

Figure 6 shows the time taken to calculate LA with stop-words (case TW1) and
the time needed to compute edit distance following the removal of stop words (case
TW0) [10].

Fig. 6. Time spent on calculations both before and after stop words were removed [10]

According to R. Haldar and D. Mukhopadhyay, in cases where the letters are not
recognized by Optical Character Readers, dictionary lookup methods are mostly used.
However, these methods increase the cost of searching due to the complexity in the
calculation, so the Levenshtein distance is an effective algorithm with the aim of string
approximation [4].

As is known, the Levenshtein Distance Algorithm, for any operation (Insert, Delete,
or Substitute) gives the uniform distance value (ie, 1) when comparing two different
characters. An improvement of this method by grouping characters with similar appear-
ance and calculating the difference of the characters of this group with a value smaller
than the value 1, as a result would enable closest matches to be more accurate. For
example, during the use of any operation for the characters O, D, Q, the weight may be
given with a value of 0.4 and not 1 as for the other characters. As a result, we will have
an improved version compared to the initial version of Levenshtein’s algorithm [4].

10 http://www.i-joe.org

Paper—Applying Optimized Algorithms and Technology for Interconnecting Big Data Resources in…

The groups identified are [4]:

1. O, D, Q
2. I, J, L, T
3. U, V
4. F, P
5. C, G

For example, it may happen that OCR has mistakenly read the word BODY as BDQY
due to the similarity of the characters O and D. Figure 7 explains this case quite clearly.
From the word BDQY, according to Levenshtein’s algorithm, all other words (BODY,
BUSY, BURY, BONY) have a distance of two. However, if we use the improved ver-
sion of Levenshtein Distance Algorithm, it turns out that the distance between BDQY
and BODY has the shortest distance compared to the other words, because D, Q is in
the same group as O, D, so the word BODY is chosen as the answer [4].

Fig. 7. An example of possible outcomes [4]

4 Experimental results

Attributes or fields that are used while applying the algorithm for matching and
linking of personal data are: First Name, Last Name, DOB, Birthplace, Father’s First
Name, Father’s Last Name, Mother’s First Name, Mother’s Last Name.

To execute algorithms it was needed to create a high performance hardware infra-
structure. Testing infrastructure properties and volumes of data that are compared are
shown in Table 3:

Table 3. Hardware infrastructure – testing environment

No. Testing Infrastructure – Hardware

1 RAM Memory 128 GB

2 HDD 14 TB

3 Processor Intel® Xeon® Platinum 8164 2.00 GHz (16 CPUs)

Datasets Volume

1 Dataset 1 2.5 Million Rows

2 Dataset 2 1.85 Million Rows

iJOE ‒ Vol. 19, No. 08, 2023 11

Paper—Applying Optimized Algorithms and Technology for Interconnecting Big Data Resources in…

4.1 Improving algorithms for matching and linking of personal records
by comparing similar letters in Albanian alphabet

During the process of analyzing the data that has been compared for the purpose of
matching the data from different datasets, we noticed that in the Albanian language there
are some letters that are similar or that are often used when writing names, surnames, birth-
places and other important fields when filling in the citizens’ data. For example, it is often
wrong when writing the name Qerim when this name is written as Çerim. Both of these
letters in the Albanian language have the same pronunciation but are used in specific cases.

Through the improvement of Levenstein’s algorithm, we managed to reduce the dis-
tance from 1 to 0.6, for such errors and other errors listed in the table below, while the
distance for other letters that are not in the Table 4 the distance is 1.

Table 4. Similar letters in Albanian alphabet

Number First Comparative Letter Second Comparative Letter

1 “e” “ë”

2 “ë” “e”

3 “i” “j”, “y”

4 “j” “i”,“y”

5 “y” “i”,“j”

6 “q” “ç”

7 “ç” “q”

The Algorithm 3 is used to generate results for improving the Levenshtein Distance
for similar letters in the Albanian alphabet is shown below.

Algorithm 3: Similar letters in the Albanian alphabet
1. USE[DBIMPROVED]
2. GO
3. SET ANSI_NULLS ON
4. GO
5. SET QUOTED_IDENTIFIER ON
6. GO
7. Create FUNCTION [dbo].[neighbors](@s1 nvarchar(100), @s2 nvarchar(100))
8. RETURNS bit
9. AS
10. BEGIN
11. declare @c bit
12. set @c=case when @s1 in (‘e’) and @s2 in (‘ë’) then 1 else
13. case when @s1 in (‘ë’) and @s2 in (‘e’) then 1 else
14. case when @s1 in (‘i’) and @s2 in (‘j’,‘y’) then 1 else
15. case when @s1 in (‘j’) and @s2 in (‘i’,‘y’) then 1 else
16. case when @s1 in (‘y’) and @s2 in (‘i’,‘j’) then 1 else
17. case when @s1 in (‘q’) and @s2 in (‘ç’) then 1 else
18. case when @s1 in (‘ç’) and @s2 in (‘q’) then 1 else
19. 0
20. end end end end end end end
21. RETURN @c
22. END

12 http://www.i-joe.org

Paper—Applying Optimized Algorithms and Technology for Interconnecting Big Data Resources in…

Table 5 displays the outcome of putting the stated changes into practice for the
matching higher than 50%.

Table 5. Results for range more than 50% after implementing improvements
for similar letters in Albanian alphabet

Range of Matching in % Number of Matching Total Percentage

100% 32,929 1.26%

90%–99.99% 622,458 23.92%

80%–89.99% 599,954 23.03%

70%–79.99% 334,478 12.84%

60%–69.99% 379,127 14.57%

50%–59.99% 645,663 24.80%

Total 2,614,609 100%

4.2 Improving algorithms for matching and linking of personal records
by specifying importance of each field

Based on the needs from researchers many new features in algorithms and functions
are added with the aim that the result will be more accurate.

When we implemented the Levenshtein algorithm in our personal records datasets,
we noticed that all the fields have the same % of weight or importance. One example
is shown in Table 6:

Table 6. Personal records with same weight or importance for all columns

First
Name

Last
Name DOB Birth

Place
F. First
Name

F. Last
Name

M. First
Name

M. Last
Name Matching %

Azem Maxhuni 15.12.1985 Gjilan Hasan Maxhuni Have Maxhuni

14.28% 14.28% 14.28% 14.28% 14.28% 14.28% 14.28%

Adem Magjuni 15.12.1985 Gjilan Hasan Maxhuni Have Maxhuni

10.71% 10.20% 14.28% 14.28% 14.28% 14.28% 14.28% 92.31%

As we can see in this example, the percentage of mistakes is the same no matter if
the mistake is in the fiend First Name or in the field Mathers’s First Name because all
the fields have 14.28 % in total percentage.

The outcome of the process is displayed in Table 7 after the following stage of
removing all duplicate data for the percentage matching higher than 50% (each field
have same importance or weight).

iJOE ‒ Vol. 19, No. 08, 2023 13

Paper—Applying Optimized Algorithms and Technology for Interconnecting Big Data Resources in…

Table 7. After removing duplicate data, results for a range greater than 50%

Range of Matching in % Number of Matching Total %

100% 32,929 1.26%

90%–99.99% 528,043 20.20%

80%–89.99% 539,429 20.63%

70%–79.99% 270,601 10.35%

60%–69.99% 296,158 11.32%

50%–59.99% 947,449 36.24%

Total 2,614,609 100%

For the datasets that we compared, some fields are more important that the other to
show the accuracy of the records. For the same record compared, we can notice that
when we add feature Weight or Importance for every column, we have different results
in percentage.

One example is shown in Table 8 below:

Table 8. Personal records with different weight for specific columns

First
Name

Last
Name DOB Birth

Place
F. First
Name

F. Last
Name

M. First
Name

M. Last
Name Matching %

Azem Maxhuni 15.12.1985 Gjilan Hasan Maxhuni Have Maxhuni

20% 20% 14% 11% 12% 11% 12%

Adem Magjuni 15.12.1985 Gjilan Hasan Maxhuni Have Maxhuni

15% 14% 14% 11% 12% 11% 12% 89.28%

The outcome is presented in Table 9 after the following stage of removing all dupli-
cate values for the percentage matching higher than 50% (each fiend have specific
importance or weight).

Table 9. After removing duplicate data, results for a range greater than 50%

Range of Matching in % Number of Matching Total %

100% 32,929 1.26%

90%–99.99% 592,124 22.71%

80%–89.99% 580,289 22.24%

70%–79.99% 291,357 11.15%

60%–69.99% 346,159 13.19%

50%–59.99% 771,751 29.45%

Total 2,614,609 100%

The difference between two approaches is illustrated in the Figure 8 for same set
of data.

14 http://www.i-joe.org

Paper—Applying Optimized Algorithms and Technology for Interconnecting Big Data Resources in…

1,000,000

800,000

600,000

400,000

200,000

0

10
0%

90
%

–9
9.

99
%

80
%

–8
9.

99
%

70
%

–7
9.

99
%

60
%

–6
9.

99
%

50
%

–5
9.

99
%

Number of matching Number of matching

Fig. 8. Compared results before and after specifying weight or importance of each field

4.3 Improving algorithms for matching and linking of personal records
by specifying distance of edit operations

By applying Levenshtein’s approach, the distance between two documents is esti-
mated as the least amount of changes that need to be done in order to create one docu-
ment from another document.

The editing techniques used by this algorithm are listed below:

•	 Insert
•	 Delete
•	 Substitute.

By implementing all three described operations into practice, it is possible to create
a document from another document by changing, removing, or adding a certain number
of characters. During the implementation of this algorithm, we improved the definition
of the importance (distance) of editing operations, where we assigned the distance 0.6
to the substitution operation, 1.2 to the Insert operation, and 1.2 to the Delete operation.

The Algorithm 4 is used to generate results for improved Levenshtein Distance
Algorithm for edit operations is shown below.

iJOE ‒ Vol. 19, No. 08, 2023 15

Paper—Applying Optimized Algorithms and Technology for Interconnecting Big Data Resources in…

Algorithm 4: Improving Levenshtein Distance Algorithm for edit operations
1. BEGIN
2. if (len(@s2) = 0)
3. begin
4. return @s2
5. END
6. DECLARE @s1_len int, @s2_len int, @i int, @j int, @s1_char nchar, @c int, @c_temp float, @n bit,

@nk int, @k int,@cv0 varbinary(8000), @cv1 varbinary(8000)
7. SELECT @s1_len = LEN(@s1), @s2_len = LEN(@s2), @cv1 = 0x0000, @j = 1, @i = 1, @c = 0,

@nk = 0, @k = 1
8. WHILE @j <= @s2_len
9. SELECT @cv1 = @cv1 + CAST(@j AS binary(2)), @j = @j + 1
10. WHILE @i <= @s1_len
11. BEGIN
12. SELECT @s1_char = SUBSTRING(@s1, @i, 1), @c = @i, @cv0 = CAST(@i AS binary(2)), @j = 1
13. WHILE @j <= @s2_len
14. BEGIN
15. SET @c = @c + 1
16. SET @c_temp = (CAST(SUBSTRING(@cv1, @j+@j-1, 2) AS int) + CASE WHEN @s1_char =

SUBSTRING(@s2, @j, 1) THEN 0 ELSE 1 END)
17. IF @c > @c_temp SET @c = @c_temp
18. SET @c_temp = CAST(SUBSTRING(@cv1, @j+@j+1, 2) AS int)+1
19. IF @c > @c_temp SET @c = @c_temp
20. SELECT @cv0 = @cv0 + CAST(@c AS binary(2)), @j = @j + 1
21. END
22. SELECT @cv1 = @cv0, @i = @i + 1
23. declare @ins int =0, @del int = 0
24. if @s1_len > @s2_len
25. BEGIN
26. SET @del = @s1_len - @s2_len
27. END
28. else
29. BEGIN
30. SET @ins = @s2_len - @s1_len
31. END
32. END
33. RETURN (@c * 0.6) + (@ins * 1.2) + (@del *1.2) - (@ins * 0.6) - (@del * 0.6)
34. END

By implementing an improved Levenshtein algorithm when distance in edit opera-
tions is specified, we reduce the time when comparing data from different data sets and
we come to better results in a faster way.

5 Conclusions and future work

After assessing the datasets regarding data quality, we applied a variety of data
matching algorithms to connect personal records from different data sources. The con-
clusion is that the Levenshtein Distance algorithm is the best algorithm for the match-
ing and linking process when the focus in on quality of the data and in performance.

16 http://www.i-joe.org

Paper—Applying Optimized Algorithms and Technology for Interconnecting Big Data Resources in…

Findings in this paper emphasize the significance of assessing DQ, and highlights
the importance of identifying algorithm that suites the most for linking and matching
process. In the context of using appropriate algorithm for matching and linking data
from multiple resources, many algorithms are used and also many improvements are
done in these algorithms with the aim to have better and adequate results. We also
added new features to algorithms that treat data from multiple resources with the aim to
improve quality of data in order to reduce the time needed to obtain the required result.

There are still challenges in using and improving algorithms such as the Leven-
shtein distance algorithm and Damerau Levenshtein distance algorithm that comes to
the result with fewer steps and less time to have qualitative data as output. The search
space between two datasets is attempted to be smaller by selecting the appropriate
blocking variable.

6 References

 [1] Cai, L., & Zhu,Y. (2015). The Challenges of Data Quality and Data Quality Assessment in the
Big Data Era. Data Science Journal, 14 (2), pp. 1–10. https://doi.org/10.5334/dsj-2015-002

 [2] Aljumaili, M. (2016). Data Quality Assessment: Applied in Maintenance. PhD thesis, Lulea
University of Technology.

 [3] Babar, N. (2022). The Levenshtein Distance Algorithm. Online: https://dzone.com/articles/
the-levenshtein-algorithm-1 [Accessed: July 2022].

 [4] Haldar, R., & Mukhopadhyay, D. (2011). Levenshtein Distance Technique in Dictionary
Lookup Methods: An Improved Approach. Computing Research Repository-CORR, Web
Intelligence & Distributed Computing Research Lab.

 [5] OpenGenus IQ (2022). Damerau Levenshtein Distance. Online: https://iq.opengenus.org/
damerau-levenshtein-distance [Accessed: July 2022].

 [6] Wagner, R., & Fisher, M. (1974). The String to String Correction Problem. Journal of ACM,
21 (1), pp. 168–173. https://doi.org/10.1145/321796.321811

 [7] Zhao, C., & Sahni, S. (2019). String Correction using the Damerau-Levenshtein Distance.
BMC Bioinformatics, 20 (11), pp. 20–103. https://doi.org/10.1186/s12859-019-2819-0

 [8] Abdulkhudhur, H. N., Habeeb, I. Q., Yusof, Y., & Yusof, Sh.A.M. (2016). Implementation of
Improved Levenshtein Algorithm for Spelling Correction Word Candidate List Generation.
Journal of Theoretical and Applied Information Technology, 88 (3), pp. 449–455.

 [9] Zhao, Z. P., Yin, Z. M., Wang, Q. P., Xu, X. Z., & Jiang, H. F. (2009). An Improved Algo-
rithm of Levenshtein Distance and its Application in Data Processing. Journal of Computer
Applications, 29 (2), pp. 424–426. https://doi.org/10.3724/SP.J.1087.2009.00424

 [10] Rani, S., & Singh, J. (2017). Enhancing Levenshtein’s Edit Distance Algorithm for Evaluat-
ing Document Similarity. International Conference on Computing, Analytics and Networks,
pp. 72–80. https://doi.org/10.1007/978-981-13-0755-3_6

 [11] Yong, W., Yinle, Zh., & Ning, L. (2023). Big Data Analysis and Forecast of Employment
Position Requirements for College Students. International Journal of Emerging Technolo-
gies in Learning, 18 (4), pp. 202–218. https://doi.org/10.3991/ijet.v18i04.38245

 [12] Hamza, R., Abderrahim, M., & Abdelaziz, E. (2023). Data Security Mechanisms,
Approaches, and Challenges for e-Health Smart Systems. International Journal of Online
and Biomedical Engineering, 19 (2), pp. 42–66. https://doi.org/10.3991/ijoe.v19i02.37069

iJOE ‒ Vol. 19, No. 08, 2023 17

https://doi.org/10.5334/dsj-2015-002
https://dzone.com/articles/the-levenshtein-algorithm-1
https://dzone.com/articles/the-levenshtein-algorithm-1
https://iq.opengenus.org/damerau-levenshtein-distance
https://iq.opengenus.org/damerau-levenshtein-distance
https://doi.org/10.1145/321796.321811
https://doi.org/10.1186/s12859-019-2819-0
https://doi.org/10.3724/SP.J.1087.2009.00424
https://doi.org/10.1007/978-981-13-0755-3_6
https://doi.org/10.3991/ijet.v18i04.38245
https://doi.org/10.3991/ijoe.v19i02.37069

Paper—Applying Optimized Algorithms and Technology for Interconnecting Big Data Resources in…

7 Authors

Genc Hamzaj has earned PhD degree in e-Technology from Southeast European
University in the North Macedonia. He has published numerous papers in conferences
and journals. His research interests includes Data Science, Databases, Optimized
Algorithms and Big Data (e-mail: gh26149@seeu.edu.mk).

Artan Mazrekaj is an Assistant Professor at the Faculty of Electrical and Computer
Engineering, University of Prishtina “Hasan Prishtina”, Prishtina, Kosovo. He obtained
PhD from Southeast European University in the North Macedonia, in the e-Technology
program. He has published numerous papers in conferences and journals. His research
interests includes Cloud Computing, Distributed Systems and IoT (e-mail: artan.
mazrekaj@uni-pr.edu).

Isak Shabani is a Full Professor and Dean at the Faculty of Electrical and Com-
puter Engineering, University of Pristina “Hasan Pristina”, Prishtina, Kosovo. He has
obtained a PhD degree in computer science and engineering from the University of
Prishtina. He is currently the author of several international journals and conferences,
and has been engaged as a reviewer in several scientific papers of his narrow filed
of research. Also, he is engaged in several scientific projects. His research interests
includes Distributed systems, Web services, HCI, Systems design and ICT in Education
(e-mail: isak.shabani@uni-pr.edu).

Article submitted 2023-03-12. Resubmitted 2023-04-14. Final acceptance 2023-04-15. Final version
published as submitted by the authors.

18 http://www.i-joe.org

mailto:gh26149@seeu.edu.mk
mailto:artan.mazrekaj@uni-pr.edu
mailto:artan.mazrekaj@uni-pr.edu
mailto:isak.shabani@uni-pr.edu

