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Abstract—This manuscript presents a simulation comparison of statistical 
classical methods and machine learning algorithms for time series forecasting 
notably the ARIMA model, K-Nearest Neighbors (KNN), The Support Vector 
Regression (SVR), and Long-Short Term Memory (LSTM). The performance of 
the models was evaluated using different metrics especially Mean Squared Error 
(MSE), Mean Absolute Error (MAE), Median Absolute Error (Median AE), and 
Root Mean Squared Error (RMSE). The results of the simulations approve that 
the KNN and LSTM algorithms have better accuracy than the others models’ 
forecasting notably in the medium and long term. Hence, in the medium and long 
term, ML models are so powerful on big datasets. However, Machine learning 
architectures outperform ARIMA for shorter-term predictions. Thus, ARIMA is 
most appropriate in the case of univariate small data sets, where deep learning 
algorithms are not yet at their best.

Keywords—machine learning, time series forecasting, classical approaches, 
forecasting

1	 Introduction

In the recent decade, time series forecasting and analysis have become an import-
ant field, especially in medicine, economy, and industry [1]. This paper provides an 
in-depth examination of the most efficient and widely utilized machine learning algo-
rithms for forecasting. In fact, we propose to conduct a general approach to time series 
generation.

The simulation will be performed to investigate the potential of classical and machine 
learning algorithms to improve the accuracy of forecasting. We design simulations from 
stationary models where the residual terms follow the standard normal distribution. 
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Then, we simulate a large time process data set and compute their corresponding 
features.

The rest of the paper will be structured as follows. We start with the methodology 
and then the time series generation and data preprocessing. In the third section, we will 
compare our time series algorithms using different accuracy metrics. In the last, we 
conclude.

2	 Methodology

This section exposes the methodology and a review of classical and deep sequential 
architectures for forecasting time series. Specifically, we consider the following algo-
rithms: ARIMA, SVR, KNN and LSTM architectures.

2.1	 ARIMA algorithm

Auto-Regressive Integrated Moving Average, or ARIMA, models are a class of 
models that are used to analyze and forecast time series data [2]. The model is defined 
mathematically as:
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Where Xt the time series data at time t, B is the backshift operator, d is the order of 
differencing, θi and ϕi are the parameters of the model, and ηt is the error term.

2.2	 K-nearest neighbors algorithm

The K-nearest Neighbors (KNN) algorithm is a non-parametric method used for 
classification and regression. The algorithm tries to find the K observations in the train-
ing dataset that are closest to the observation to be predicted, and it assigns the most 
common output value among those K observations to the observation to be predicted. 
Mathematically, the KNN algorithm can be represented as: Given a new observation, 
xnew, and a training dataset, Xtrain, the KNN algorithm finds the K closest observa-
tions in Xtrain to xnew. These K closest observations are represented by XKNN. The 
algorithm then assigns the most common output value among those K closest observa-
tions to xnew.

Algorithm 1: K-nearest Neighbors Algorithm

Procedure: KNN(xnew, Xtrain, ytrain, K)
    XKNN ← FindKNN(xnew, Xtrain, K)
    ynew ← MostCommonValue(ytrain[XKNN])
    return ynew
end procedure

Where xnew is the new observation, Xtrain is the training dataset, ytrain is the cor-
responding output values for the training dataset, K is the number of nearest neighbors 
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to consider, XKNN is the set of K nearest neighbors, and ynew is the predicted output 
value for the new observation.

2.3	 Support vector regression algorithm

Support Vector Regression (SVR) is a supervised machine learning algorithm. It is 
used for forecasting time series. Typically, it is used to forecast the future values of a 
given time series on the basis of past values [3]. Therefore, it is a powerful method to 
predict future results based on historical information.

The idea of SVR is to find a function that can accurately predict future values. The 
generic SVR can be expressed as follows:

	 f x x bi i( ) ( )� ��� 	 (2)
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The Support Vector Regression (SVR) algorithm can be summarized as follows:

Algorithm 2: Support Vector Regression Algorithm

Step 1 : Select kernel function.
Step 2 : Select the value of C.
Step 3 : Compute the Gram matrix K using kernel function and input data.
Step 4 : Solve the quadratic programming problem defined by objective function and constraints.
Step 5 : Obtain parameters w and b.
Step 6 : Use w and b to make forecasting.
Step 7 : Summarize findings.

2.4	 Long short term memory algorithm

Long Short-Term Memory (LSTM) is a type of Recurrent Neural Network (RNN) 
that is able to capture long-term dependencies in sequential data [4]. This is achieved 
through the use of memory cells, which allow information to flow through the network 
over multiple time steps. LSTMs are particularly useful for tasks such as speech recog-
nition and natural language processing, where the input sequences can be very long [5]. 
The mathematical equations for an LSTM unit can be represented as follows:
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Where it, ft, ot and gt are the input, forget, output and cell gates respectively, ct is the 
cell state and ht is the hidden state. W and b are the weight matrices and biases respec-
tively, and σ and tanh are the sigmoid and hyperbolic tangent functions respectively.

3	 Data generation & data preprocessing

3.1	 Data generation

To assess the underlying algorithms derived in Section 2, we simulated various time 
processes data sets. Generating stationary Time-Series artificial data will be done by 
using Python programming language.

First of all, we will transform all the previous algorithms into Python Code. For that 
purpose, we will begin by fixing the libraries that will be helpful for the whole process 
notably NumPy, statsmodels, sklearn packages, and notably keras library.

To take in all possible shapes, we will vary the sample size from smallest to largest 
size. More precisely, the sample size (T) of the simulated time process is set to be:

	 T ∈ {10; 15; 30; 100; 1000; 5000; 10000; 100000}

It should be mentioned that with the previous parameter setting, the time process is 
stationary. For each range of sample size, we have generated 384 replications of inte-
grated time series. Then, we implemented the proposed algorithms in Python language. 
In particular, a part of the Python code that has been used to run these simulations is 
given above.

After, we fitted the algorithms on the training set using the appropriate Python 
functions. Note that the accuracy criterions used for comparison purposes are RMSE. 
Overall, all the underlying models provide a low RMSE value, which revealed a good 
forecast accuracy.

The data set related to the work has been created by way of simulation based on 
random parameters. Now that we have our generated artificial data set, let’s see how it 
compares visually. To do this, we can make a plot for each of the 7 features and show 
their variation with respect to timestep.
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Algorithm 3 : Generation of Stationary AR Processes Coefficients

Input : p ← integer

Output : AR stationary time process coefficients

Function stationary_ar(p)

While True do

Φ = (ϕ1, ϕ2, ϕ3,…, ϕp  )ʹ ~ i.i.d Up(-1,1);

Solve equation 1-ϕ1Z-ϕ2Z
2-ϕ3Z

3-…-ϕpZ
p = 0;

Roots ← Define roots as the list of all equation’s solutions;

Compute ||Roots||;

if ||Roots|| > 1 for all roots in Roots then

Break;

end

end

return Φ;

Algorithm 4 : Generation of Stationary AR Processes Coefficients

Input : Data ← Empty Dictionary, P,D,Q ← integers, Simulated_data ← Empty Directionary,  
T ← {15, 30, 100, 1000, 5000, 10000}

Output : Data with P x Q x D x T univariable time processes

for p = 0 to P step 1 do

Φ ← stationary_ar(p) ;

for q = 0 to Q step 1 do

Θ ← (θ0, θ1, θ2,…, θq) ʹ Arbitrary;

for d = 0 to D step 1 do

for t in T do

Simulated_Data ← ARIMA(Φ, Θ, t, d);

Data ← Update data with Simulated_data;

end

end

end

end

Notes: ML: machine learning; R Squared: Coefficient of determination; MSE: mean square error;  
MAE: mean average error; SVR: support vector regressor.

3.2	 Data preprocessing

Training set vs testing set. The first step to do before running a time series simula-
tion, we have to divide the dataset into two parts: A training set and a testing set. The 
first part is used to create and generate our algorithms. Then, we apply the models to the 
testing set to forecast future data points. In Python, we can call the traintest_splitclass 
from Scikit-learn class.
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Feature scaling. In Python programming language, we can do that by implementing 
Standard-Scaler class from sklearn.preprocessing library.

It should be mentioned that all our simulations and data preprocessing will be done 
using Python programming language. Many packages will be used for instance scikit-
learn library, Pandas, NumPy, tensorflow, Plotly, statsmodels, matplotlib, pmdarima 
libraries ...etc.

4	 Simulation of the datasets

Algorithm 5 : Simulating an ARIMA Time Series

Step 1 : Set the length of the data set (T) ;
Step 2 : Create an uncorrelated innovation series from a probability distribution;
Step 3 : Make space room by creating an empty vector or a dictionary;
Step 4 : Select values for the parameters;
Step 5 : Define p, q, and order of integration (d) ;
Step 6 : Generate several time series
Step 7 : Check how our series looks right

Based on the values of the arguments n, p, q, and d, 384 data series will be raised. 
In other words, we generated a time process for each model of length n for different 
orders of p, d and q.

params_ma = np. random . uniform (-1, 1, 3)
sample_sizes = [10 , 15, 30, 100 , 1000 , 5000 , 10000 , 100000]
my_dict = {}
for sample_size in sample_sizes :
  for p in ordres :
  for q in ordres :
  for d in (0, 1, 2):
  ar = params_ar [:p]
  ma = params_ma [:q]
  simulated_data = ARIMA (phi = ar , theta = ma , n =
sample_size , d= d)
  my_dict . update ({“ size –”+ str( sample_size )+”- ARIMA (“+ str (p)+” ,”+ str(d)+” ,”+ str(q)+”) 
“: list ( simulated_data ) })

Source: Authors manipulations’ under Python programming language.

We noticed that the generation of the innovations has been done from a Gaussian dis-
tribution with a mean of 0 and variance of 1. Thereafter, in order to guarantee that we all 
get the same findings, we have set the seed to a predetermined value (set.seed (12345)) 
before generating values for the time processes. We have simulated 4 × 4 × 3 × 8 = 384 
time process variables by combining all possible values of p, q, and d for each sample 
size. When we plot the simulated ARIMA (p, d, q) processes, they look as follows:
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Fig. 1. Overall process
Source: Authors manipulations’ under Python programming language.

Above in the Figure 1, we present a set of data sets generated by the previous 
algorithms.

5	 Simulation results

In this section, we will explore the simulation results.

Algorithm 5 : Model Selection Algorithm for Time Series Forecasting

Step 1 : Set T (integer);
Step 2 : Generate a time series;
Step 3 : Split the series into training and testing period;
Step 4 : Train the candidate algorithms;
Step 5 : Compute accuracy metrics for each candidate algorithm;
Step 6 : Choose the best candidate algorithm based on the accuracy metrics;
Step 7 : Establish forecasting for the test part using the adopted model;
Step 8 : Repeat steps 2 to 7 T times;
Step 9 : Summarize T findings.

We applied machine learning techniques to our generated data sets. The findings 
obtained by using the accuracy metrics according to the simulating data sets are pre-
sented in the table below.
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Algorithm 6: Evaluation Metrics for Time Series Forecasting

Input : X a training set time series, model (a trained model for forecasting)

Output : Evaluation metrics for time series forecasting

mape ← 0; mae ← 0; rmse ← 0; X_pred ← model(X);

for i = 1 to length(X) step 1 do

mape ← mape + abs(Xi −X_predi)/abs(Xi)×length(X));

mae ← mae + abs(Xi −X_predi)/length(X);

rmse ← rmse + (Xi −X_predi)2/length(X);

end

rmse ← squart(rmse);

Print(mape);

Print(mae);

Print(rmse);

Table 1. Summary of the accuracy metrics results obtained with different samples for d = 0

Algorithm
Sample Size

10 15 30 100 1000 5000 10000 100000

ARIMA 1.052 0.984 1.276 0.947 0.968 0.9716 0.956 0.9808

SVR 0.828 1.196 1.054 0.771 0.7501 0.919 2.12 1.157

LSTM 1.3080 1.095 1.006 0.919 1.068 1.181 0.57 0.907

KNN 1.57 1.76 1.601 0.935 0.217 0.812 0.379 0.418

Table 2. Summary of the accuracy metrics results obtained with different samples for d = 1

Algorithm
Sample Size

10 15 30 100 1000 5000 10000 100000

ARIMA 1.276 1.590 1.384 7.120 10.420 10.938 30.078 146.225

SVR 1.308 2.089 2.993 5.450 20.232 48.3677 100.128 103.131

LSTM 1.281 2.955 2.820 5.040 5.279 6.068 104.545 231.209

KNN 1.623 1.76 2.62 2.631 7.321 2.321 43.721 121.102

Table 3. Summary of the accuracy metrics results obtained with different samples for d = 2

Algorithm
Sample Size

10 15 30 100 1000 5000 10000 100000

ARIMA 2.303 3.390 4.497 417.337 801.588 551.714 4673.724 32013.217

SVR 4.446 15.001 32.806 474.213 17498.301 137187.911 197185.111 239127.112

LSTM 11.582 22.505 33.611 273.175 178.836 6041.017 47040.1 8231.162

KNN 2.871 2.879 6.812 115.862 251.97 323.209 871.62 1383.921
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6	 Conclusion

Forecasting plays a crucial role in the planning, managing, and monitoring of future 
movements. Thus, the comparison of time series forecasting based on classical and 
Machine Learning algorithms showed that ML and classical approaches have different 
strengths and weaknesses depending on the specific application and the characteristics 
of the dataset.

The main challenge of classical approaches requires careful not only hyperparameter 
tuning but also a good understanding of the data set notably the time series stationarity. 
In fact, ARIMA needs series of parameters (p,q,d) that must be computed based on data, 
while the majority of ML algorithms do not need to set such parameters [6, 7, 8].

Through the research, the simulation demonstrates that ML techniques gave more 
accurate and efficient results. The experimental findings (according to Tables 1–3) 
clearly emphasize that machine learning algorithms work better when we deal with 
huge amounts of data sets and enough training period is available, while classical 
approaches are better for smaller data sets. There are some limitations of the classical 
methods, especially since they are sensitive to missing and outlier values. Also, work-
ing with univariate data sets is more challenging to be employed on multivariate data 
sets. On the other side, machine learning algorithms are not only able to deal with the 
previous challenges but also can be applied to both univariate data sets and multivariate 
data sets without being sensitive to outliers.

Forecasting systems based on classical statistical approaches have their own lim-
itations since they require more historical data sets to meet statistical hypotheses, for 
instance, determining the trends in the data, and statistical attributes like stationarity 
and causality. Deep learning algorithms provide a novel approach in terms of forecast-
ing. Intuitively, the performance of the LSTM algorithm was expected to be superior 
to that of the ARIMA one. Investigations of simulations showed that the LSTM model 
provides greater accuracy compared to ARIMA one.

From the simulations, we can approve that KNN and LSTM algorithms forecasting 
have better accuracy than the others models’ forecasting notably in the medium and 
long terms. Usually, those two algorithms provide better results in terms of accuracy 
metrics than the other candidate techniques. Paradoxically, Machine learning architec-
tures outperform ARIMA for shorter-term predictions. Thus, ARIMA is most appropri-
ate in the case of univariate small data sets, where deep learning algorithms are not yet 
at their best.
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